Phys. Rev. Lett. 95, 136803 (2005)
Quasiparticle Tunneling through a Barrier in the Fractional Quantum Hall Regime
Elad Shopen,^{1} Yuval Gefen,^{2} and Yigal Meir^{1,3}
^{1}Department of Physics, BenGurion University, BeerSheva 84105, Israel
^{2}Department of Condensed Matter Physics, The Weizmann Institute of Science, Rehovot 76100, Israel
^{3}The Ilse Katz Center for Meso and NanoScale Science and Technology, BenGurion University, BeerSheva 84105, Israel
(Received 7 April 2005; published 22 September 2005)
Tunneling^{ }of fractionally charged quasiparticles (QPs) through a barrier is considered^{ }in the context of a multiply connected geometry. In this^{ }geometry global constraints do not prohibit such a tunneling process.^{ }The tunneling amplitude is evaluated and the crossover from mesoscopic^{ }QPdominated to electrondominated tunneling as the system's size is increased^{ }is found. The presence of disorder enhances both electron and^{ }QPtunneling rates.
References
For more information on reference linking in this journal, see Reference Sections and Reference Linking in Abstracts.
 R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
 S. A. Kivelson and V. L. Pokrovsky, Phys. Rev. B 40, R1373 (1989);
S. Kivelson, Phys. Rev. Lett. 65, 3369 (1990);
J. A. Simmons, H. P. Wei, L. W. Engel, D. C. Tsui, and M. Shayegan, Phys. Rev. Lett. 63, 1731 (1989); [ISI]
J. A. Simmons, S. W. Hwang, D. C. Tsui, H. P. Wei, L. W. Engel, and M. Shayegan, Phys. Rev. B 44, 12 933 (1991); [ISI]
V. J. Goldman and B. Su, Science 267, 1010 (1995). [Inspec] [ISI]
 D. J. Thouless and Y. Gefen, Phys. Rev. Lett. 66, 806 (1991); [ISI]
Y. Gefen and D. J. Thouless, Phys. Rev. B 47, 10 423 (1993); [ISI]
see also Y. Avron, R. Seiler, and B. Shapiro, Nucl. Phys. B265, 364 (1986);
D. J. Thouless, Phys. Rev. B 40, R12034 (1989).
 K. Moon, H. Yi, C. L. Kane, S. M. Girvin, and M. P. A. Fisher, Phys. Rev. Lett. 71, 4381 (1993); [ISI]
M. P. A. Fisher and L. I. Glazman, Mesoscopic Electron Transport, edited by L. Kowenhoven, G. Schoen, and L. Sohn, NATO ASI Series Vol. 345 (Dordrecht, Boston, 1997), p. 331.
 R. dePicciotto, M. Reznikov, M. Heiblum, V. Umansky, G. Bunin, and D. Mahalu, Nature (London) 389, 162 (1997); [Inspec] [ISI]
L. Saminadayar, D. C. Glattli, Y. Jin, and B. Etienne, Phys. Rev. Lett. 79, 2526 (1997). [ISI]
 E. Comforti, Y. C. Chung, M. Heiblum, and V. Umansky, Nature (London) 416, 515 (2002);
Y. C. Chung, M. Heiblum, and V. Umansky, Phys. Rev. Lett. 91, 216804 (2003).
 J. Martin, S. Ilani, B. Verdene, J. Smet, V. Umansky, D. Mahalu, D. Schuh, G. Abstreiter, and A. Yacoby, Science 305, 980 (2004).

Note that only forward scattering is involved here. This means that the
transmission probability is 1, implying the absence of noise in the dc
limit. The noise alluded to above may be detected at finite frequencies.
 B. I. Shklovskii, Pis'ma Zh. Eksp. Teor. Fiz. 36, 43 (1982) [Inspec]
[JETP Lett. 36, 51 (1982)]; [SPIN] [ISI]
Q. Li and D. J. Thouless, Phys. Rev. B 40, 9738 (1989). [ISI]
 For a ridge whose extension in the y direction is L_{barrier}, the number of extended holes required to render the ridge dry is N_{h}=[RL_{barrier}/]+1.
 F. D. M. Haldane and E. H. Rezayi, Phys. Rev. B 31, R2529 (1985).
 The total angular momentum is defined mod(N_{}).
 F. D. M. Haldane, Phys. Rev. Lett. 51, 605 (1983);
S. A. Trugman and S. Kivelson, Phys. Rev. B 31, 5280 (1985). [ISI]

In the present Letter we employ a numerical recipe for the construction
of extended hole states. We note that these may also be obtained
analytically, starting with Laughlin's state with localized holes. As
this requires some detail, and is not crucial to understanding the
present analysis, we will present it elsewhere. For N_{h}=1: _{n}=g(z_{0})_{(z0)}dz_{0}, where g_{n}'s are singleparticle states on the extended unit cell 2mR×mL, and _{(z0)} is a Laughlin state with a localized hole at z_{0} 11.
 The width of a singleparticle quasimomentum state in the y direction is _{H}. When N_{h}<R/_{H}, we have a reduced density rather than a dry area.
 Other forms for V_{1} lead to similar results.
 A. Auerbach, Phys. Rev. Lett. 80, 817 (1998). [ISI]
 E. Comforti, Y. C. Chung, M. Heiblum, and V. Umansky, Phys. Rev. Lett. 89, 066803 (2002).
 Helias and Pfannkuche (condmat/0403126)