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How Long Does It Take for the Kondo Effect to Develop?

Peter Nordlander
Department of Physics and Rice Quantum Institute, Rice University, Houston, Texas 77251-1892

Michael Pustilnik and Yigal Meir
Physics Department, Ben Gurion University, Beer Sheva, 84105, Israel

Ned S. Wingreen
NEC Research Institute, 4 Independence Way, Princeton, New Jersey 08540

David C. Langreth
Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854-8019

(Received 16 March 1999)

The time development of the Kondo effect is theoretically investigated by studying a quantum dot
suddenly shifted into the Kondo regime by a change of voltage on a nearby gate. Using time-dependent
versions of both the Anderson and Kondo Hamiltonians, it is shown that after a time t following the
voltage shift, the form of the Kondo resonance matches the time-independent resonance at an effective
temperature Teff � T�tanh�pTt�2�. Relevance of the buildup of the Kondo resonance to the transport
current through a quantum dot is demonstrated.

PACS numbers: 72.15.Qm, 73.50.Mx, 85.30.Vw
The Kondo effect in quantum dots has been observed in
several recent experiments [1]. Beyond verifying theoreti-
cal predictions [2,3], these experiments demonstrate that
quantum dots can serve as an important new tool to study
strongly correlated electron systems. Unlike magnetic
impurities in metals, the physical parameters of the
quantum dot can be varied continuously, which allows, for
example, systematic experimental study of the crossover
between the Kondo, the mixed-valence, and the non-
Kondo regimes. Moreover, the quantum dot system opens
the possibility of directly observing the time-dependent
response of a Kondo system, as there is a well developed
technology for applying time-dependent perturbations to
dots [4]. Along these lines, several theoretical works have
addressed the behavior of a Kondo impurity subject to ac
driving [5]. However, a clearer picture of the temporal
development of many-body correlations is obtained if
the impurity is subject to a sudden shift in energy.
Specifically, by applying a steplike impulse to a nearby
gate, the dot can be suddenly shifted into the Kondo
regime, and the buildup of the correlated state observed
in the transport current.

In this Letter, we analyze the behavior of a quantum
dot following a sudden shift into the Kondo regime. The
time-dependent spectral function is evaluated within the
noncrossing approximation (NCA) [3,6,7], as is the trans-
port current in response to a pulse train. The latter pro-
vides an experimental window on the development of the
Kondo resonance. Employing the Kondo Hamiltonian,
we show that a finite development time t is perturbatively
equivalent to an increase in the effective temperature.

We treat a quantum dot coupled by tunnel barriers to
two leads (inset to Fig. 2). Only one spin-degenerate level
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on the dot is considered, which is a good approximation
at low temperatures. A time-dependent voltage Vg�t� is
applied to a nearby gate, causing a proportionate shift in
the energy of the level edot�t�. If the Coulomb interaction
between electrons prevents double occupancy of the
dot, the system is described by the U � ` Anderson
Hamiltonian for a magnetic impurity,X

s

edot�t�ns 1
X
ks

�eksnks 1 �Vkc
y
kscs 1 H.c.�� , (1)

with the constraint that the occupation of the dot cannot
exceed one electron. Here cy

s creates an electron of
spin s in the quantum dot, with ns the corresponding
number operator; c

y
ks creates an electron in the leads,

with k representing all quantum numbers other than spin,
including the labels, left and right, for the leads. Vk

is the tunneling matrix element through the appropriate
barrier. The quantum dot is occupied by a single electron
provided the level energy edot lies at least a resonance
width Gdot [8] below the chemical potential of the leads.
At low temperatures, the resulting free spin on the dot
forms a singlet with a spin drawn from the electrons
in the leads—this is the Kondo effect. The Kondo
temperature, beneath which the strongly correlated state
is established, is given by TK � D0 exp�2pjedotj�Gdot�,
where D0 is a high-energy cutoff [9]. The signature of
this correlated state is a peak at the Fermi energy in the
spectral density of the dot electrons. This peak, in turn,
dramatically enhances transport through the dot, allowing
perfect transmission at zero temperature [2]. We employ
the noncrossing approximation to analyze the spectral
density and transport through the dot in the presence
of a time-dependent level energy edot�t�. The NCA
© 1999 The American Physical Society
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may be formulated following an exact transformation
of the U � ` Anderson model in Eq. (1) into a slave-
boson Hamiltonian [6]. The latter is then solved self-
consistently to second order in the tunneling matrix
elements Vk . The NCA approximation gives reliable
results for temperatures down to T , TK , and its time-
dependent formulation has been discussed at length in
previous works [7]. We define a time-dependent spectral
density for the dot electrons as [10]

rdot�e, t� � Re
Z `

0

dt

p
eiet�	cs�t�, cy

s�t 2 t�
� , (2)

which is causal and which reduces to the usual density of
states in equilibrium. In Fig. 1, we have plotted the time-
dependent spectral density for several times following
an abrupt shift of the level energy [11]. Before the
shift, the level energy is so low, edot � 25, that the
Kondo temperature is much smaller than the physical
temperature, and so there is no noticeable Kondo peak in
the spectral density. At t � 0, the level energy is abruptly
shifted to edot � 22, giving TK � 1023, comparable to
T . The Kondo peak thereafter grows with a characteristic
time dependence shown in Fig. 2, approaching a new
equilibrium value at long times t � 1�TK .

To develop an analytical theory for the time devel-
opment of the Kondo resonance, we consider the time-
dependent Kondo Hamiltonian,

HK �
X
ks

eksnks 1 J�t�S ? s ,

s �
X
aa0

cy
a

saa0

2
ca0 , S �

X
bb0

c
y
b

sbb0

2
cb0 , (3)

nc �
X
b

c
y
bcb .

Here cy
a creates a conduction-band electron at the site

of the Kondo impurity, and the s are the Pauli spin
matrices. For near Fermi surface properties, the Anderson
Hamiltonian reduces (3) with J�t� � 2jV 2

kF
�edot�t�j when

the site is occupied by a single electron [12,13]. For
the case of interest, in which the level energy edot is
suddenly shifted into the Kondo regime at t � 0, it
is adequate to consider a sudden switching on of the
Kondo coupling, J�t� � Ju�t�. The operator c

y
b creates

an Abrikosov pseudofermion [13] of spin b, which
represents the magnetic impurity. The states are restricted
to the physical subspace nc � 1.

The analytical signature of the Kondo effect is the
logarithmic divergence of perturbation theory in the
dimensionless coupling Jr, where r is the density of
conduction electron states per spin direction at the Fermi
level. Indeed, for T , TK perturbation theory in Jr

fails, even for small Jr. For T . TK , temperature
cuts off the logarithmic divergences and perturbation
theory is reliable [13]. We find that a finite time t
following a sudden switching on of the Kondo coupling
also results in a convergent perturbation theory. To
FIG. 1. Spectral density rdot�e, t� vs energy e at various times
following a step-function change in the level energy edot�t� �
25 1 3u�t�. The ordinates for positive times are successively
offset by 0.5 units. For t , 0, rdot�e, t� is identical to the
equilibrium spectral density at edot � 25 while for the largest
time shown it is indistinguishable on this scale from the
equilibrium spectral density at edot � 22. Throughout this
work energies are given in units of Gdot, and times in units
of 1�Gdot, with h̄ � 1. Here T � 0.0025.

demonstrate this, we focus on the simplest quantity that
diverges in perturbation theory. Specifically, we calculate
the scattering vertex gpp�t, t0� to order J2. Physically,
this quantity represents the lowest order change in the

FIG. 2. Solid curve: Time-dependent spectral density
rdot�eF , t� at the Fermi energy vs time t following the same
step-function change in the level energy used in Fig. 1.
The temperature is T � 0.0025. Dashed curve: Equilibrium
spectral density rdot�eF� at the Fermi energy with temperature
set according to Eq. (7): Teff�t� � T�tanh�pTt�2�, with
T � 0.0025. Inset: Schematic of the quantum-dot single
electron transistor.
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FIG. 3. Contributions of order J2 to the renormalized conduc-
tion electron scattering vertex from the Kondo Hamiltonian (3).
Solid lines are conduction electron propagators and dashed lines
are pseudofermion propagators. Summation over internal spins
is implied. Since the interaction is turned on at t � 0 we begin
and end all the Keldysh contours at t � 0.

renormalized J due to multiple scattering from the Kondo
impurity. Since abruptly turning on the Kondo coupling
creates a nonequilibrium state of the system, we use
Keldysh Green functions, Gpp0�t, t0�, with p, p0 � 61
denoting the outward/backward branches of the Keldysh
contour. As shown in Fig. 3, there are two contributions
of order J2. Evaluating these diagrams and keeping only
logarithmically divergent corrections to the bare vertex
(which occur only for p � p0), we find

gpp0

�t, t0� � pdpp0

J
4

�saa0sbb0�u�t�u�t0�

3

∑
d�t 2 t0� 2

J
2

G
pp
0 �t 2 t0� sgn�t 2 t0�

∏
.

(4)

Here G
pp
0 �t 2 t0� is the bare Keldysh Green function for

conduction electrons at the site of the Kondo impurity.
For jt 2 t0j ¿ 1�D (D is a high-energy cutoff) it takes
the form [14]

G
pp
0 �t 2 t0� !

2prT
sinh�pT �t 2 t0��

. (5)

Fourier transforming (4) with respect to the time differ-
ence t 2 t0 and taking the limit of zero frequency to ob-
tain the effective scattering vertex at time t for electrons
near the Fermi energy, we find

g�t, v ! 0� ~ J

Ω
1 1 rJ ln

∑
D
T

tanh

µ
pTt

2

∂∏æ
. (6)

For Tt ¿ 1 this reduces to the usual equilibrium form,
g ~ J�1 1 rJ ln D

T �, with the logarithmic divergence cut
off only by temperature. However, since in our case the
Kondo coupling exists only for times t . 0, the result
contains an additional cutoff due to the finite time allowed
for spin-flip scattering. Formally, the finite time t since
the onset of the Kondo coupling can be absorbed into an
increase in the effective temperature,

Teff �
T

tanh�pTt�2�
. (7)

How accurately does this effective temperature repre-
sent the time development of the Kondo resonance at the
810
Fermi surface? To test the applicability of Eq. (7) be-
yond perturbation theory, we have compared the time-
dependent NCA results to time-independent equilibrium
NCA results at the corresponding effective temperature.
The agreement, with no free parameters, is quite good as
is seen in Fig. 2. Note that at short times Teff � 2�pt.
Hence, the buildup of the Kondo resonance is governed
by a type of energy-time uncertainty relation: after a time
t the Kondo resonance is cut off by an energy �1�t [15].
Thus we expect saturation of the Kondo peak at a time
t � 1�TK , as indeed is observed numerically.

Finally, we consider how the buildup of the Kondo
resonance can be observed experimentally. In the absence
of a time-dependent gate voltage, the dc linear-response
conductance G through a dot symmetrically coupled to its
leads is given by [16]

G �
e2

h̄
Gdot

2

Z
de rdot�e�

µ
2

≠f�e�
≠e

∂
, (8)

where f�e� is the Fermi function, and h̄ is explicitly in-
cluded for clarity. Formula (8) is also exact in the presence
of a periodic gate voltage of arbitrary period and wave-
form, provided that G is replaced by the time-averaged
dc linear-response conductance �G�, and rdot�e� is re-
placed by the average of the time-dependent spectral den-
sity �rdot�e, t��. Consider a periodic signal consisting of
an “on” pulse of duration ton which brings the dot into the
Kondo regime followed by an “off” pulse which moves
it back out of the Kondo regime. During each on pulse,
rdot�eF , t� will build up to a maximum at time ton and
then rapidly decrease back to a low value during the off
pulse. The differential increase of conductance as the
duration of the on pulse is increased will therefore re-
flect the magnitude of the spectral density near or at the
Fermi energy at a time ton following the shift into the
Kondo regime. In Fig. 4, we have plotted the differen-
tial with respect to ton of the conductance, with a fixed
off-pulse duration toff. The conductance is integrated
over the period, rather than time averaged, to remove
effects due to the changing duration of the period, i.e.,
Gint � �ton 1 toff� �G�. This measurable transport quan-
tity provides a probe of the time development of the Kondo
resonance [17].

Experimentally this observation should be just possible
with current technology. As an example consider a dot
with an on Kondo temperature of Ton

K � 20 mK and a
much lower off Kondo temperature, and let T � Ton

K .
Figure 4 shows that the rise time of the current is
�1�T � 400 ps. So one should take ton . 400 ps and
toff ¿ 400 ps. The rise time of edot, te , should satisfy
te ø 400 ps. The current state of the art is te � 30 ps
with smaller values expected to become possible [18].

In conclusion, we have analyzed the response of a
quantum dot to a sudden shift of gate voltage which
takes the dot into the regime of the Kondo effect.
The buildup of many-body correlations between the dot
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FIG. 4. Solid curves: Derivative of Gint (in units of e2�h)
with respect to duration ton of “on” gate-voltage pulses,
at various temperatures. Gint is the conductance inte-
grated over a full cycle of gate voltage. Dashed curve:
2p

R
de Gdotf 0�e�rdot�e, t � ton� for T � 0.0025. Inset:

Schematic periodic gate-voltage pulse train. The level energy
is edot � 22 in the on state and edot � 25 in the off state.

and the leads follows an uncertainty principle: at time
t the Kondo resonance is cut off by an energy �1�t.
Within perturbation theory in the Kondo coupling, we
find that the finite time t plays the role of an increased
effective temperature Teff � T�tanh�pTt�2�. To exper-
imentally probe the buildup of the Kondo resonance, we
propose applying a train of square gate-voltage pulses to
the dot. The derivative of current with respect to duration
of the on pulse accurately reproduces the time-dependent
amplitude of the Kondo resonance.
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