Physical Review Letters -- October 25, 1999 -- Volume 83, Issue 17, pp. 3506-3509


Percolation-Type Description of the Metal-Insulator Transition in Two Dimensions

Yigal Meir
Department of Physics, Ben-Gurion University, Beer Sheva 84105, Israel

(Received 27 April 1999)

Asimple noninteracting-electron model, combining local quantum tunneling and global classicalpercolation (due to a finite dephasing time at low temperatures),is introduced to describe a metal-insulator transition in two dimensions.It is shown that many features of the experiments, suchas the exponential dependence of the resistance on temperature inthe metallic phase, the linear dependence of the exponent ondensity, the e2/h scale of the critical resistance, the quenching of the metallic phase by a parallel magnetic field, and the nonmonotonic dependence of the critical density on a perpendicular magnetic field, can be explained by the model. ©1999 The American Physical Society

URL: http://mirror.publish.aps.org/abstract/prl/v83/p3506
PACS: 71.30.+h, 73.40.Qv, 73.50.Jt


Full Text:


References

Citation links [e.g., Phys. Rev. D 40, 2172 (1989)] go to online journal abstracts. Other links (see Reference Information) are available with your current login. Navigation of links may be more efficient using a second browser window.

  1. S. V. Kravchenko et al., Phys. Rev. B 50, 8039 (1994);
    51, 7038 (1995);
    Phys. Rev. Lett. 77, 4938 (1996);
    V. M. Pudalov et al., JETP Lett. 65, 932 (1997);
    D. Popovic et al., Phys. Rev. Lett. 79, 1543 (1997);
    K. Ismail et al., ;  [LANL]
    J. Lam et al., Phys. Rev. B 56, R12 741 (1997).
  2. P. T. Coleridge et al., Phys. Rev. B 56, R12 764 (1997).
  3. M. Y. Simmons et al., Phys. Rev. Lett. 80, 1292 (1998).
  4. Y. Hanein et al., Phys. Rev. Lett. 80, 1288 (1998);
    Phys. Rev. B 58, R7520 (1998);
    58, R13 338 (1998).
  5. Y. Yaish et al., ;  [LANL]
    (unpublished).
  6. E. Abrahams et al., Phys. Rev. Lett. 42, 673 (1979).  [SPIN]
  7. A. M. Finkelstein, Zh. Eksp. Teor. Fiz. 84, 168 (1983);
    Z. Phys. 56, 189 (1984);
    C. Castellani et al., Phys. Rev. B 30, 527 (1984);  [SPIN]
    30, 1596 (1984).  [SPIN]
  8. V. Dobroslavljevic et al., Phys. Rev. Lett. 79, 455 (1997);
    C. Castellani, C. Di Castro, and P. A. Lee, Phys. Rev. B 57, R9381 (1998);
    D. Belitz and T. R. Kirkpatrick, Phys. Rev. B 58, 8214 (1998);
    P. Phillips et al., Nature (London) 395, 253 (1998);  [INSPEC]
    F.-C. Zhang and T. M. Rice, ;  [LANL]
    S. Chakravarty et al., Philos. Mag. B 79, 859 (1999);  [INSPEC]
    G. Benenti, X. Waintal, and J.-L. Pichard, Phys. Rev. Lett. 83, 1826 (1999).
  9. V. M. Pudalov, JETP Lett. 66, 175 (1997).
  10. Song He and X. C. Xie, Phys. Rev. Lett. 80, 3324 (1998).
  11. B. L. Altshuler and D. L. Maslov, Phys. Rev. Lett. 82, 145 (1999).
  12. Y. Hanein et al., .  [LANL]
  13. V. M. Pudalov et al., JETP Lett. 65, 932 (1997);
    D. Simonian et al., Phys. Rev. Lett. 79, 2304 (1997);
    V. M. Pudalov et al., Physica (Amsterdam) 249-251B, 697 (1998).  [INSPEC]
  14. E. Ribeiro et al., Phys. Rev. Lett. 82, 996 (1999).
  15. P. Mohanty, E. M. Jariwala, and R. A. Webb, Phys. Rev. Lett. 78, 3366 (1997);
    Phys. Rev. B 55, R13 452 (1997).
  16. D. P. Pivin et al., Phys. Rev. Lett. 82, 4687 (1999);
    A. G. Huibers et al., .  [LANL]
  17. G. Eytan et al., Phys. Rev. Lett. 81, 1666 (1998).
  18. E. Shimshoni and A. Auerbach, Phys. Rev. B 55, 9817 (1997);
    E. Shimshoni, A. Auerbach, and A. Kapitulnik, Phys. Rev. Lett. 80, 3352 (1998).
  19. A. A. Shashkin et al., Phys. Rev. Lett. 73, 3141 (1994);
    V. T. Dolgapolov et al., JETP Lett. 62, 162 (1995);
    I. V. Kukuskin et al., Phys. Rev. B 53, R13 260 (1996).
  20. For a review of percolation theory and for values of the critical exponents, see, for example, D. Stauffer and A. Aharaony, Introduction to Percolation Theory (Taylor & Francis, London, 1992).
  21. V. Ambegaokar, B. I. Halperin, and J. S. Langer, Phys. Rev. B 4, 2612 (1971).  [INSPEC]
  22. T. P. Smith et al., Phys. Rev. Lett. 61, 585 (1988);
    K. J. Thomas et al., Phys. Rev. Lett. 77, 135 (1996);
    Phys. Rev. B 58, 4846 (1998).
  23. See, e.g., B. J. van Wees, Phys. Rev. B 43, 12 431 (1991).
  24. To simplify the numerics, we chose random potentials with azimuthal symmetry.
  25. H. A. Fertig and B. I. Haleprin, Phys. Rev. B 36, 7969 (1987).
  26. For recent reviews on quantum dots see, e.g., M. A. Kastner, Comments Condens. Matter Phys. 17, 349 (1996);  [INSPEC]
    R. Ashoori, Nature (London) 379, 413 (1996).  [INSPEC]
  27. See, e.g., S. H. Tessmer et al., Nature (London) 392, 6671 (1998);
    H. F. Hess et al., Solid State Commun. 107, 657 (1998).  [INSPEC]
  28. A. Yacoby (unpublished).
  29. C. Pasquier et al., Phys. Rev. Lett. 70, 69 (1993).
  30. P. L. McEuen et al., Phys. Rev. Lett. 66, 1926 (1991).