Physical Review B HomepageBrowse Available VolumesSearchSubscriptionsContact InformationRSSToC AlertHelpAPS Journals HomepagePhysical Review B Homepage

Physical Review B
(Condensed Matter and Materials Physics)

Phys. Rev. B 73, 054509 (2006) (5 pages)


Theory of the magnetoresistance of disordered superconducting films

Yonatan Dubi,1 Yigal Meir,1,2 and Yshai Avishai1,2

1Physics Department, Ben-Gurion University, Beer Sheva 84105, Israel
2The Ilse Katz Center for Meso- and Nano-scale Science and Technology, Ben-Gurion University, Beer Sheva 84105, Israel

(Received 13 December 2005; published 21 February 2006)

Recent experimental studies of magnetoresistance in disordered superconducting thin films on the insulating side of the superconductor-insulator transition reveal a huge peak (about 5 orders of magnitude compared with the resistance at the transition). While it may be expected that magnetic field destroys superconductivity, leading to an enhanced resistance, attenuation of the resistance at higher magnetic fields is surprising. We propose a model which accounts for the experimental results in the entire range of magnetic fields, based on the formation of superconducting islands due to fluctuations in the superconducting order parameter amplitude in the disordered sample. At strong magnetic fields, due to Coulomb blockade in these islands, transport is mainly through the normal areas, and thus a decrease is the size and density of the superconducting islands leads to an enhanced conductance and a negative magnetoresistance. As the magnetic field is reduced and the size and density of these islands increase, the conductance is eventually dominated by transport through the superconducting islands and the magnetoresistance changes sign. Numerical calculations show a good qualitative agreement with experimental data.

Full Text: PDF 

From PRL (You may need a subscription for this option): PDF |GZipped PS  


For more information on reference linking in this journal, see Reference Sections and Reference Linking in Abstracts.

  1. P. W. Anderson, J. Phys. Chem. Solids 11, 26 (1959). [ISI]
  2. A. A. Abrikosov and L. P. Gorkov, Zh. Eksp. Teor. Fiz. 36, 319 (1959)
    [Sov. Phys. JETP 9, 220 (1959)]. [ISI]
  3. For a review on the superconductor-insulator transition see, e.g., A. M. Goldman and N. Markovic, Phys. Today 51 (11), 39 (1998). [ISI]
  4. S. L. Sondhi, S. M. Girvin, J. P. Carini, and D. Shahar, Rev. Mod. Phys. 69, 315 (1997).
  5. M. P. A. Fisher, Phys. Rev. Lett. 65, 923 (1990); [ISI]
    M. C. Cha, M. P. A. Fisher, S. M. Girvin, M. Wallin, and A. P. Young, Phys. Rev. B 44, 6883 (1991); [ISI]
    E. S. Sorensen, M. Wallin, S. M. Girvin, and A. P. Young, Phys. Rev. Lett. 69, 828 (1992); [ISI]
    M. Wallin, E. S. Sorensen, S. M. Girvin, and A. P. Young, Phys. Rev. B 49, 12 115 (1994).
  6. K. Das Gupta, G. Sambandamurthy, Swati S. Soman, and N. Chandrasekhar, Phys. Rev. B 63, 104502 (2001);
    W. Wu and E. Bielejec, cond-mat/0310190 (unpublished).
  7. A. F. Hebard and M. A. Paalanen, Phys. Rev. Lett. 65, 927 (1990). [ISI]
  8. N. Mason and A. Kapitulnik, Phys. Rev. B 64, 060504(R) (2001). [ISI]
  9. T. I. Baturina, D. R. Islamov, J. Bentner, C. Strunk, M. R. Baklanov, and A. Satta, JETP Lett. 79, 337 (2004). [ISI]
  10. Y. Dubi, Y. Meir, and Y. Avishai, Phys. Rev. B 71, 125311 (2005). [ISI]
  11. D. Kowal and Z. Ovadyahu, Solid State Commun. 90, 783 (1994). [Inspec] [ISI]
  12. V. F. Gantmakher and M. V. Golubkov, Pis'ma Zh. Eksp. Teor. Fiz. 61, 593 (1995) [Inspec]
    (JETP Lett. 61, 606 (1995). [SPIN]
  13. G. Sambandamurthy, L. W. Engel, A. Johansson, and D. Shahar, Phys. Rev. Lett. 92, 107005 (2004). [ISI]
  14. M. A. Steiner and A. Kapitulnik, Physica C 422, 16 (2005);
    M. A. Steiner, G. Boebinger, and A. Kapitulnik, Phys. Rev. Lett. 94, 107008 (2005). [ISI]
  15. S. Reich, G. Leitus, Y. Tssaba, Y. Levi, A. Sharoni, and O. Millo, J. Supercond. 13, 855 (2000); [Inspec] [ISI]
    T. Cren, D. Roditchev, W. Sacks, and J. Klein, Europhys. Lett. 54, 84 (2001); [Inspec] [ISI]
    S. H. Pan, J. P. O'Neal, R. L. Badzey, C. Chamon, H. Ding, J. R. Engelbrecht, Z. Wang, H. Eisaki, S. Uchida, A. K. Gupta, K.-W. Ng, E. W. Hudson, K. M. Lang, and J. C. Davis, Nature (London) 413, 282 (2001).
  16. A. Ghosal, M. Randeria, and N. Trivedi, Phys. Rev. Lett. 81, 3940 (1998); [ISI]
    A. Ghosal, M. Randeria, and N. Trivedi, Phys. Rev. B 65, 014501 (2001); [ISI]
    see also M. A. Skvortsov, M. V. Feigel'man, cond-mat/0504002.
  17. Y. Dubi, Y. Meir, and Y. Avishai (unpublished).
  18. A. Miller and E. Abrahams, Phys. Rev. 120, 745 (1960). [ISI]
  19. Even in this approximation the reasoning described in the text is valid, as a decrease in magnetic fields (at large fields, B>Bmax) leads to an increase in the number of local N-S junctions and thus to an increase in the number of paths which are characterized by a resistance given by Eq. (3). In this case Bmax is the magnetic field where the normal resistance associated with going around a typical island is equal to RNS.
  20. V. F. Gantmakher, M. V. Golubkov, V. T. Dolgopolov, G. E. Tsydynzhapov, and A. A. Shashkin, JETP Lett. 71, 473 (2000); [ISI]
    D. Shahar (private communications).
  21. M. Tinkham, Phys. Rev. 129, 2413 (1963). [ISI]