Physical Review Letters HomepageBrowse Available VolumesSearchSubscriptionsContact InformationToC AlertRSSHelpAPS Journals HomepagePhysical Review Letters Homepage


Suppression of Shot Noise in Quantum Point Contacts in the "0.7 Regime"

A. Golub,1 T. Aono,1 and Yigal Meir1,2

1Physics Department, Ben-Gurion University, Beer Sheva 84105, Israel
2The Ilse Katz Center for Meso- and Nano-scale Science and Technology, Ben-Gurion University, Beer Sheva 84105, Israel

(Received 4 May 2006; published 1 November 2006)

Experimental investigations of current shot noise in quantum point contacts show a reduction of the noise near the 0.7 anomaly. It is demonstrated that such a reduction naturally arises in a model proposed recently to explain the characteristics of the 0.7 anomaly in quantum point contacts in terms of a quasibound state, due to the emergence of two conducting channels. We calculate the shot noise as a function of temperature, applied voltage, and magnetic field, and demonstrate an excellent agreement with experiments. It is predicted that, with decreasing temperature, voltage, and magnetic field, the dip in the shot noise is suppressed due to the Kondo effect.



PACS: 73.61.-r, 71.70.Ej, 73.50.Td, 75.75.+a

Full TextPDF

From PRL (you may need a password for that):  PDF |GZipped PS

References | Citing APS & Scitation Articles | CrossRef Citing Articles | All Citing Articles

For more information on reference linking in this journal, see Reference Sections and Reference Linking in Abstracts.

  1. B. J. van Wees et al., Phys. Rev. Lett. 60, 848 (1988).
  2. D. A. Wharam et al., J. Phys. C 21, L209 (1988).
  3. K. J. Thomas et al., Phys. Rev. Lett. 77, 135 (1996);
    K. J. Thomas et al., Phys. Rev. B 58, 4846 (1998). [ISI]
  4. A. Kristensen et al., Phys. Rev. B 62, 10950 (2000).
  5. D. J. Reilly et al., Phys. Rev. B 63, 121311 (2001).
  6. S. Nuttinck et al., Jpn. J. Appl. Phys. 39, L655 (2000); [ISI]
    K. Hashimoto et al., ibid. 40, 3000 (2001).
  7. S. M. Cronenwett et al., Phys. Rev. Lett. 88, 226805 (2002).
  8. Y. Meir, K. Hirose, and N. S. Wingreen, Phys. Rev. Lett. 89, 196802 (2002).
  9. K. Hirose, Y. Meir, and N. S. Wingreen, Phys. Rev. Lett. 90, 026804 (2003); [ISI]
    T. Rejec and Y. Meir, Nature (London) 442, 900 (2006).
  10. J. Kondo, Prog. Theor. Phys. (Kyoto) 32, 37 (1964).
  11. Y. Meir, in Nanophysics: Coherence and Transport, edited by H. Bouchiat et al. (Elsevier, New York, 2005).
  12. N. J. Kim et al., cond-mat/0311435.
  13. P. Roche et al., Phys. Rev. Lett. 93, 116602 (2004).
  14. L. DiCarlo et al., Phys. Rev. Lett. 97, 036810 (2006).
  15. Y. Meir and A. Golub, Phys. Rev. Lett. 88, 116802 (2002).
  16. L. Borda and F. Guinea, Phys. Rev. B 70, 125118 (2004).
  17. J. R. Schrieffer and P. A. Wolff, Phys. Rev. 149, 491 (1966).
  18. Ya. M. Blanter and M. Buttiker, Phys. Rep. 336, 1 (2000).
  19. J. A. Appelbaum, Phys. Rev. 154, B633 (1967).
  20. See, e.g., A. Kamenev, cond-mat/0412296, and Ref. 11. See also 15 how the noise is expressed in terms of the Keldysh Green functions.
  21. O. Parcollet and C. Hooley, Phys. Rev. B 66, 085315 (2002).
  22. D. J. Reilly, Phys. Rev. B 72, 033309 (2005). [ISI]
  23. A. Golub, T. Aono, and Y. Meir (to be published).
  24. M. Avinun-Kalish et al., Phys. Rev. Lett. 92, 156801 (2004).
  25. S. A. Gurvitz, Phys. Rev. B 56, 15215 (1997);
    Y. Levinson, Europhys. Lett. 39, 299 (1997);
    I. L. Aleiner, N. S. Wingreen, and Y. Meir, Phys. Rev. Lett. 79, 3740 (1997).