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From the zero-field metal-insulator transition in two dimensions to the quantum Hall transition:
A percolation-effective-medium theory
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Effective-medium theory is applied to the percolation description of the metal-insulator transition in two
dimensions with emphasis on the continuous connection between the zero-magnetic-field transition and the
quantum Hall transition. In this model, the system consists of puddles connected via saddle points, and there
is loss of quantum coherence inside the puddles. The effective conductance of the network is calculated using
appropriate integration over the distribution of conductances, leading to a determination of the magnetic-field
dependence of the critical density. Excellent quantitative agreement is obtained with the experimental data,
which allows an estimate of the puddle physical parameters.
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Extensive experimental and theoretical effort has been
vested in an attempt to understand and characterize the
servation of metallic-like behavior in two dimensions.1 One
of the intriguing experimental findings2 is that this zero-
magnetic-field ‘‘transition’’ is continuously connected wit
the integer quantum Hall transition. In previou
publications,3 I presented a simple noninteracting electr
model, combining local quantum transport and global cla
cal percolation, which treated the zero-field transition and
quantum Hall transition on the same footing. Numerical c
culations showed behavior qualitatively similar to that o
served experimentally. In the present paper, I present an
lytic approach, based on the effective-medium theory
percolation,4 that allows quantitative comparison with th
experiment. This comparison also allows a determination
physical properties of the underlying electronic state. T
implications on transport in the quantum Hall regime due
this continuous connection to the zero-field transition are
cussed and shown to be in agreement with experimental
servations in the quantum Hall regime.

The model is based on two assumptions:~a! the potential
fluctuations due to the disorder define density puddles, c
nected via saddle points, or quantum point contacts~QPCs!,
and ~b! the electron wave function totally dephases in t
puddles, i.e., the time the particle spends in the puddl
larger that the dephasing time. Each saddle point is cha
terized by its critical energyec , such that the transmissio
through it is given byT(e)5Q(e2ec), where quantum tun-
neling has been neglected. Thus the conductance thro
each QPC is given by the Landauer formula,

G~m,T!5
2e2

h E deS 2
] f FD~e!

]e DT~e!

5
2e2

h

1

11exp@~ec2m!/kT#
, ~1!

wherem is the chemical potential andf FD is the Fermi-Dirac
distribution function.

The system is now composed of classical resistors, wh
the resistance of each one of them is given by Eq.~1!, with
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random QPC energies. Effective-medium theory for su
random resistor network was developed many years a4

and it agrees with exact solution of this network on an in
nite lattice~Cayley tree!. The resulting equation for the ef
fective conductances of the total network is given by

05E dG f~G!
G2s

G1~z22!s
, ~2!

where f (G) is the distribution function of the conductance
in the network andz is the coordination number of the la
tice.

In the present case, the conductance through a point
tact, given by Eq.~1!, depends on the threshold energy of t
quantum point contact and the chemical potential in
puddles that are connected by it. At zero temperature, it
duces toG(m,T50)52e2/h3Q(m2ec), where Q(x) is
the Heaviside step function. For an arbitrary distribution
the threshold energiesf thr(ec), the equation for the effective
conductance of the network reads

05I f

12s

11~z22!s
1~12I f !

2s

~z22!s
, ~3!

with I f[*2`
m f thr(ec)dec . Solving fors, one finds

s~m!5s03~m2mc!, ~4!

with s0 and mc the nonuniversal prefactor~of the order of
e2/h) and the critical point, respectively, which depend
the distribution function and the lattice. The conductan
vanishes below the critical chemical potential~density! mc
and grows linearly above it. The mean-field critical condu
tance exponent was found to be unity4 ~compared to.1.3 in
two dimensions!.

In the presence of a finite perpendicular magnetic fieldB,
the situation becomes more complicated. Landau levels f
in the puddles~see inset to Fig. 1!, and the chemical potentia
in each puddle oscillates with magnetic field, as it is stuck
the highest occupied Landau level in the puddle. If t
puddle potential is modeled by a parabolic well, charact
ized by its depth,e0, and by its confining energy,\v0
~which also defines its characteristic size!, then the chemical
potential is given by
©2001 The American Physical Society08-1
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m~m0 ,e0 ,v0 ,B!5e01\v/21\vFm02\v0/22e0

\v G
int

,

~5!

where@ # int denotes the integer part,v[Av0
21vc

2/4, and
wc(B) is the cyclotron energy. The parameterm0 is the zero-
field chemical potential~density!. For large field the chemi-
cal potential ise01\v/2, the energy of the lowest Landa
level. As magnetic field is reduced, there will be a first jum
in the chemical potential form02\v0/22e0.\v, which
defines the filling factorn51. In Fig. 1, a typical magnetic
field dependence of the chemical potential in two puddle
depicted. The two puddles differ only in the value ofe0, the
depth of the potential.

Transport through a single QPC in perpendicular field
been studied experimentally in detail.5 In accordance with
the above picture, one finds that the critical gate volta
~density! oscillates with magnetic field due to the depopu
tion of Landau levels.

The system consists of many puddles, each having its
characteristic physical parameters. Consequently, the inte
over the distribution of the conductances in Eq.~2!, which
depends on the distribution of the local puddle parame
through the local chemical potential,m(m0 ,e0 ,v0 ,B), has to
appropriately performed. Then Eq.~4! turns into

s~B,m0!5s03@m̄~m0 ,B!2mc#,

with

m̄~m0 ,B!5E de08 f e0
~e08!E dv08 f v0

~v08!

3@m~m0 ,e0 ,v0 ,B!2\v/2#, ~6!

FIG. 1. The magnetic-field dependence of the chemical poten
in two different puddles. The chemical potential is stuck to t
topmost occupied Landau level, which leads to the observed o
lations. The two puddles differ only in their depth. Inset: the para
eters characterizing a puddle and a neighboring point contact.
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where f e0
and f v0

are the distribution functions of the re
spective puddle parameters. In the following, these were
sumed to be uniform distributions around characteristic
ergy scalese0 and v0, respectively, with respective width
De0 andDv0. The energy of the lowest Landau level,\v/2,
was subtracted, as it does not contribute to the kinetic ene
of the electrons~or holes!.6

The magnetic-field dependence of the critical dens
m0(B) is now determined by the relation

m̄~m0 ,B!5mc . ~7!

For large fields (n<1), the chemical potential in eac
puddle varies linearly with magnetic field~see Fig. 1!. Thus
it is clear that the averaged chemical potential will also va
linearly with field at large fields. As the field is reduce
there will be a discontinuous jump in the chemical poten
of each puddle at its respective integer filling factors. O
might expect that after averaging, only the largest jump
n51, may survive, and will be replaced by a smooth rap
increase. This has indeed been seen experimentally.2 Figure
2 depicts the experimental data, compared to the predict
of the effective-medium theory, Eqs.~6! and~7!. The param-
eterse0 and v0 determine the value of the magnetic fie
where the rapid increase in the critical density occ
~around n51) and the saturation value at zero magne
field. The width of the puddle potential distributionDv0
determines the rate of increase of the critical density nean
51. The excellent agreement between the experimental
and theory is evident, and allows a determination of
physical characteristics of the puddle distribution. One fin
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FIG. 2. Comparison of the experimental data~Ref. 2! for the
critical density to the prediction of effective-medium theory. T
excellent agreement between theory and experiment allows a d
mination of the puddle potential distribution~see text!. Note that if
the magnetic field is changed for a fixed density~e.g., n51.15
31010 along the broken line!, there will be a finite region of mag-
netic fields where conductance, in the zero-temperature limit,
be nonzero, in contradiction with the quantum-phase-transition
scription of the quantum Hall effect.
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BRIEF REPORTS PHYSICAL REVIEW B 63 073108
that the typical confining energy in the puddle is 0.25 m
~with about 10% dispersion!, leading to a typical puddle siz
of 100 nm, for the parabolic confining potential assum
above. Depending on the particular shape of the confin
potential in the dot, the size of the puddle may be lar
~e.g., about a factor of 2 larger for the hard-wall potentia!.

The experimentally demonstrated connection between
quantum Hall transition and the zero-field transition indica
that both stem from the same physical process. The fact
the quantum Hall transition, at least in these systems
driven by percolative behavior and cannot be described
the usual theory of quantum phase transition is demonstr
by the fact that the experimental data in Fig. 2 show tha
the magnetic field changes a fixed for density,n ~e.g., n
51.1531010 along the broken line in the figure!, there is a
finite ~and substantial! range in magnetic fields, where th
zero-temperature limit of the conductance remains nonz
This is in contradiction with the usual theory of quantu
phase transition that predicts, at zero temperature, a si
point where transport is dissipative. Such data have alre
been reported in the past,7 and the density and temperatu
dependence of the longitudinal resistance was well descr
by the relationrxx(n,T)5r1exp@(n2nc)/(aT1b)#, wherenc
is the critical density andr1 , a, andb are some constant
~note the finite resistivity when extrapolated to zero tempe
ture!. This behavior looks remarkably like the one report
for the zero-field transition,8 r(n,T)5r01r1exp@(n
2nc)/(aT)#. In order to check this functional dependence,
effective-medium equation~2! was solved for finite tempera
tures, where a uniform distribution of critical energiesec was
assumed for simplicity. The resulting effective resistance
depicted in Fig. 3, and compared to the experimental ob
vation in the quantum Hall regime.7 Similar to the experi-
mental data, the theory shows that there is a wide rang
temperature~a high-temperature regime in the theory! where
the effective resistance displays exponential tempera
dependence.9

The fact that the quantum Hall transition, at least in so
of the reported observations, stems from the same me
nism that leads to the metallic behavior in zero magne
field is further supported by the fact that the reported curre
voltage duality across the quantum Hall transition10 was also
reported for the zero-field transition.11 The relevance of per
colation to the quantum Hall transition has already been
tablished experimentally,12 where it was shown that the tran
sition occurs when the metallic phase percolates through
system, and not at a fixed filling factor, as expected from
quantum-phase-transition scenario. An alternative expla
tion was suggested by Hilkeet al.,13 who attributed the dis-
agreement with the quantum phase transition scenario
mixing with higher Landau levels.

The relevance of the underlying puddle structure and
finite dephasing rate to these observations in the quan
Hall regime has already been pointed out and elabora
upon by Shimshoni and co-workers.14 Also, Pryadko and
Auerbach have claimed15 that the finite quantized value o
the Hall conductance reported in the insulating regime16 can
only be explained when finite dephasing is taken into
count, and the Hall resistance should be infinite in a tr
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quantum coherent Hall insulator. It should be noted, thou
that as pointed out in Ref. 3, the identification of th
‘‘temperature-independent point’’ with the critical point
questionable, and within the model it lies well within th
metallic phase. In this picture, the fact that the Hall cond
tance remains quantized through the ‘‘transition’’ is a triv
issue, as this point is not the true transition point to t
insulator. For the parameters corresponding to the curves
picted in Fig. 3, the critical point occurs atn51.05. Thus
one may speculate that all the points in the figure lie in
metallic phase, and no change in the quantized Hall re
tance is expected.

To conclude, the excellent agreement with the experim
tal data, in addition to previously demonstrated quantitat
agreement with temperature and parallel magnetic field d
is a further validation of the relevance of the theory to t
description of this phenomenon. The theory further pred
that when the conductance is measured in a mesosc
piece of the system, the conductance will show abr
changes, as a function of the density, as point contacts o
with increasing density. Such mesoscopic jumps in the c
ductance in the quantum Hall regime have indeed been
cently observed.17

The author would like to thank D. Shahar and his gro
for valuable discussions and for making their data availa
to him. This work was supported by the Israel Scien
Foundation–Centers of Excellence Program and by the G
man Ministry of Science.

FIG. 3. The exponential dependence of the resistance on
sity, experiment~Ref. 7! vs theory ~at zero field!. The magnetic
field, according to the theory, only shifts the transition. As point
out in Ref. 3, the ‘‘temperature-independent point’’ in the mod
has nothing to do with the critical point, which, in this case, isn
51.05, way off the scale. Thus one may speculate that the en
region depicted in the figure is on the metallic side, which mig
explain why the Hall resistance remains quantized, as the den
crosses this ‘‘temperature-independent point’’~Ref. 16!.
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