Physical Review B (Condensed Matter and Materials Physics)
Print issue of 15 February 2001

Phys. Rev. B 63, 073108 (2001) (4 pages)

From the zero-field metal-insulator transition in two dimensions to the quantum Hall transition: A percolation-effective-medium theory

Yigal Meir
Department of Physics, Ben-Gurion University, Beer Sheva 84105, Israel
The Ilse Katz Center for Meso- and Nanoscale Science and Technology, Ben-Gurion University, Beer Sheva 84105, Israel

(Received 7 September 2000; published 30 January 2001)

Effective-medium theory is applied to the percolation description of the metal-insulator transition in two dimensions with emphasis on the continuous connection between the zero-magnetic-field transition and the quantum Hall transition. In this model, the system consists of puddles connected via saddle points, and there is loss of quantum coherence inside the puddles. The effective conductance of the network is calculated using appropriate integration over the distribution of conductances, leading to a determination of the magnetic-field dependence of the critical density. Excellent quantitative agreement is obtained with the experimental data, which allows an estimate of the puddle physical parameters. ©2001 The American Physical Society

PACS: 71.30.+h, 73.43.-f, 72.15.Rn, 73.50.-h


  Full Text:


References

Citation links [e.g., Phys. Rev. D 40, 2172 (1989)] go to online journal abstracts. Other links (see Reference Information) are available with your current login. Navigation of links may be more efficient using a second browser window.

  1. For a recent review of experimental data and theoretical approaches, see E. Abrahams, S. V. Kravchenko, and M. P. Sarachik, cond-mat/0006055.  [LANL]
  2. Y. Hanein, N. Nenadovic, D. Shahar, H. Shtrikman, J. Yoon, C. C. Li, and D. C. Tsui, Nature (London) 400, 735 (1999).
  3. Y. Meir, Phys. Rev. Lett. 83, 3506 (1999);
    Phys. Rev. B 61, 16 470 (2000).
  4. S. Kirkpatrick, Phys. Rev. Lett. 25, 1722 (1971):
    R. B. Stinchcombe, J. Phys. C 7, 179 (1974).  [INSPEC]
  5. See, e.g., B. J. van Wees, L. P. Kouwenhoven, E. M. M. Willems, C. J. P. M. Harmans, J. E. Mooij, H. van Houten, C. W. J. Beenakker, J. G. Williamson, and C. T. Foxon, Phys. Rev. B 43, 12 431 (1991).
  6. H. A. Fertig and B. I. Haleprin, Phys. Rev. B 36, 7969 (1987).
  7. M. Hilke, D. Shahar, S. H. Song, D. C. Tsui, Y. H. Xie, and D. Monroe, Phys. Rev. B 56, R15 545 (1997);
    D. Shahar, M. Hilke, C. C. Li, D. C. Tsui, S. L. Sondhi, J. E. Cunningham, and M. Razeghi, Solid State Commun. 107, 19 (1998).  [INSPEC]
  8. V. M. Pudalov, Pis'ma Zh. Éksp. Teor. Fiz. 66, 168 (1997) [JETP Lett. 66, 175 (1997)];
    Y. Hanein, U. Meirav, D. Shahar, C. C. Li, D. C. Tsui, and H. Shtrikman, Phys. Rev. Lett. 80, 1288 (1998).
  9. It should be noted, though, that the resistance change in the data is much larger than that in the theory.
  10. D. Shahar, D. C. Tsui, M. Shayegan, E. Shimshoni, and S. L. Sondhi, Science 274, 589 (1996);  [INSPEC]
    E. Shimshoni, S. L. Sondhi, and D. Shahar, Phys. Rev. B 55, 13 730 (1996).
  11. D. Simonian, S. V. Kravchenko, and M. P. Sarachik, Phys. Rev. B 55, R13 421 (1997).
  12. A. A. Shashkin, V. T. Dolgopolov, G. V. Kravchenko, M. Wendel, R. Schuster, J. P. Kotthaus, R. J. Haug, K. von Klitzing, K. Ploog, H. Nickel, and W. Schlapp, Phys. Rev. Lett. 73, 3141 (1994);
    V. T. Dolgopolov, A. A. Shashkin, G. V. Kravchenko, C. J. Emeleus, and T. E. Whall, Pis'ma Zh. Éksp. Teor. Fiz. 62, 152 (1995) [JETP Lett. 62, 168 (1995)];   [SPIN]
    I. V. Kukushkin, V. I. Fal'ko, R. J. Haug, and K. von Klitzing, Phys. Rev. B 53, R13 260 (1996).
  13. M. Hilke, D. Shahar, S. H. Song, D. C. Tsui, and Y. H. Xie, Phys. Rev. B 62, 6940 (2000).
  14. E. Shimshoni and A. Auerbach, Phys. Rev. B 55, 9817 (1997);
    E. Shimshoni, A. Auerbach, and A. Kapitulnik, Phys. Rev. Lett. 80, 3352 (1998);
    E. Shimsoni, Phys. Rev. B 60, 10 691 (1999).
  15. L. P. Pryadko and A. Auerbach, Phys. Rev. Lett. 82, 1253 (1999).
  16. M. Hilke, D. Shahar, S. H. Song, D. C. Tsui, Y. H. Xiet, and D. Monroe, Nature (London) 395, 675 (1998).
  17. D. Shahar (unpublished).