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Experimental investigations of current shot noise in quantum point contacts show a reduction of the
noise near the 0.7 anomaly. It is demonstrated that such a reduction naturally arises in a model proposed
recently to explain the characteristics of the 0.7 anomaly in quantum point contacts in terms of a
quasibound state, due to the emergence of two conducting channels. We calculate the shot noise as a
function of temperature, applied voltage, and magnetic field, and demonstrate an excellent agreement with
experiments. It is predicted that, with decreasing temperature, voltage, and magnetic field, the dip in the
shot noise is suppressed due to the Kondo effect.
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The conductance of quantum point contacts (QPCs) is
quantized in units of 2e2=h [1,2]. In addition to these
integer conductance steps, an extra conductance plateau
around 0:7�2e2=h� has been experimentally observed [3–
7]. Recently, a generalized single-impurity Anderson
model has been invoked to describe transport through
QPCs [8]. According to this model, motivated by
density-functional calculations that reveal the formation
of a quasibound state at the QPC [9], the tunneling of a
second electron through that state is suppressed by
Coulomb interactions, and is enhanced at low temperatures
by the Kondo effect [10]. Thus, at temperatures larger than
the Kondo temperature TK, the conductance will be domi-
nated by transport through the singly occupied level (G �
e2=h), growing at lower temperature towards the unitarity
limit, G � 2e2=h. Kondo physics has indeed been ob-
served at low temperature and voltage bias [7]. The fact
that there are effectively two conductance channels affects
not only the conductance but also the current shot noise.
Around conductance of G� e2=h, the model predicts one
highly transmitting channel (T1 ’ 1) and one poorly trans-
mitting channel (T2 ’ 0). Thus, as the noise is expected to
be proportional to the sum of Ti�1� Ti� over all channels,
it should exhibit a dip near that value of the conductance
[11], in contrast with the traditional view which associates
a conductance of G� e2=h with T1 ’ T2 ’ 1=2 and maxi-
mal noise. A reduction in the noise through a QPC near
G� e2=h has indeed been observed experimentally [12–
14]. The dip was observed to be quite sensitive to magnetic
fields. In this Letter, we present a detailed calculation of
the noise based on the above model and demonstrate that it
reproduces the experimental data. The magnetic field de-
pendence arises from two factors: the dependence of the
splitting of the two channels on the field, and the quenching
of the Kondo effect. Specific predictions on the disappear-
ance of the dip in the current noise at low temperature,

voltage bias, and magnetic field, due to the unitarity limit
of the Anderson model, are made.

The main theoretical difficulty with calculating the noise
is that the limit of perfect conductance through a given
channel is not accessible via traditional perturbation theory
for this interacting problem. Thus, an earlier calculation of
the noise through a Kondo impurity [15] had to rely on
more elaborate methods in order to be extended to lower
temperatures. Because of the additional complexity of the
generalized Anderson model, employed to describe QPCs
(see below), these methods are not directly applicable. In
this work we employ a new type of perturbation theory,
starting from the high magnetic field B limit. In this limit
spin-flip processes are suppressed, and the current and
noise can be exactly (and trivially) calculated, to all orders
in the tunneling, giving rise to two separate channels.
Perturbation in 1=B allows us to follow the contributions
and mixing of the two channels. By comparing to the
traditional perturbation theory, around zero B, we are
able to interpolate the noise between the two regimes
[see Eq. (8) below]. This formula, which reduces in the
known limits to the obtained perturbative results, allows us
to compare to experiment in the whole magnetic field
regime, yielding excellent agreement with experiment
(Fig. 2) and allowing specific predictions.

Model Hamiltonian.—The extended Anderson
Hamiltonian, invoked in [8] to model the QPC, differs
from the usual single-impurity Anderson model in two
aspects: (i) the tunneling amplitude of the first electron
into the quasibound state V�1� is larger than that of the
second electron V�2� (see also [16]), and (ii) both couplings
increase exponentially as the energy of the incoming elec-
tron rises above the QPC barrier, Eqpc, defined to be the
zero of energy. This Anderson model can be transformed
into a Kondo Hamiltonian by performing a Schrieffer-
Wolff transformation [17]:
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where cyk��ck�� creates (destroys) an electron with momen-
tum k and spin � in lead L or R, "�1�� � "� and "�2�� �
"� �U, where "� is the energy of local spin state � and U
is the on-site interaction. ~S is the local spin due to the
bound state. The potential scattering term (first line), usu-
ally ignored in Kondo problems, is crucial here, as it gives
rise to the large background conductance at high tempera-
ture. The magnetic field B, defining the z-direction, enters
the problem via the Zeeman term, SzB. The exponential
increase of the couplings is modeled, for simplicity, by a
Fermi function fFD�"� � 1=	1� exp�"�
, leading to a
chemical-potential dependence of the spin-scattering ma-
trix elements,
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(In the above and in the following B and T denote the
corresponding energies, g�BB and kBT, respectively,
where kB is the Boltzmann constant, �B is the Bohr
magneton, and with the appropriate g-factor.) For B�
�F we can ignore the magnetic field dependence of these
matrix elements.

Current noise.—The current noise is defined via the
current-current correlation function [18]

 Ŝ�t; t0� � 1
2	hI�t�I�t

0�i � hI�t0�I�t�i
: (3)

Under stationary conditions, the noise is a function of t�
t0 and here we consider only the steady state, zero fre-
quency component of the noise power S�! � 0�. The
calculation of the noise, detailed below, consists of the
following steps: (a) We obtain an exact solution for very
large B, where spin-flip processes are suppressed, for the
conductance G1 and noise S1 [Eq. (4)]. (b) We expand the
noise power to second order in the spin-flip processes, for
arbitrary value of the coupling J�1� and small value of J�2�,
yielding SB [Eq. (6)] (and GB, via the fluctuation-
dissipation theorem). (c) Since the Kondo terms appear at
higher order in perturbation theory, we add the third order
terms in J�2�, G3, and S3. (d) We calculate the noise, at
small B, using the traditional expansion in J�i� [19]. (e) We
derive simple and intuitive interpolation formulas, for both
the conductance and the noise, that reduce to the obtained
expansions in the two limits of the small and the large
magnetic field. The resulting noise S and Fano factor S=I
are depicted in Fig. 1 and compared to experiments.

Detailed calculation.—The calculation is carried out
using the nonequilibrium Keldysh Green function ap-
proach [20]. In this approach there are three independent

Green functions which can be expressed in the terms of the
retarded, advanced, and the ‘‘Keldysh’’ Green function,
GK�!�. For the two leads, the unperturbed Keldysh
Green functions are gKk2L;R;��!� � �2�i	1� 2fL;R�!�
,
where fL;R�!� � fFD�!� eV=2� are the respective distri-
bution functions in the leads, which depend on the voltage
difference V. It is more convenient to work in the sym-
metric and antisymmetric combinations of the two leads
gK� � gKL � g

K
R .

When the magnetic field is large the exchange part of the
Kondo Hamiltonian can be neglected. Therefore Sz can be
treated as a conserved ‘‘classical’’ parameter. In the
Anderson model language, the ground state of the system
corresponds to the impurity being occupied by, say, a
single spin-up electron. The transport of a spin-up electron
from the left lead to the right lead [Fig. 1(a)] is performed
by this electron hopping first to the right lead (which
involves the hopping amplitude V�1�), and then another
spin-up electron hopping onto the dot, again with ampli-
tude V�1�. Thus the amplitude for transfer of a spin-up
electron is proportional to V�1�2, or to J�1�. On the other
hand, transfer of a spin-down electron from left to right
[Fig. 1(a)] involves a double occupation of the dot, and its
amplitude is thus proportional to J�2�. In this case, one can
sum up these processes to all orders, and calculate the
conductance and noise exactly,

(c)

(1) V(1) V(1)V(1)
V(1)V(1)
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(1)(2)

(1) (2)

(1) (1)
(2) (2)

(a) (b)

V

FIG. 1. The processes contributing to electron transport from
left to right. (a) In strong magnetic fields, the impurity is
occupied by a spin-up electron, and thus the allowed processes
are either this electron first hopping to the right, denoted by
(1) in the figure, and then another spin-up electron hopping in,
denoted by (2), with probability proportional to V�1�2, or a spin-
down electron hopping in and out, with probability proportional
to V�2�2, due to double occupation. These processes correspond
to the potential scattering term and to the SZ term in the Kondo
Hamiltonian. When the magnetic field is reduced, the impurity
can be occupied by a spin-down electron either in the beginning
of the process (b), or at the end of it (c), corresponding,
respectively, to S� and S� in the Kondo language. Both of these
processes are proportional to V�1�2, since they do not involve
double occupation of the impurity.
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where T1;2, the transmission probabilities for the two chan-
nels, are expressed in terms of the coupling constants of
Kondo Hamiltonian gi � 4��J�i�,

 Ti �
g2
i

1� g2
i

: (5)

In the large coupling limit, the transmission probabilities
go to unity. Since, as a function of energy, g1 first increases
to a large value, while g2 becomes large only when "F �
"0 �U, then, for large magnetic fields, as a function of
gate voltage, the conductance, in units of 2e2=h, will first
rise to 1

2 and then to unity. Concurrently, the shot noise, the
first part of S1, will have a dip at the first conductance
plateau, in agreement with experiments (Fig. 2).

As the magnetic field decreases, there is a finite proba-
bility, proportional to exp��B=T�, that the impurity is
occupied by a spin-down electron. Then, new types of
processes can take place [Figs. 1(b) and 1(c)], whereby a
spin-down electron occupying the dot hops out and a spin-
up electron hops in, or a spin-up electron occupying the dot
hops out and a spin-down hops in. The amplitude for both
these processes is proportional to V�1�2, and thus, in this

order, even if V�2� is negligible, the contribution of the spin-
down channel to the transport is finite.

In the Kondo language, the processes described in
Figs. 1(b) and 1(c) correspond to spin-flips, and thus the
exchange terms in the Hamiltonian have to be taken into
account. Since each spin flip involves another factor of
exp��B=T�, we can expand the conductance and noise to
second order in the spin-flip processes, still allowing infi-
nite order in J�1�. The resulting nonequilibrium noise is a
function of applied voltage and also depends on the non-
equilibrium magnetization [21] M�B; T; V�. The latter is
reduced to its equilibrium value Meq � hSzi � ��1=2�

tanh�B=2T� if B> V. The resulting additional contribu-
tions to the noise SB and the linear response conductance
GB [obtained from the noise via the fluctuation-dissipation
theorem, G � S�V ! 0�=�2T�] in this limit are
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where

 A� � B coth�B=2T� � 1
2	B� coth�B�=2T�

� B� coth�B�=2T�
: (7)

Here m1;2 � 1=�1� g2
1;2� and B� � B� eV. In Eq. (6) g2

was considered small. The nonequilibrium magnetization
is given by [21] M � �B=A�. In the limit of small g1;2,
Eq. (6) reduces to the zero frequency current-current cor-
relation function obtained in [21]. Note that the corrections
to the infinite field limit, due to spin flips, depend on
coth�B=2T�, and thus indeed decrease exponentially with
increasing the ratio B=T.

We note that the conductance, to this order, can be
written as the expansion of an expression similar to that
of Eq. (4), with g2

i in Eq. (5) replaced by ~g2
i , with

 ~g 2
i � g2

i �
B

T sinhBT

�g1 � g2�
2

1� �g1 � g2�
2 : (8)

As mentioned above, even though g2
2 is small, ~g2

i can
become substantial at smaller magnetic field due to higher
order processes involving g2

1. Thus, the second channel
will also contribute to transport, raising the conductance
plateau from its value of 0:5
 2e2=h at large magnetic
field. This is consistent with the observation that the value
of the ‘‘0.7 plateau’’ usually does not drop experimentally
below 0:6
 2e2=h. For simplicity, in order to allow for the
contributions of the processes described by Eq. (8) to the
noise, we substitute the resulting transmission coefficients
in the noise formula (4).

Comparison with experiment.—Figure 2 compares our
calculation to the experimental results of Ref. [13] and of
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FIG. 2. (a) The Fano factor, calculated from the theory, versus
zero-bias conductance at different magnetic fields,
g�BB=kBT � 0, 4.5, 12, compared to the experimental results
of Ref. [13] (b), for B � 0, 3, and 8 T. The parameters used in the
theory were eV � kBT, V�1�2=2� � 1, V�2�2=2� � 0:01. In
(c) the noise is calculated for the same parameters as those
corresponding to the data of Ref. [14], depicted at (d), with the
magnetic field values denoted in the legend, kbT � 280 mK and
V � 240 �V. The values of V�i�2 are the same as in (a). A value
of g-factor of 0.44 was used.
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Ref. [14]. In (a) and (b), we compare the Fano factor, which
is obtained, following Ref. [13], by subtracting from the
full noise the thermal contribution [the last term in (4) plus
2T	G� �e2=h��T1 � T̂2�
], and dividing this difference by
the current. Plotting the Fano factor against conductance
makes the theoretical plot practically independent of the
values of "0, U, and �, which determine the dependence of
the conductance on gate voltage. The ratio of g2

2=g
2
1 was

assumed small (�0:01) in the spirit of the model, and the
curves for 3 values of magnetic field, in the ratio 0:3:8 as
those used in the experiment, are depicted with good
agreement with experiment. The noise data of Ref. [14]
allow an even more quantitative comparison with experi-
ment, as we used the actual values of magnetic field,
voltage, and temperature reported to the experiment, with
the bulk GaAs g-factor of 0.44. The small deviations
between the practically parameter-free theory and the ex-
perimental data probably indicate the accuracy of the
approximation. Interestingly, the zero-field dip in the noise
is quite small, even though the bare contribution of the
second channel g2 to the conductance is negligible. This is
due to the contributions of higher order processes [Fig. 1(b)
and 1(c)]. (Comparison to the noninteracting result appears
in the supplementary material.) Reilly’s phenomenological
theory [22], which invokes a linear splitting between the
spin directions with increasing gate voltage at zero mag-
netic field, also displays good agreement with experiment,
when appropriate fitting parameters were used.

Kondo enhancement.—While the experiments were car-
ried out outside the Kondo regime, due to the relative high
voltage applied, one expects at low temperature, voltage,
and magnetic field, that the Kondo effect will enhance the
transmission of the low conducting channel, so the total
conductance will approach the unitarity limit, 2e2=h, as is
indeed seen experimentally [7]. Going to third order in J2

[23], one indeed finds logarithmic divergence, signalling
the onset of the Kondo effect below the Kondo temperature
TK ’ U exp���=g2�. Using the renormalization-group ap-
proach, one can sum up the most divergent logarithms in
the higher order Kondo contributions. Separating the con-
tribution to this Kondo series from the leading terms and
summing up the series lead to the renormalization of the
contribution ~g2

2 term to the conductance

 ~g 2
2 ! ~g2

2 � g
2
2

�
1

2
�

B

T sinhBT

�
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2 ; (9)
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�
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A more complicated expression can be derived for the
noise [23]. The theory thus predicts that, for temperatures
and voltages smaller than the Kondo temperature, the dip
in the noise will disappear at zero field, due to the unitary
limit of the Kondo effect.

Conclusions.—The excellent agreement between theory
and experiment lends even more credence to the relevance
of the generalized Anderson model to transport in quantum
point contacts. It is interesting to note that a perhaps related
dip appears in the measurement of dephasing in a quantum
dot [24], as measured by a nearby quantum point contact,
when the point contact is in the ‘‘0.7 regime.’’ The present
theory suggests a simple explanation of this effect: as the
dephasing in the quantum dot is by the current noise in the
point contact [25], a dip in the noise will be associated with
a dip in the dephasing rate in the quantum dot.
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