Imaging with scattered light

by Ori Katz

at Quantum optics seminar

Thu, 07 Jun 2018, 15:30
Physics building (#54) room 207

Abstract

Random scattering of light in complex samples such as biological tissue renders most objects opaque to optical imaging techniques diffusing every focused beam into a complicated speckle pattern However although random scattering is a deterministic process and it can be undone and also exploited by controlling the incident optical wavefront using computer controlled spatial light modulators SLMs These insights form the basis for the emerging field of optical wavefront shaping 1 Opening the path to new possibilities such as imaging through visually opaque samples and around corners 2 The major challenge in the field today is in determining the required wavefront correction without accessing the far side target side of the scattering sample I will present some of our recent efforts in addressing this challenge 3 8 These include the use of optical nonlinearities 3 the photoacoustic effect 4 6 and acousto optics 7 to focus and control light non invasively inside scattering samples I will also show how by exploiting inherent correlations of scattered light it is possible to image through scattering layers and around corners using nothing but a smartphone camera 8 If time permits I will present the use of these principles for endoscopic imaging through optical fibers 9 10 References 1 A P Mosk et al Controlling waves in space and time for imaging and focusing in complex media Nature Photonics 6 283 2012 2 O Katz et al Looking around corners and through thin turbid layers in real time with scattered incoherent light Nature Photonics 6 549 2012 3 O Katz et al Noninvasive nonlinear focusing and imaging through strongly scattering turbid layers Optica 1 3 170 174 2014 4 T Chaigne et al Controlling light in scattering media noninvasively using the photo acoustic transmission matrix Nature Photonics 8 58 2014 5 E Hojman et al Photoacoustic imaging beyond the acoustic diffraction limit with dynamic speckle illumination and sparse joint support recovery Optics Express Vol 25 Issue 5 pp 4875 4886 2017 6 T Chaigne et al Super resolution photoacoustic imaging via flow induced absorption fluctuations Optica Vol 4 Issue 11 pp 1397 1404 2017 7 O Katz et al Controlling light in complex media beyond the acoustic diffraction limit using the acousto optic transmission matrix arXiv:1707 02421 2017 8 O Katz et al Non invasive single shot imaging through scattering layers and around corners via speckle correlations Nature Photonics 8 784 790 2014 9 A Porat et al Widefield lensless imaging through a fiber bundle via speckle correlations Optics Express 2016 10 SM Kolenderska O Katz M Fink S Gigan Scanning free imaging through a single fiber by random spatio spectral encoding Optics letters 40 4 534 537 2015

Created on 03-06-2018 by Bar Lev, Yevgeny (ybarlev)
Updaded on 03-06-2018 by Bar Lev, Yevgeny (ybarlev)