Department of Physics and Astronomy, Rutgers
University, Piscataway, NJ 088548019
(Received 16 March 1999)
The time development of the Kondo effect is theoretically investigated
by studying a quantum dot suddenly shifted into the Kondo regime by a
change of voltage on a nearby gate. Using timedependent versions of
both the Anderson and Kondo Hamiltonians, it is shown that after a time t
following the voltage shift, the form of the Kondo resonance matches
the timeindependent resonance at an effective temperature T_{eff}
= T/tanh(pi Tt/2). Relevance of the buildup of
the Kondo resonance to the transport current through a quantum dot is
demonstrated. ©1999 The American Physical Society
PII: S00319007(99)096854
PACS: 72.15.Qm, 73.50.Mx, 85.30.Vw
Full Text:
References
Citation
links [e.g., Phys. Rev. D 40, 2172 (1989)]
go to online journal abstracts. Other links (see Reference
Information) are available with your current login. Navigation of
links may be more efficient using a second
browser window.

D. GoldhaberGordon et al., Nature (London) 391, 156
(1998); [INSPEC]
D. GoldhaberGordon et al., Phys.
Rev. Lett. 81, 5225 (1998);
S. M. Cronenwett, T. H. Oosterkamp, and L. P. Kouwenhoven, Science 281,
540 (1998); [INSPEC]
F. Simmel et al., ; [LANL]
T. Schmidt et al. (unpublished).

L. I. Glazman and M. E. Raikh, Pis'ma Zh. Eksp. Teor. Fiz. 47,
378 (1988) [INSPEC]
[JETP Lett. 47, 452 (1988)]; [SPIN]
T. K. Ng and P. A. Lee, Phys.
Rev. Lett. 61, 1768 (1988);
S. Hershfield, J. H. Davies, and J. W. Wilkins, Phys.
Rev. Lett. 67, 3720 (1991).

Y. Meir, N. S. Wingreen, and P. A. Lee, Phys.
Rev. Lett. 70, 2601 (1993);
N. S. Wingreen and Y. Meir, Phys.
Rev. B 49, 11 040 (1994).

L. P. Kouwenhoven et al., in Mesoscopic Electron Transport,
edited by L. L. Sohn, L. P. Kouwenhoven, and G. Schön (Kluwer,
Dordrecht, The Netherlands, 1997).

A. Schiller and S. Hershfield, Phys.
Rev. Lett. 77, 1821 (1996);
T. K. Ng, Phys.
Rev. Lett. 76, 487 (1996);
Y. Goldin and Y. Avishai, Phys.
Rev. Lett. 81, 5394 (1998).

N. E. Bickers, Rev. Mod. Phys. 59, 845 (1987). [SPIN]

D. C. Langreth and P. Nordlander, Phys.
Rev. B 43, 2541 (1991);
H. Shao, D. C. Langreth, and P. Nordlander, Phys.
Rev. B 49, 13 929 (1994).

We define Gamma_{dot}(epsilon) = 2 pi
[summation]_{k}V_{k}^{2}delta(epsilon
– epsilon_{k}), a slowly varying
quantity. The notation Gamma_{dot} with no energy
specified will always refer to the value at the Fermi level.

For U = [infinity], D^{[prime]} ~= sqrt(D
Gamma_{dot}/4), where 2D is the effective
bandwidth. The calculations here used a parabolic band of total width
40 Gamma_{dot}.

A.P. Jauho, N. S. Wingreen, and Y. Meir, Phys.
Rev. B 50, 5528 (1994).

There are transients arising from the abrupt shift of epsilon_{dot}
which are included inaccurately, because we neglect higher dot levels.
However, all such transients decay rapidly for t >
[hbar]/Gamma_{dot} and hence are not visible on the
scale of any of our figures. Such transients do not occur at all if tau_{epsilon},
the rise time of epsilon_{dot}, is such that tau_{epsilon}
>> 1/Gamma_{dot}; and if tau_{epsilon}
<< min(1/T_{K}, 1/T), the
appearance of our figures on their current scales (t
>> tau_{epsilon}) will be the same.

J. R. Schrieffer and P. A. Wolff, Phys. Rev. 149, 491
(1966).

A. A. Abrikosov, Physics 2, 5 (1965).

G. Yuval and P. W. Anderson, Phys. Rev. B 1, 1522 (1970).
[INSPEC]

By evaluating the conduction electron selfenergy to order J^{3},
we have directly confirmed the ~ 1/t cutoff for the Kondo
peak in the spectral density.

Y. Meir and N. S. Wingreen, Phys.
Rev. Lett. 68, 2512 (1992).

The difference between the dashed and solid curves at small tau_{on}
reflects the finite decay time of the Kondo resonance after
the pulse is switched off.

Y. Nakamura, Y. A. Pashkin, and J. S. Tsai, Nature (London) 398,
786 (1999); [INSPEC]
L. P. Kouwenhoven (private communication).