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Kondo physics in the single-electron transistor with ac driving
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Using a time-dependent Anderson Hamiltonian, a quantum dot with an ac voltage applied to a nearby gate
is investigated. A rich dependence of the linear response conductance on the external frequency and driving
amplitude is demonstrated. At low frequencies a sufficiently strong ac potential produces sidebands of the
Kondo peak in the spectral density of the dot, and a slow, roughly logarithmic decrease in conductance over
several decades of frequency. At intermediate frequencies, the conductance of the dot displays an oscillatory
behavior due to the appearance of Kondo resonances of the satellites of the dot level. At high frequencies, the
conductance of the dot can vary rapidly due to the interplay between photon-assisted tunneling and the Kondo
resonance.
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It has been predicted that at low temperatures, trans
through a quantum dot should be governed by the sa
many-body phenomenon that enhances the resistivity o
metal containing magnetic impurities—namely, the Kon
effect.1,2 The recent observations of the Kondo effect3 in a
quantum dot operating as a single-electron transistor~SET!
have fully verified these predictions. In contrast to bulk m
als, where the Kondo effect corresponds to the screenin
the free spins of a large number of magnetic impurities, th
is only one free spin in the quantum-dot experiment. Mo
over, a combination of bias and gate voltages allow
Kondo regime, mixed-valence regime, and empty-site
gime all to be studied for the same quantum dot, both in
out of equilibrium.3

Here we consider another opportunity presented by
observation of the Kondo effect in a quantum dot that is
available in bulk metals—the application of an unscreen
ac potential. There is already a large literature concerning
experimental application of time-dependent fields to qu
tum dots.4 For a dot acting as a Kondo system, the ac volta
can be used to periodically modify the Kondo temperature
to alternate between the Kondo and mixed-valence regim
Thus it is natural to ask what additional phenomena occu
a driven system which in steady state is dominated by
Kondo effect. Hettler and Schoeller~HS!5 addressed this
question within the framework of the Anderson model w
an ac potential of frequencyV applied to the dot. They re
ported that, in addition to the Kondo peak at the Fermi
ergy, the density of states of the dot developed sideba
spaced by\V. As we show later, for the parameters H
studied, the correct NCA equationsdo not produce side-
bands. However sidebands do appear with stronger ac d
ing of the dot. Other works have addressed the respons
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an impurity of the Kondo6 or Anderson7 type to an acbias
applied between the two leads. Since a bias voltage prod
Kondo peaks at the chemical potential of each lead,2 a small
ac bias amplitude, of orderTK /e, is sufficient to spawn side
bands of the Kondo peak.6,7

Here we reconsider the problem of an ac potential app
to a quantum dot without ac bias between the leads.
results indicate a rich range of behavior with increasing
frequency, from sidebands of the Kondo peak at low ac f
quencies, to conductance oscillations at intermediate
quencies, and finally to photon-assisted tunneling at high
frequencies. Finally, by mapping the ac Anderson mode
an ac Kondo model, we provide an analytic expression
strength of the ac sidebands of the Kondo peak.

The system of interest is a semiconductor quantum dot
pictured schematically in Fig. 1. An electron can be co
strained between two reservoirs by tunneling barriers lead
to a virtual electronic level within the dot at energy;edot

FIG. 1. Schematic picture of the quantum dot SET.
2146 ©2000 The American Physical Society
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~measured from the Fermi level! and width ;2Gdot.
8 We

assume that both the charging energye2/C and the level
spacing in the dot are much larger thanGdot, so the dot will
operate as a SET.4 In this work, we consider only the linear
response conductance between the two reservoirs. How
we will allow an oscillating gate voltageVg(t)5V0
1VaccosVt of arbitrary~angular! frequencyV and arbitrary
amplitude Vac, which modulates the virtual-level energ
edot(t).

Such a system may be described by a constrainedU
5`) Anderson Hamiltonian

(
s

edot~ t !ns1(
ks

@eksnks1~Vkcks
† cs1H.c.!#. ~1!

Here cs
† creates an electron of spins in the quantum dot,

while ns is the corresponding number operator;cks
† creates a

corresponding reservoir electron;k is shorthand for all other
quantum numbers of the reservoir electrons, including
designation of left or right reservoir, whileVk is the tunnel-
ing matrix element through the appropriate barrier. Beca
the charging energy to add a second electron,U5e2/C, is
assumed large, the Fock space in which the Hamiltonian~1!
operates is restricted to those elements with zero or one e
tron in the dot.

At low temperatures, the Anderson Hamiltonian~1! gives
rise to the Kondo effect when the level energyedot lies below
the Fermi energy. In this regime, a single electron occup
the dot which, in effect, turns the dot into a magnetic imp
rity with a free spin. The temperature required to observe
Kondo effect in linear response is of orderTK;D exp
(2puedotu/Gdot), where D is the energy difference betwee
the Fermi level and the bottom of the band of states. For
temperature range that is likely to be experimentally acc
sible in a SET,T;TK or higher, there exists a well teste
and reliable approximation known as the noncrossing
proximation ~NCA!.9 The NCA has been formally genera
ized to the full time-dependent nonequilibrium case,10 and a
method for its numerical solution was proposed a
implemented.11 Here we present the full numerical solutio
of the time-dependent NCA equations without additional
proximation, as applied to a quantum dot over the full ran
of applied frequencies.

The time-dependent electronic structure of the dot can
characterized by the time-dependent spectral density

rdot~e,t ![E
2`

` dt

2p
ei et/\^$cs~ t1 1

2 t!,cs
†~ t2 1

2 t!%& ~2!

evaluated in the restricted Fock space. For the equilibr
Kondo system,rdot(e) is time independent, and looks simila
to the graph in the schematic in Fig. 1. Roughly speaki
rdot(e) consists of a broad peak of width;2Gdot at the level
positionedot and a sharp Kondo peak of width;TK near the
Fermi level. We will refer to these features as the virtu
level peak and the Kondo peak, respectively. In the stea
state case, the linear-response conductanceG through a dot
symmetrically coupled to two reservoirs is given by12
er,
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2 E derdot~e!S 2
] f ~e!

]e D , ~3!

where f (e) is the Fermi function. The formula~3! will still
be valid in the case where the gate voltage is time depen
if G is thetime-averagedconductance andrdot(e) is replaced
by the time-averagedspectral densitŷrdot(e,t)&.13,14 For a
given system, this average will depend on the driving am
tudeVac and frequencyV.

In Fig. 2 we show the calculated̂rdot(e,t)& as a function
of energye for a level with energyedot(t)5edot1eaccosVt
at several different frequenciesV. The corresponding con
ductance is shown by the curve labeled dot A,T50.005 in
Fig. 3. For the lowestV, the response of the system is rel
tively adiabatic and the displayed spectral function resemb
the spectral function that would have resulted if the syst
had been in perfect equilibrium for all the dot level positio
over a period of oscillation ofedot(t). The two broad peaks
are the influence of the virtual level peaks at the two stati
ary points of this oscillation~here ate521 ande529). As
the frequencyV is increased, marked nonadiabatic effec
result, the most obvious being the appearance of mult
satellites around the Kondo resonance. These sideband
pear at energies equal to\ times multiples of the driving
frequencyV.15 With increasing frequency, the magnitude
the Kondo peak at the Fermi energy also declines. This
turn causes the slow, roughly logarithmic falloff of the co
ductance over two decades of frequency, as shown in Fig
In a recent work, Kaminski, Nazarov, and Glazman16 have
attributed the decay of the Kondo peak observed here
decoherence induced by ac excitations. Such a mecha
was originally proposed2 to explain the reduction of the
Kondo peak amplitude under application of a dc bias. As
will show, the same mechanism also applies to reduce
Kondo peak amplitude at high ac frequencies\V@Gdot.

FIG. 2. The spectral densitŷrdot(e,t)& vs energye for a quan-
tum dot with level energyedot(t)52514 cosVt and T50.005.
The nondriven case is also shown in the final panel. Throughout
letter, energies are in units ofGdot .
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As \V becomes larger thanGdot, inspection of Fig. 2
shows that broad satellites also appear at energy separa
n\V around the average virtual-level positionedot. These
satellites of the virtual level are the analogs of those p
dicted in the noninteracting case,13 which decrease in mag
nitude as the ordern of the squared Bessel functio
@Jn(eac/\V)#2. Here, however, the virtual-level satellite
have their own Kondo peaks; each of the latter gets str
when the corresponding virtual-level satellite reaches a p
tion a little below the Fermi level, and then disappears as
broad satellite crosses the Fermi level. This effect produ
the oscillations in the conductance that are evident in
lower curves in Fig. 3. These oscillations are very differe
from those that would occur in a noninteracting (U50)
case: due to the Kondo peaks they are substantially stron
their maxima occur at different frequencies and their mag
tudes are temperature dependent.

As the last virtual-level satellite crosses the Fermi lev
\V5uedotu, the dot level energy begins to vary too fast f
the system to respond and the average spectral function
proaches theequilibrium spectral function for a dot leve
centered at the average positionedot. Indeed, in the limit
V→` the time-averaged spectral function is exactly equa
the equilibrium spectral function centered atedot. For the
parameters of Fig. 2, this very high frequency region is
interesting, because foredot525 the temperatureT50.005
is far above the Kondo temperature (;1027). Therefore, the
conductance shows little temperature or frequency dep
dence forV.7.

The situation is quite different for the system~dot B! dis-
played in the upper two curves in Fig. 3, which displays
strong Kondo effect (TK;1023) when the dot level is held

FIG. 3. Conductance of two different quantum dots, each at
different temperatures: Dot A,edot(t)52514 cosVt; dot B,
edot(t)522.512 cosVt. The curves at the highV end for dot B
~marked ‘‘PAT’’! are from our photon-assisted-tunneling mod
while the exact high frequency asymptotes for dot B are shown
short horizontal lines extending from the right vertical axis. T
inset shows the spectral density^rdot(e,t)& of dot B around the
Fermi level, atT50.005, for large frequencies, fromV54.8 ~low-
est curve!, through 5.5, 6.1, 6.8 toV514 ~topmost curve!.
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at its average energyedot. In this case theV→` conduc-
tance is strongly enhanced by the Kondo effect, and is c
sequently temperature dependent as well. Note that the
ductance is significantly lower than its asymptotic,V→`,
value for frequencies still much larger than either the de
of the leveluedotu or its width. This effect is due to an effi
cient suppression of the amplitude of the Kondo peak in
spectral density, as illustrated in the inset of Fig. 3. We p
pose the following explanation for this phenomenon. T
energy\V excites the dot, producing satellites13,17 of the
virtual level peak at energiesedot6n\V, which, for \V
@Gdot have strength roughly given by@Jn(eac/\V)#2 as in
the U50 case~see Fig. 2 and the previous discussion!. For
large \V, only the twon51 satellites have any significan
strength, and the higher lies above the Fermi level, allow
an electron on the dot to decay at the rate (1/\)Gdot(edot
1\V). The overall electron decay probability per unit tim
Gdecay/\ due to this photon-assisted-tunneling mechani
~PAT! is therefore given by

Gdecay'@J1~eac/\V!#2Gdot~edot1\V!. ~4!

The above rate carries with it an energy uncertainty, wh
we speculate has roughly the same effect on the Kondo p
as the energy smearing due to a finite temperature. We
test this conjecture by calculating theequilibrium conduc-
tance at aneffective temperatureTeff given by Teff5T
1Gdecay. The results of such a calculation are shown in F
3 ~PAT curves!, where they compare very favorably with ou
results for the conductance in the ac-driven system.

An important conclusion of our study is that the effects
ac driving of the level energy become become signific
only wheneac becomes comparable to the ‘‘large’’ energ
parametersuedotu and Gdot; an eac;TK has essentially no
effect.18 This is in contrast to the the predictions of Ref.
where a further approximation to the NCA equations w
introduced. To demonstrate the unphysical consequence
this approximation, we have used the exact parameters
in Ref. 5. The left panel of Fig. 4 shows our predicted sp
tral functions in the region of the Kondo resonance. T
curve marked ‘‘13 ’’ is for the same value of drivingeac as

o

,
s

FIG. 4. Left panel: Evolution of the Kondo sidebands in t
spectral weight vs ac driving. Right panel: Direct comparison w
Ref. 5 ~vertical scales and offsets arbitrary! for the weakest driving
(13) used there.
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Fig. 1 of Ref. 5, that iseac50.017uedotu51.4V522TK . The
curves marked 203 and 353 correspond to driving ampli-
tudes 20 and 35 times this, respectively. The right pa
shows a direct comparison between the full NCA predict
and the approximation to the NCA made in Ref. 5. Inde
there is no splitting of the Kondo peak for aneac;TK .

The strengths of the the Kondo sidebands in the left pa
of Fig. 4 are roughly consistent with an (eac/edot)

2 propor-
tionality. Such a dependence can in fact be derived ana
cally for the special case where the tunneling couplingVk is
sufficiently weak that it may be treated perturbatively. Th
is most easily done with the corresponding Kon
Hamiltonian19

(
kk8ss8

Jkk8~ t !S SW •sW ss81
1

2
dss8D cks

† ck8s8 , ~5!

where the dot is replaced simply by a dynamical Heisenb
spinSW (S25 3

4 ), and where the components ofsW are the Pauli
spin matrices. For near Fermi level properties we can s
press the detailedk dependence ofJ andV and introduce a
large energy cutoffD. In the U5` case we consider,J(t)
5uV2/edot(t)u.

19

In the Kondo model, there is no quantity directly corr
sponding to the time-averaged density of states of the
electron ^rdot(e,t)&. Therefore, in order to use the Kond
Hamiltonian~5! to determine the strength of the sidebands
^rdot(e,t)&, we must first relate the density of states to t
scattering rate of electrons in the leads. Specifically, we
wleads(e)/\ be the total rate at which lead electrons of ene
e undergo intralead and interlead scattering by the dot. In
Kondo regime,wleads(e) will have a peak fore near the
Fermi level. Furthermore, ifJ is modulated asJ(t)5^J&(1
1a cosVt), then an electron scattered by the dot will be a
to absorb or emit multiple quanta of energy\V, leading to
satellites of the Kondo peak inwleads(e). We can then obtain
^rdot(e,t)& through the exact Anderson model relation20

^rdot~e,t !&5r leads~e!wleads~e!/Gdot~e!, ~6!

wherer leads(e) is the state density per spin in the leads.
We expand perturbatively inJ, keeping all terms of orde

J2 and logarithmic terms to orderJ3, obtaining

wleads~e!52p^J2&rF113^J&r (
n521

1

ang~e1n\V!G ,

~7!

where r5r leads(0), a051, a615a2/(21a2), ^J2&5(1
1 1

2 a2)^J&2, and

g~e!5
1

2E2D

D

de8
122 f ~e8!

e82e
→ lnUDe U, ~8!
d
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the last limit being approached whenT!ueu. The quantities
a65eac

2 /(2edot
2 1eac

2 )'eac
2 /2edot

2 are the strengths~equal, to
this order inJ) of the first satellites above and below a ce
tral peak of unit strength. In Fig. 5 we compare the pert
bative results inJ with the full NCA theory. Although we are
not strictly in the parameter region where theJ3 theory is
quantitatively valid, the qualitative agreement is quite sa
factory.

The present results indicate rich behavior when an ex
nal ac potential is applied to a quantum dot in the regi
where the conductance is dominated by the Kondo eff
While the time-dependent NCA method employed spans
full range of applied frequency, some additional insight h
been gained into the behavior both at very low and very h
frequencies. At low frequencies a time-dependent Kon
model helps explain the amplitudes of sidebands of
Kondo peak in the spectral density of the dot. At high fr
quencies, a cutoff of the Kondo peak due to photon-assis
tunneling processes accounts for the reduction of cond
tance. We hope that our work will inspire experimental i
vestigation of these phenomena and other ramifications o
driving applied to Kondo systems.
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FIG. 5. Spectral densitŷrdot(e,t)& times 103 in the Kondo
model and NCA forkBT50.02 and^J&r50.023 (edot527). For
the nondriven case~left panel! we also show the comparable resu
from summing all the leading logarithmic terms~Abrikosov, Ref.
21!, as well as that obtained to orderJ2. The energy dependence o
^J& ~Ref. 19! has been included to orderJ2 in all the Kondo Hamil-
tonian curves.
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