Vector Calculus for EE

201-1-9631

Summary

1. Lines and planes. Cross product. Vector valued functions of a single variable, curves in the plane, tangents, motion on a curve. 2. Functions of several variables: open and closed sets, limits, continuity, differentiability, directional derivatives, partial derivatives, the gradient, scalar and vector fields, the chain rule, the Jacobian. Implicit differentiation and the implicit function theorem. Extremum problems in the plane and in space: the Hessian and the second derivatives test, Lagrange multipliers. 3. Line integrals in the plane and in space, definition and basic properties, work, independence from the path, connection to the gradient, conservative vector field, construction of potential functions. Applications to ODEs: exact equations and integrating factors. Line integral of second kind and arclength. 4. Double and triple integrals: definition and basic properties, Fubini theorem. Change of variable and the Jacobian, polar coordinates in the plane and cylindrical and spherical coordinates in space. Green's theorem in the plane. 5. Parametric representation of surfaces in space, normals, the area of a parametrized surface, surface integrals including reparametrizations 6. Curl and divergence of vector fields. The theorems of Gauss and Stokes.

Syllabus

Bibliography

T. Apostol, Calculus, 2nd Edition, Vol. 1, chapter 14; Vol. 2, chapters 8-12

חדו"א וקטורי להנדסת חשמל

201-1-9631

נתוני קורס

נקודות זכות
5.00
שעות הרצאה
4.00
שעות תרגול
2.00
שעות מעבדה
0.00
לקובץ הקורסים

תקציר

1. ישרים ומישורים. המכפלה הווקטורית. פונקציות וקטוריות ממשיות, מסילות במישור, משיקים, תנועה על מסילה 2. פונקציות של כמה משתנים: קבוצות פתוחות וסגורות, גבולות, רציפות, גזירות, הנגזרת הכוונית, נגזרות חלקיות, גרדיינט, שדות סקלריים ושדות וקטוריים, כלל השרשרת, היקוביאן. נגזרות סתומות ומשפט הפונקציות הסתומות. בעיות אקסטרמום במישור ובמרחב: ההסיאן ומבחן הנגזרת השניה, כופלי לגרנז'. 3. אינטגרלים קווים במישור ובמרחב, הגדרה בסיסית ותכונות יסוד, עבודה, אי תלות במסלול, הקשר עם הגרדיינט, בניית פונקציות פוטנציאל. שימושים למשוואות דיפרנציאליות רגילות: משוואות דיפרנציאליות מדויקות וגורם אינטגרציה. אינטגרליים מסילתיים מהסוג השני ואורך מסילה. 4. אינטגרלים כפולים ומשולשים - הגדרות ותכונות בסיסיות, משפט פוביני, החלפת משתנה והיקוביאן, קואורדינאטות פולריות במישור וגליליות וכדוריות במרחב. משפט גרין במישור. 5. הצגות משטחים במרחב - הצגה פרמטרית, נורמל למשטח, שטח של משטח פרמטרי, אינטגרל משטחי ורפרמטריזציה. 6. רוטור ודיברגנץ של שדות וקטוריים. משפטי גאוס וסטוקס.

סילבוס

ביבליוגרפיה

T. Apostol, Calculus, 2nd Edition, Vol. 1, chapter 14; Vol. 2, chapters 8-12
Last changed on April 25, 2022 by None