
VOLUME 83, NUMBER 17 P H Y S I C A L R E V I E W L E T T E R S 25 OCTOBER 1999

3506
Percolation-Type Description of the Metal-Insulator Transition in Two Dimensions
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A simple noninteracting-electron model, combining local quantum tunneling and global classical
percolation (due to a finite dephasing time at low temperatures), is introduced to describe a metal-
insulator transition in two dimensions. It is shown that many features of the experiments, such as the
exponential dependence of the resistance on temperature in the metallic phase, the linear dependence of
the exponent on density, the e2�h scale of the critical resistance, the quenching of the metallic phase by
a parallel magnetic field, and the nonmonotonic dependence of the critical density on a perpendicular
magnetic field, can be explained by the model.

PACS numbers: 71.30.+h, 73.40.Qv, 73.50.Jt
The experimental observation of a metal-insulator tran-
sition in two dimensions [1–5] has been a subject of ex-
tensive investigation, since it is in disagreement with the
predictions of single-parameter scaling theory for non-
interacting electrons [6]. Several theories, based on the
treatment of disorder and electron-electron interactions by
Finkelstein [7], have been put forward [8]. Other ap-
proaches considered spin-orbit scattering [9], percolation
of electron-hole liquid [10], or scattering by impurities
[11]. To date there is no acceptable microscopic theory
that describes quantitatively the observed data.

Here we present a simple noninteracting electron
model, combining local quantum tunneling and global
classical percolation, to explain several features of the
experimental observations. The main observations we
want to understand are the following: (1) As the system
is cooled down, the resistance of samples with density
higher than some critical density extrapolates to a finite
value at zero temperature, while that of samples with
lower density diverges. (2) The resistance of the sample
with the critical density does not depend on tempera-
ture (at least for a limited range of low temperatures).
(3) The conductance of the critical-density sample is
of the order of e2�h. (4) On the metallic side the
functional dependence of the resistance is of the form
R�T � � R0 1 R1 exp�2A�T �. The parameter A varies
linearly with the density and vanishes at the transition.
(5) In perpendicular magnetic fields this transition is
continuously connected with the quantum Hall–insulator
transition [12]. The critical density varies nonmonotoni-
cally with magnetic field, with a minimum around n � 1.
(6) Parallel magnetic fields destroy the metallic phase, at
least for densities near the transition [13,3].

Before we introduce the model, let us mention three
other experimental observations: (a) The strong disorder
is crucial to see the transition. In GaAs the transition
is seen only at samples with low mobility (even with
the same density). In fact, Ribeiro et al. [14] have re-
cently observed a zero-field metal-insulator transition in
high-density n-type GaAs sample with strong enough dis-
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order (which was introduced by a matrix of randomly
distributed quantum dots). (b) There is additional ex-
perimental indication that the transition is not driven by
interactions—Yaish and Sivan [5] studied a system of two
parallel gases, one of electrons and one of holes. The ob-
served metal-insulator transition in the hole gas depended
only slightly on the electron density, even though one ex-
pects that increasing electron density will screen the inter-
actions between holes and suppress the metallic phase in
the hole gas. On the contrary, increasing electron density
led to increasing conductance in the hole gas, indicating
that its main role is to screen the impurity potentials in
the hole gas. (c) There is a growing experimental evi-
dence that even at the lowest available temperatures, the
dephasing time is still finite [15,16].

Based on all these observations we now suggest the
following scenario to explain the experimental observa-
tions: the potential fluctuations due to the disorder de-
fine density puddles. (Density separation into puddles in
gated GaAs was indeed observed experimentally by Eytan
et al. [17], using near-field spectroscopy.) Locally, be-
tween these puddles, transport is via quantum tunneling
through saddle points, or quantum point contacts (QPCs),
while between such tunneling events it is assumed that de-
phasing takes place. Thus the conductance of the system
will be determined by adding classically these quantum
resistors. A related model was introduced by Shimshoni
et al. [18] to describe successfully transport in the quan-
tum Hall (QH) regime. The percolative nature of the sys-
tem in the QH regime was indeed verified experimentally
[19]. We will return to the QH regime below.

We characterize each saddle point by its critical energy
ec, such that the transmission through it is given by
T �e� � Q�e 2 ec�. Thus the conductance through each
QPC is given by the Landauer formula,

G�m, T � �
2e2

h

Z
de

µ
2

≠fFD�e�
≠e

∂
T �e�

�
2e2

h
1

1 1 exp��ec 2 m��kT �
, (1)
© 1999 The American Physical Society



VOLUME 83, NUMBER 17 P H Y S I C A L R E V I E W L E T T E R S 25 OCTOBER 1999
where m is the chemical potential and fFD is the Fermi-
Dirac distribution function.

The system is now composed of classical resistors,
where the resistance of each one of them is given by
Eq. (1), with random QPC energies. In the numerical
data presented below, we solved a 20 3 20 system of
QPCs (which, for simplicity, has the topology of a
square lattice), each averaged over 1000 realizations of
disorder, where the QPC energies were taken from a
square distribution of width W . At zero temperature the
conductors have either zero conductance or a conductance
equal to 2e2�h and one has the usual second-order
percolation transition. The critical conductance exponent
t is known at two dimensions and is equal to �1.3 [20].
In Fig. 1 we fit the experimental data of [4] and of [5] to
the expected critical dependence. Clearly, the agreement
with the classical percolation prediction is excellent.

As temperature increases, the Fermi-Dirac distribution
is broadened. Consequently, the conductance of the insu-
lating QPCs (ec . m) increases exponentially, while that
of the transparent ones (ec , m) decreases exponentially.
Thus we expect to see rather dramatic effects as a function
of temperature. This is indeed depicted in Fig. 2. As tem-
perature is lowered systems with slightly different resis-
tance at high temperatures will diverge exponentially with
decreasing temperatures. The resistance of systems on
the metallic side (n . nc) will saturate at zero tempera-
ture, while that of insulating samples will diverge. Note
that there is an upward turn even on the metallic side of
the transition. We will come back to this point below.
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FIG. 1. Comparison of the lowest temperature data of [5] (two
sets of data, triangles and squares, 330 mK, density given by
the lower axis) and of [4] (circles, 57 mK, density given by
the upper axis), and of the n-type data [4] (diamonds) to the
prediction of percolation theory (solid line). Inset: Logarithmic
derivative of the data [5] which gives a line whose slope is
the inverse of the critical exponent. The percolation prediction
�t � 1.3� is given by the solid line. For comparison a t � 1
slope is also shown (broken line).
The high-temperature resistance of the critical density net-
work is naturally around h�e2, the only resistance scale in
this model.

For systems of exponentially distributed resistors the
resistance of the whole circuit is determined by the critical
resistor, the worse resistor in the minimal percolating
network [21]. Then the resistance of the network would
be equal to the inverse of the Fermi-Dirac function, �1 1

exp��ec 2 m��kT ��h�e2, where ec is its threshold energy.
Then clearly the overall resistance will be of the form
observed experimentally, R � R0 1 R1 exp�2A�T �, with
A varying linearly with the density and vanishing at
the transition. In our case, the resistors on the metallic
side have a bound distribution, and accordingly there
will be other resistors, in parallel and in series, that will
contribute to the overall resistance of the circuit. This will
not change the functional form, but will renormalize the
parameters R0, R1, and A. Such a functional dependence
on the metallic side is indeed found numerically and
displayed in the inset. In fact, close to the transition, on
the metallic side, as temperature increases, some QPCs
that before had zero conductance start to conduct and add
to the overall conductance. Since the critical percolation
cluster is very ramified (in fact, of fractal dimension),
there will be many such resistors in parallel to the
main conducting network, and the effect of improving
these resistors will overcome the fact that resistors on
the conducting network itself become worse. This leads
to a downward turn of the resistance with increasing
temperature even on the metallic side, the details of which
may depend sensitively on the geometry. Only deeper
into the metallic regime, as seen in Fig. 2, the overall
resistance increases with increasing temperature. This
also suggests that the density at which the resistance is
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FIG. 2. Temperature dependence of the resistance for systems
of different densities. Below the critical line (bold curve) all
curves saturate at zero temperature, while above it the resistance
diverges. The resistance of the more metallic samples decreases
exponentially (inset).
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approximately temperature independent is not the true
critical point, but rather deeper on the metallic side. This
is clearly seen in Fig. 3, where one can see a point
where all the low-temperature curves nearly cross, well
inside the metallic regime. The above discussion suggests
that one should be cautious in associating the critical
point with the “temperature-independent” point, as done
routinely in the experiment interpretations.

We turn next to the effects of a magnetic field. The
effect of a parallel field is straightforward to understand,
as there have been several studies of transport through
a QPC in parallel fields [22]. These experimental and
theoretical studies demonstrated that the threshold density
where the QPC opens up increases parabolically with
the in-plane magnetic field. This effect was attributed to
coupling of the in-plane motion to the strong confinement
in the vertical direction, leading to an increase in the
energy levels. Since this increase occurs for all QPCs
in the sample, such a field in our case will strongly inhibit
the metallic behavior: QPCs which were conducting at
zero field will have exponentially small conductance with
increasing field. Once the density of conducting QPCs
falls below the critical density, the system becomes an
insulator, in agreement with experimental observations.

The situation in perpendicular magnetic fields is more
interesting as QH states are formed. Transport through
a single QPC in perpendicular field and the crossover
between the zero-field limit and the QH limit have been
studied in detail [23]. As expected, one finds that the
critical energy oscillates with magnetic field due to the
depopulation of Landau levels. In our case, we expect
the oscillations to be smoothed out by the disorder and by
the averaging over many QPCs. Thus only the strongest
oscillation, near n � 1, may survive, leading to a single
dip in the critical density vs magnetic field plot, as was
observed experimentally. This is indeed in agreement
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FIG. 3. Conductance vs density (Fermi energy) for several
temperatures. There is a density, well above the true critical
point, where the curves seem to cross each other.
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with our numerical calculation. We studied the energy
levels of one puddle of electrons, which we modeled by a
circular disk, in the presence of disorder [24]. In Fig. 4
we plot the “critical density”— the number of electrons
that need to occupy the puddle, so that the energy of the
highest-energy electron will be enough to transverse the
QPC [25], equivalent in the bulk system to the critical
density—as a function of magnetic field. Indeed, we see
a dip near n � 1 with all other oscillations smoothed out
by the disorder. This curve has a strong resemblance to
the experimental data [12] (inset). In addition, we expect
that as the magnetic field is lowered below the n � 1
minimum more than one channel will transverse some
QPCs, leading to an increase in the critical conductance,
as indeed reported experimentally.

All the above results and discussion demonstrated that
many of the experimental observations can be explained
in the context of the simple model introduced here. Nev-
ertheless, there are clearly other physical effects that need
to be included in order to have a full picture of the ex-
periments. In particular, electron-electron interactions are
expected to play an important role in these low densi-
ties. As we can regard the metallic puddles described
above as quantum dots, one can use the abundant infor-
mation about the role of interactions in such structures
[26] to gain additional understanding of the characteristics
of the puddles and the phase separation. Other effects,
including the energy dependence of the transmission co-
efficient and the possibility of more than one channel
through the QPCs, the temperature dependence of the de-
phasing length, the role of interband scattering [5], and
temperature-dependent impurities [11] may also be impor-
tant to understand quantitative aspects of the data. Nev-
ertheless, the fact that several important aspects of the
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FIG. 4. The critical density— the number of electrons in the
puddle, so that the topmost energy will allow transport through
the point contact—as a function of magnetic field, in the
presence of a finite disorder. The continuous curve is an
averaged fit through the (necessarily integer) data points. Inset:
the corresponding experimental data [12].
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experimental data can be explained in the context of a
simple model is quite encouraging. Moreover, while in
the degenerate electron gas limit (T ø EF) the conduc-
tance on the metallic side can decrease by only a factor
of 2 with decreasing temperature, the model predicts ar-
bitrary reduction in the conductance in the nondegenerate
case (T 	 EF), relevant to the Si systems.

The picture described above can be checked experimen-
tally. The experiments verifying the percolative structure
in the QH regime [19] can be extended to the zero-field
systems. (An experimental evidence for phase separation
was observed at zero field in [17].) An even more direct
evidence of the percolative nature of the system will be
local probes [27]. In fact, an enhancement in the fluc-
tuations of the local chemical potential has already been
observed [28] as the system enters the “insulating” phase,
in a fashion similar to the enhancement of chemical po-
tential fluctuations with closing of the barriers forming a
quantum dot [29]. In fact, a “smoking gun” verification
of the picture presented here will be periodic oscillations
of the local chemical potential on the insulating side, due
to depopulation of the Landau levels, as was observed in
quantum dots [30].
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