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Quasiparticle Tunneling through a Barrier in the Fractional Quantum Hall Regime
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Tunneling of fractionally charged quasiparticles (QPs) through a barrier is considered in the context of
a multiply connected geometry. In this geometry global constraints do not prohibit such a tunneling
process. The tunneling amplitude is evaluated and the crossover from mesoscopic QP-dominated to
electron-dominated tunneling as the system’s size is increased is found. The presence of disorder enhances
both electron and QP-tunneling rates.
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FIG. 1 (color online). (a) Proposed experimental setup for an
annulus, allowing the tunneling of both QPs and electrons
through a barrier. The edge states are marked. (b) The torus
geometry studied in this work; x and y represent two Cartesian
coordinates, the unit cell being 2�R� L; �1 and �2 are two
Aharonov-Bohm fluxes threading the torus. A Hall liquid (of
density 1=m) covers the torus everywhere except around the
barrier which is initially dry (’’extended holes’’). Here the barrier
potential is circularly symmetric.
One of the most remarkable facts about the fractional
quantum Hall effect (FQHE) is the existence of fractionally
charged quasiparticles (QPs). Their dynamics is manifest in
a host of physical phenomena, whose observation strongly
supported the veracity of Laughlin’s theory [1]. It has been
pointed out [2,3] that QP tunneling is distinctly different
from electron tunneling. Perturbative renormalization-
group (RG) analysis [4] has indicated that in the weak
backscattering limit interedge tunneling through the
FQHE liquid is dominated by QP tunneling. These predic-
tions have been confirmed by experiments [5]. In the
opposite limit of strong backscattering (nearly discon-
nected FQHE systems coupled by weak tunneling through
an insulator), the same RG analysis would have predicted
that tunneling should be dominated again by QP tunneling.
Common wisdom, however, has it that in this limit only
electron tunneling is possible. The rationale for that goes as
follows: consider two FQHE puddles weakly connected
through tunneling. The total number of electrons on each
puddle is (nearly) a good quantum number; hence it must
be an integer. QP tunneling would render this number
noninteger, and therefore such a process must be excluded.

Our starting point here is to note that there are setups
where the above mentioned ‘‘global constraint’’ (i.e., the
number of electrons on each side of the barrier being an
integer) does not exclude a priori QP tunneling through a
potential barrier. The common wisdom alluded to above
needs then to be reexamined. Studying these setups is
particularly interesting in view of recent experimental
results which suggest the coexistence of both electron
and QP tunneling under strong backscattering conditions
[6], or cast doubt on the global constraint hypothesis [7].

Consider first the annulus depicted in Fig. 1(a). Clearly,
the passage of a QP through the barrier would not violate
the global constraint. There are two possible trajectories
(for the presumed noiseless incoming current) to traverse
the system: either following the edge adiabatically, or by
tunneling through the barrier. The outgoing current would
then be noisy [8]. By analyzing this nonequilibrium noise,
one may detect the effective charge involved. Additionally,
the charge of the tunneling QP may be reflected in the
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periodicity of the Aharonov-Bohm interference between
the two paths.

Our extensive analysis, performed on a torus geometry
described below, leads to three main results: (i) For our
multiply connected geometry and in the presence of a real
potential barrier we confirm the existence of QP tunneling,
which decreases rapidly with system size [Eq. (3)]. (ii) We
study the amplitude of such QP-tunneling processes and
identify the crossover, in terms of the system’s parameters,
between the electron-tunneling-dominated and the QP-
dominated regimes. (iii) We show that in FQHE systems,
the presence of impurities may enhance both electron and
QP-tunneling amplitudes [Eq. (5)], in the spirit of the
Shklovskii-Li-Thouless mechanism [9].

The torus geometry.—To facilitate our analytical study
and to avoid complications emanating from the system
being open, we hereafter focus on a setup defined on a
torus, spanned by the two periodic coordinates 0< x<
2�R and 0< y< L [Fig. 1(b)], with a uniform magnetic
field perpendicular to the surface of the torus. On top of the
torus surface we introduce a circular potential ridge (V0).
The tunneling investigated here is between the two sides of
this barrier. The main steps in the analysis are as follows:
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(i) We first construct modified Laughlin-Haldane-Rezayi
states which correspond to a bulk filling factor 1=m (the
‘‘wet area’’) and a ‘‘dry area’’ (made of extended holes)
where the electron density is suppressed, ideally to zero.
The ground-state configuration is obtained by maximizing
the overlap of the dry area of the many-body configuration
with the barrier [10]. (ii) The Hamiltonian, and hence the
wave functions, depends on two gauge fluxes, �1 and �2

[Fig. 1(b)]. By adiabatically increasing �1 any many-body
configuration will slide rigidly in the y direction, giving
rise to a change in its energy. As the levels of two different
configurations cross, the ground state of the system
changes abruptly. Below we show that such a change
corresponds to a tunneling event. The set of many-body
energy levels is plotted in Fig. 2(a). (iii) To enable tunnel-
ing we break the circular symmetry (in the x direction),
introducing an additional asymmetric potential (V1). This
gives rise to finite matrix elements between different con-
figurations. Avoided-crossing gaps in the energy-flux spec-
trum [Fig. 2(a)] are a manifestation of tunneling: the period
in flux reflects the nature of the particle that tunnels. Below
we calculate these tunneling matrix elements. (iv) We
demonstrate quantitatively how the presence of a multitude
of �-function impurities enhances the tunneling.

Our initial Hamiltonian is H � H0 �Uint � V0, where
H0 includes the kinetic part as well as the magnetic field
and fluxes and Uint is the two-particle interaction. The
barrier potential V0 is assumed to be sufficiently weak to
exclude mixing with higher Landau levels.

For V0 � 0 and no dry area, Haldane and Rezayi [11]
have found a set ofm degenerate Laughlin wave functions.
The solution is obtained for a magnetic field which is quan-
tized according to Dirac’s condition RL � ‘2

HN�, where
N� is the number of magnetic flux quanta perpendicular to
the torus surface and ‘H �

��������������
@c=eB

p
is the magnetic length.

These wave functions are eigenfunctions of total quasimo-
mentum (TQM) [12] and, similarly to the Laughlin wave
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FIG. 2 (color online). (a) Intersecting energy curves as a
function of the flux �1. Avoided crossings correspond to tunnel-
ing of electrons and QPs as indicated. For QP (electron) tunnel-
ing the periodicity of the adiabatically varied ground-state
energy is �0 (3�0) [3]. (b) Schematic density profile of the
initial ground state �0 (solid line) and the first excited state �1

(dashed line). As �1 increases, these density profiles slide to the
left, �1 eventually becomes the ground state. Inset: An actual
density profile for m � 3, N � 6, and Nh � 1. Densities corre-
sponding to other wave functions are rigid shifts thereof.
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function [13], are exact (zero-energy) ground states of the
Hamiltonian with hard-core interaction [i.e., r2�� ~r�].
Their ground-state electron density is nearly uniform.
Here N� � mN, where N is the number of electrons.

Extended hole wave functions.—To render the barrier
(and its close vicinity) ‘‘dry,’’ we tune the magnetic field to
allow for Nh holes: N� � mN � Nh. The lowest Landau
level consists of N� single-particle states jni (cf.
Ref. [11]). The density profile of each single-particle state
is approximately a Gaussian in the y direction and uniform
in the x direction. The distance between the guiding centers
of adjacent states is L=N�. In the subspace of the lowest
Landau level [spanned by �N�N � possible Slater Determi-
nants] the ground state is determined solely by the inter-
action. Diagonalizing the hard-core interaction results in a
set of zero-energy ground states, each having Nh holes ex-
tended in the x direction. As an example, consider Nh � 1.
When the interaction term is diagonalized, one obtains N�
Laughlin-like states of zero energy. Each of these states
corresponds to a nonuniform electron density: the filling is
1=m almost everywhere, but the occupation of one of the
single-particle quasimomentum states jni is suppressed:
the area around this guiding center is dry [Fig. 2(b)]. We
denote such a many-body state with an extended hole at jni
by �n [14]. It is an eigenstate of the TQM. By sliding all
guiding centers rigidly by 1 we increase the TQM by N,
shifting �n ! �n�1. The above procedure is readily gen-
eralized toNh > 1. Choosing theNh holes to be contiguous
leads to a dry area of a desired width [15].

Tunneling: Electrons versus QPs.—The initial ground
state whose dry area coincides with the barrier is denoted
by �0. As the flux �1 is varied adiabatically this many-
body configuration slides rigidly around the torus. The dry
area of �0 moves and its energy E0��1� increases. The dry
area of �1, whose TQM differs from that of �0 by
Nmod�N��, slides towards the barrier and its energy
E1��1� decreases. When �1 is increased by �0=2,
E0��1� and E1��1� intersect, and the ground state of the
system switches �0 ! �1. This corresponds to a shift of
each single electron state by 1: jni ! jn� 1i. Since the
average occupation of jni is 1=m, this process describes a
shift of charge of e=m from one side of the barrier to the
other, i.e., QP tunneling. The level-crossing degeneracy is
lifted by breaking the circular symmetry of the potential
V0: H ! H � V1. The QP-tunneling matrix element is
h�0jV1j�1i. By analogy, the two many-body states �0

and �m differing in their TQM by mNmod�N�� will cross
when �1 increases by m�0=2; hence h�0jV1j�mi is the
matrix element for electron tunneling. In order to evaluate
these tunneling matrix elements, we use the fact that V1 is a
single-particle potential. The overlap h�0jV1j�pi (p �
1; m for QP and electron tunneling, respectively) consists
of contributions from the respective Slater determinants
components jk1; . . . ; kNi 2 �0 and j‘1; . . . ; ‘Ni 2 �p,

which are identical except for a single pair ~k; ~‘. The
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difference in TQM is

~‘� ~k � pNmod�N��: (1)

Taking V1 � ~V1��x� renders the procedure particularly
simple [16]. Then h~kjV1j~‘i � vp depends only on the
difference ~‘� ~k. The tunneling amplitude can then be
cast as T p � h�0jV1j�pi � fp�L�vp, where fp is a com-
binatorial factor resulting from summation over all pos-
sible pairs satisfying (1) and is calculated numerically. For
vp one readily obtains

v p�
~V1

R

X1
q��1

e�iq�2 exp
�
�

�
�p�qN��

L
2N�‘H

�
2
�
: (2)

To leading order vp / exp���pNmodN�
L

2N�‘H
�2	. This

reflects the overlap of two Gaussians separated by a dis-
tance pNL=N� on the torus [Fig. 3(a)]. For a QP the
separation is of the order L=m (N� � mN � Nh), so vp
scales as exp���L=2m‘H�

2	. By contrast, for electrons the
separation distance (defined modulo L) is NhL=N�; hence
vp scales as exp���LNh=2N�‘H�

2	 � exp���Nh‘H=R�
2	,

which is L independent (where we used the Dirac condi-
tion). Likewise we find that the factor fp is roughly system-
size independent for electron tunneling, while it rapidly
decreases (Gaussian-like) for QPs.

We thus summarize

T p 


�
e��L

2=‘2
H ; QPs �p � 1�

L independant; electrons �p � 3�
: (3)

For Nh � 1 (and N � 2; . . . ; 6) we obtain numeri-
cally � � 0:07 [Fig. 3(b)]. We expect this to approach
1=12�� 1=4m� in the thermodynamic limit [cf. Eq. (5)
for Nimp � 1]. Note that the factor fp�1 further suppresses
the single-particle term e��L=2m‘H�2 ! e��L=2‘H�2=m.
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FIG. 3 (color online). Tunneling involves initial and final
states whose TQM differ by pN, p � 1; 3 for QPs and electrons,
respectively. Here m � 3. The respective matrix elements in-
volve the overlap of two single-particle states (Gaussians),
whose separation is pNL=N�. For QPs the latter is of the order
of L=m (solid arrow, black and white Gaussians). Thus the
overlap factor for QPs, vp�1, strongly decreases with L. By
contrast, for electrons (dashed arrow, black and gray) the dis-
tance (defined modulo L) is NhL=N�  L and the dependence
on L is negligible. (b) The calculated tunneling probabilities for
electrons (T 3) and QPs (T 1), for m � 3, Nh � 1. T 3 is practi-
cally independent of system size (squares), while for QPs T 1 

e��L

2
2=‘

2
H (circles). The solid line is a fit with � � 0:07.
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Impurity-assisted tunneling.—We next introduce impu-
rities into the system, H � H0 �Uint � V2, where V2 �PNimp

j�1 Vimp��z� z0j� represents Nimp localized impurities
(Vimp > 0). Shklovskii, Li, and Thouless [9] have shown
that, for noninteracting electrons, impurities modify the
Gaussian decay of the edge-to-edge Green function into
exponential. This result is generalized here to the fractional
quantum Hall regime. To simplify the analysis we employ
the fact that QP tunneling may be interpreted as a nonlocal
process taking place through the liquid, while electron
tunneling takes place through both the potential barrier
and the liquid. Thus, the torus can be effectively replaced
by two cylinders whose circumference is 2�R and whose
lengths are Lbarrier � NhL=N� and Lliquid � L� Lbarrier �

mNL=N�. For a cylinder with impurities the ground-state
wave function �fz0g

contains Nimp localized holes at the
impurity positions

�fz0g
�
YNh
j�1

YN
k�1

�e�izk=R � e�iz0j=R��L (4)

[�L �
Q
i<j�e

�izi=R � e�izj=R�me��jy2
j =2 is Laughlin’s cyl-

inder wave function].
To obtain the various tunneling matrix elements, we

calculate the overlap between �fz0g
and its shifted version

~�fz0g
�
QN
j�1 e

�ipzj=R�fz0g
, p � 1; m for QP and electron

tunneling, respectively. For Nimp � 1 one recovers (up to
prefactors) the perturbative result [17]: QPs tunnel more
efficiently than electrons along a cylinder. We have eval-
uated this overlap numerically for systems with N � 6 (for
electrons tunneling at integer filling, we have considered
N � 17) andNimp � 4, for (i) impurities equally spaced on
a line and (ii) at random positions throughout the cylinder,
averaging over 
1000 realizations. For case (i) we find
that

h�fz0g
j ~�fz0g

i 


�
e�L

2=12Nimp‘2
H ; QPs

e�L
2=4Nimp‘2

H ; electrons
(5)

agrees with the numerics. For case (ii) the decay factor of
the exponent is modified, but not the parametric depen-
dence. We find that when the longitudinal impurity density
� � L=Nimp is held constant, the typical hopping distance
is kept fixed, a Gaussian-to-exponential crossover takes
place. This crossover can be understood in terms of mul-
tiple impurity-assisted tunneling. For a QP, as an example,
e�L

2=12Nimp ! e��L=12.
QP-electron crossover.—Studying this crossover is now

experimentally feasible [18]. Here we present a framework
to study it theoretically in a multiply connected geometry,
e.g., the torus. As Lbarrier is varied (compared with Lliquid)
the QP tunneling T 1 competes with the electron tunneling
T 3. By calculating T 1 and T p, as explained above,
varying the number of particles (modification of Lliquid)
and the number of extended holes (modification of Lbarrier),
3-3



1 2 3 4 5 6 7 8

Lbarrier

1

2

3

4

5

L
liq

ui
d/

m

electron regime

QP regime

9−

10

FIG. 4 (color online). Electron-QP crossover: Plotted is the
interpolation of ln�T 3=T 1� for discrete values of N and Nh
corresponding to Lliquid=m and Lbarrier, respectively (measured in
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curve T 3 � T 1. Solid line: an approximated crossover curve
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we obtain the ratio of the electron-tunneling amplitude to
that of QP tunneling (Fig. 4). This allows us to determine
the separation between the electron-tunneling dominated
and the QP-tunneling dominated regimes (dotted line).
This can be compared to the solid curve obtained by taking
the estimates T 1 
 e

�L2
liquid=4m‘2

H and T 3 
 e
�L2

barrier=4‘2
H �

e�L
2
liquid=4‘2

H .
Discussion.—By keeping the barrier size fixed and in-

creasing the torus length, we have found that the QP-
tunneling amplitude decreases while the electron ampli-
tude is mostly unaffected. This supports the picture that the
QP tunneling through a barrier [19], while in principle
possible, is a mesoscopic effect. It may be interpreted as
a QP leaping through the liquid around the barrier. In the
thermodynamic limit the QP-tunneling amplitude van-
ishes, in accordance with common wisdom. The depen-
dence of the tunneling amplitude on length scales does not
conform to the scaling resulting from the RG treatment [4].
It is strongly modified by the multiple connectedness of the
system. Adding disorder enhances the tunneling ampli-
tudes. As can be seen from Eq. (5), special arrangements
of the impurities can lead to even stronger enhancement
(e.g., increase the linear density of Nimp, while keeping the
two-dimensional density fixed). We believe that the best
candidate to test the ideas outlined here is the annulus
geometry [Fig. 1(a)]. The relevance of the current results
to the annulus geometry will be explored in future studies.
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