Black holes as frozen stars

by Tamar Simhon

Ben-Gurion University
at Particles and Fields Seminar

Mon, 03 Jan 2022, 14:00
Sacta-Rashi Building for Physics (54), room 207


We have recently proposed a model for a regular black hole, or an ultra-compact object, that is premised on having maximally negative radial pressure throughout the entirety of the object’s interior. This model can be viewed as that of a highly entropic configuration of fundamental, closed strings near the Hagedorn temperature, but from the perspective of an observer who is ignorant about the role of quantum physics in counteracting against gravitational collapse. The advantage of this classical perspective is that one can use Einstein’s equations to define a classical geometry and investigate its stability. Here, we complete the model by studying an important aspect of this framework that has so far been overlooked: The geometry and composition of the outermost layer of the ultra-compact object, which interpolates between the bulk geometry of the object and the standard Schwarzschild vacuum solution in its exterior region. By imposing a well-defined set of matching conditions, we find a metric that describes this transitional layer and show that it satisfies all the basic requirements; including the stability of the object when subjected to small perturbations about the background solution. In fact, we are able to show that, at linearized order, all geometrical and matter fluctuations are perfectly frozen in the transitional layer, just as they are known to be in the bulk of the object’s interior.

Note: The seminar will be in hybrid format, both in-person and broadcast on Zoom.

Created on 29-12-2021 by Palti, Eran (palti)
Updaded on 29-12-2021 by Palti, Eran (palti)