Center for Materials Theory, Department of Physics
and Astronomy, Rutgers University, Piscataway, New Jersey 088548019
(Received 20 September 1999)
Using a timedependent Anderson Hamiltonian, a quantum dot with an ac voltage
applied to a nearby gate is investigated. A rich dependence of the
linear response conductance on the external frequency and driving
amplitude is demonstrated. At low frequencies a sufficiently strong ac
potential produces sidebands of the Kondo peak in the spectral density
of the dot, and a slow, roughly logarithmic decrease in conductance
over several decades of frequency. At intermediate frequencies, the
conductance of the dot displays an oscillatory behavior due to the
appearance of Kondo resonances of the satellites of the dot level. At
high frequencies, the conductance of the dot can vary rapidly due to
the interplay between photonassisted tunneling and the Kondo
resonance. ©2000 The American Physical Society
PACS: 72.15.Qm, 73.50.Mx, 85.30.Vw
Full Text:
References
Citation links
[e.g., Phys. Rev. D 40, 2172 (1989)]
go to online journal abstracts. Other links (see Reference Information) are
available with your current login. Navigation of links may be more
efficient using a second
browser window.

L.I. Glazman and M.E. Raikh, Pis'ma Zh. Éksp. Teor. Fiz. 47,
378 (1988) [ JETP Lett. 47, 452 (1988)]; [SPIN]
T.K. Ng and P.A. Lee, Phys.
Rev. Lett. 61, 1768 (1988);
S. Hershfield, J.H. Davies, and J.W. Wilkins, 67,
3720 (1991).

Y. Meir, N.S. Wingreen, and P.A. Lee, Phys.
Rev. Lett. 70, 2601 (1993);
N.S. Wingreen and Y. Meir, Phys.
Rev. B 49, 11 040 (1994).

D. GoldhaberGordon et al., Nature (London) 391, 156
(1998); [INSPEC]
Phys.
Rev. Lett. 81, 5225 (1998);
S.M. Cronenwett, T.H. Oosterkamp, and L.P. Kouwenhoven, Science 281,
540 (1998); [INSPEC]
T. Schmid et al., Phys. Rev. B 256, 182 (1998);
F. Simmel et al., Phys.
Rev. Lett. 83, 804 (1999).

L.P. Kouwenhoven et al., in Mesoscopic Electron Transport,
edited by L.L. Sohn, L.P. Kouwenhoven, and G. Schön (Kluwer,
Netherlands, 1997).

M.H. Hettler and H. Schoeller, Phys.
Rev. Lett. 74, 4907 (1995).

A. Schiller and S. Hershfield, Phys.
Rev. Lett. 77, 1821 (1996).

T.K. Ng, Phys.
Rev. Lett. 76, 487 (1996);
Y. Goldin and Y. Avishai, 81,
5394 (1998);
R. Lopez et al., 81,
4688 (1998).

Gamma_{dot}(epsilon)[equivalent]2pi[summation]_{k}V_{k}^{2}delta(epsilon–epsilon_{k})
is slowly varying. Gamma_{dot} with no energy specified
refers to the Fermi level value.

N.E. Bickers, Rev. Mod. Phys. 59, 845 (1987). [SPIN]

D.C. Langreth and P. Nordlander, Phys.
Rev. B 43, 2541 (1991).

H. Shao, D.C. Langreth, and P. Nordlander, Phys.
Rev. B 49, 13 929 (1994).

Y. Meir and N.S. Wingreen, Phys.
Rev. Lett. 68, 2512 (1992).

A.P. Jauho, N.S. Wingreen, and Y. Meir, Phys.
Rev. B 50, 5528 (1994).

For the Hamiltonian (1) the time average dot(epsilon,t)>[equivalent]–Im<A_{dot}(epsilon,t)>/pi,
where A_{dot}(epsilon,t) is the retarded and
hence causal function defined in Ref. 13, Eq. (28).

Hence in an experiment one may also expect peaks spaced by [hbar]Omega
in the differential conductance.

A. Kaminski, Yu.V. Nazarov, and L.I. Glazman, Phys.
Rev. Lett. 83, 384 (1999).

P.K. Tien and J.P. Gordon, Phys. Rev. 129, 647 (1963).

In contrast, an ac bias voltage of order T_{K}/e
can produce significant effects such as Kondo sidebands, cf. Refs.
6,7.

J.R. Schrieffer and P.A. Wolff, Phys. Rev. 149, 491 (1966).

To derive Eq. (6), we note that the full retarded propagators g
for the lead electrons are given in terms of their bare values g_{0}
by g = g_{0} + g_{0}Tg_{0}
with matrix multiplication implied in the time and lead quantum number k.
The transition matrix T is given by T_{kk[prime]}
= V_{k}V_{k[prime]}^{*}A_{dot},
where A_{dot} is the corresponding propagator for
the dot. The above two relations may be obtained directly from Eq. (1)
for arbitrary U (via the equations of motion for the c's,
for example). The total transition rate is then just –2 Im T_{kk}
from the optical theorem, which then implies for the time averaged
rate w_{leads}(epsilon) = –2V_{k}^{2}Im<A_{dot}(epsilon,t)>.
Finally, using the relation between A and rho_{dot}
given in Ref. 14 and the definition of Gamma_{dot}(epsilon)
given in Ref. 8, we arrive at Eq. (6).

A.A. Abrikosov, Physics (N.Y.) 2, 5 (1965).