Article

Molecular Systems Biology 4 Article number: 211  doi:10.1038/msb.2008.49
Published online: 5 August 2008
Citation: Molecular Systems Biology 4:211

Variable sizes of Escherichia coli chemoreceptor signaling teams

Robert G Endres1,2,a, Olga Oleksiuk3,a, Clinton H Hansen4, Yigal Meir5, Victor Sourjik3 & Ned S Wingreen1

  1. Department of Molecular Biology, Princeton University, Princeton, NJ, USA
  2. Division of Molecular Biosciences and Centre for Integrated Systems Biology at Imperial College, Imperial College London, London, UK
  3. Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
  4. Department of Physics, Princeton University, Princeton, NJ, USA
  5. Department of Physics, Ben Gurion University, Beer Sheva, Israel

Abstract

Like many sensory receptors, bacterial chemotaxis receptors form clusters. In bacteria, large-scale clusters are subdivided into signaling teams that act as 'antennas' allowing detection of ligands with remarkable sensitivity. The range of sensitivity is greatly extended by adaptation of receptors to changes in concentrations through covalent modification. However, surprisingly little is known about the sizes of receptor signaling teams. Here, we combine measurements of the signaling response, obtained from in vivo fluorescence resonance energy transfer, with the statistical method of principal component analysis, to quantify the size of signaling teams within the framework of the previously successful Monod–Wyman–Changeux model. We find that size of signaling teams increases 2- to 3-fold with receptor modification, indicating an additional, previously unrecognized level of adaptation of the chemotaxis network. This variation of signaling-team size shows that receptor cooperativity is dynamic and likely optimized for sensing noisy ligand concentrations.

References

  1. Ames P, Studdert CA, Reiser RH, Parkinson JS (2002) Collaborative signaling by mixed chemoreceptor teams in Escherichia coli. Proc Natl Acad Sci USA 99: 7060–7065 | Article | PubMed | ChemPort |
  2. Asakura S, Honda H (1984) Two-state model for bacterial chemoreceptor proteins. The role of multiple methylation. J Mol Biol 176: 349–367 | Article | PubMed | ISI | ChemPort |
  3. Berg HC, Purcell EM (1977) Physics of chemoreception. Biophys J 20: 193–219 | PubMed | ISI | ChemPort |
  4. Bialek W, Setayeshgar S (2005) Physical limits to biochemical signaling. Proc Natl Acad Sci USA 102: 10040–10045 | Article | PubMed | ChemPort |
  5. Boldog T, Grimme S, Li M, Sligar SG, Hazelbauer GL (2006) Nanodiscs separate chemoreceptor oligomeric states and reveal their signaling properties. Proc Natl Acad Sci USA 103: 11509–11514 | Article | PubMed | ChemPort |
  6. Bray D, Levin MD, Morton-Firth CJ (1998) Receptor clustering as a cellular mechanism to control sensitivity. Nature 393: 85–88 | Article | PubMed | ISI | ChemPort |
  7. Briegel A, Ding HJ, Li Z, Werner J, Gitai Z, Dias DP, Jensen RB, Jensen G (2008) Location and architecture of the Caulobacter crescentus chemoreceptor array. Mol Microbiol 68: 30–41 | Article | ChemPort |
  8. Draheim RR, Bormans AF, Lai RZ, Manson MD (2006) Tuning a bacterial chemoreceptor with protein–membrane interactions. Biochemistry 45: 14655–14664 | Article | PubMed | ChemPort |
  9. Endres RG, Falke JJ, Wingreen NS (2007) Chemotaxis receptor complexes: from signaling to assembly. PLoS Compl Biol 3: e150 | Article | ChemPort |
  10. Endres RG, Wingreen NS (2006) Precise adaptation in bacterial chemotaxis through 'assistance neighborhoods'. Proc Natl Acad Sci USA 103: 13040–13044 | Article | PubMed | ChemPort |
  11. Germain RN, Stefanova I (1999) The dynamics of T cell receptor signaling: complex orchestration and the key roles of tempo and cooperation. Annu Rev Immunol 17: 467–522 | Article | PubMed | ISI | ChemPort |
  12. Griffith LC (2004) Receptor clustering: nothing succeeds like success. Curr Biol 14: R413–R415 | Article | PubMed | ChemPort |
  13. Homma M, Shiomi D, Homma M, Kawagishi I (2004) Attractant binding alters arrangement of chemoreceptor dimers within its cluster at a cell pole. Proc Natl Acad Sci USA 101: 3462–3467 | Article | PubMed | ChemPort |
  14. Kentner D, Sourjik V (2006) Spatial organization of the bacterial chemotaxis system. Curr Opin Microbiol 9: 619–624 | Article | PubMed | ChemPort |
  15. Kentner D, Thiem S, Hildenbeutel M, Sourjik V (2006) Determinants of chemoreceptor cluster formation in Escherichia coli. Mol Microbiol 61: 407–417 | Article | PubMed | ChemPort |
  16. Keymer JE, Endres RG, Skoge M, Meir Y, Wingreen NS (2006) Chemosensing in Escherichia coli: two regimes of two-state receptors. Proc Natl Acad Sci USA 103: 1786–1791 | Article | PubMed | ChemPort |
  17. Kim KK, Yokota H, Kim SH (1999) Four-helical-bundle structure of the cytoplasmic domain of a serine chemotaxis receptor. Nature 400: 787–792 | Article | PubMed | ISI | ChemPort |
  18. Lai RZ, Manson JM, Bormans AF, Draheim RR, Nguyen NT, Manson MD (2005) Cooperative signaling among bacterial chemoreceptors. Biochemistry 44: 14298–14307 | Article | PubMed | ChemPort |
  19. Lamanna AC, Ordal GW, Kiessling LL (2005) Large increases in attractant concentration disrupt the polar localization of bacterial chemoreceptors. Mol Microbiol 57: 774–785 | Article | PubMed | ISI | ChemPort |
  20. Li G, Weis RM (2000) Covalent modification regulates ligand binding to receptor complexes in the chemosensory system of Escherichia coli. Cell 100: 357–365 | Article | PubMed | ISI | ChemPort |
  21. Liberman L, Berg HC, Sourjik V (2004) Effect of chemoreceptor modification on assembly and activity of the receptor-kinase complex in Escherichia coli. J Bacteriol 186: 6643–6646 | Article | PubMed | ChemPort |
  22. Lybarger SR, Maddock JR (1999) Clustering of the chemoreceptor complex in Escherichia coli is independent of the methyltransferase CheR and the methylesterase CheB. J Bacteriol 181: 5527–5529 | PubMed | ChemPort |
  23. Lybarger SR, Nair U, Lilly AA, Hazelbauer GL, Maddock JR (2005) Clustering requires modified methyl-accepting sites in low-abundance but not high-abundance chemoreceptors of Escherichia coli. Mol Microbiol 56: 1078–1086 | Article | PubMed | ChemPort |
  24. Maddock JR, Shapiro L (1993) Polar location of the chemoreceptor complex in the Escherichia coli cell. Science 259: 1717–1723 | Article | PubMed | ISI | ChemPort |
  25. McAndrew RS, Ellis EA, Lai RZ, Manson MD, Holzenburg A (2005) Identification of Tsr and Tar chemoreceptor arrays in E. coli inner membranes. Microsc Microanal 11: 1190–1191 | Article |
  26. McAndrew RS, Ellis EA, Lai RZ, Manson MD, Holzenburg A (2006) Effects of chemoreceptor modification on the structures of Tsr arrays. Microsc Microanal 12: 378–379 | Article |
  27. McAndrew RS, Ellis EA, Manson MD, Holzenburg A (2004) TEM analysis of chemoreceptor arrays in native membranes of E. coli. Microsc Microanal 10: 416 | Article |
  28. Mello BA, Tu Y (2005) An allosteric model for heterogeneous receptor complexes: understanding bacterial chemotaxis responses to multiple stimuli. Proc Natl Acad Sci USA 102: 17354–17359 | Article | PubMed | ChemPort |
  29. Mello BA, Tu Y (2007) Effects of adaptation in maintaining high sensitivity over a wide range of backgrounds for Escherichia coli chemotaxis. Biophys J 92: 2329–2337 | Article | PubMed | ChemPort |
  30. Monod J, Wyman J, Changeux JP (1965) On the nature of allosteric transitions: a plausible model. J Mol Biol 12: 88–118 | PubMed | ISI | ChemPort |
  31. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2002) Chapter 11. In Numerical Recipes in C++: the Art of Scientific Computing. Cambridge, MA, USA: Cambridge University Press
  32. Schamel WW, Reth M (2000) Monomeric and oligomeric complexes of the B cell antigen receptor. Immunity 13: 5–14 | Article | PubMed | ISI | ChemPort |
  33. Schulmeister S, Ruttorf M, Thiem S, Kentner D, Lebiedz D, Sourjik V (2008) Protein exchange dynamics at chemoreceptor clusters in Escherichia coli. Proc Natl Acad Sci USA 105: 6403–6408 | Article | PubMed |
  34. Shiomi D, Banno S, Homma M, Kawagishi I (2005) Stabilization of polar localization of a chemoreceptor via its covalent modifications and its communication with a different chemoreceptor. J Bacteriol 187: 7647–7654 | Article | PubMed | ChemPort |
  35. Shrout AL, Montefusco DJ, Weis RM (2003) Template-directed assembly of receptor signaling complexes. Biochemistry 42: 13379–13385 | Article | PubMed | ChemPort |
  36. Skoge ML, Endres RG, Wingreen NS (2006) Receptor–receptor coupling in bacterial chemotaxis: evidence for strongly coupled clusters. Biophys J 90: 4317–4326 | Article | PubMed | ChemPort |
  37. Sourjik V, Berg HC (2000) Localization of components of the chemotaxis machinery of Escherichia coli using fluorescent protein fusions. Mol Microbiol 37: 740–751 | Article | PubMed | ISI | ChemPort |
  38. Sourjik V, Berg HC (2002) Receptor sensitivity in bacterial chemotaxis. Proc Natl Acad Sci USA 99: 123–127 | Article | PubMed | ChemPort |
  39. Sourjik V, Berg HC (2004) Functional interactions between receptors in bacterial chemotaxis. Nature 428: 437–441 | Article | PubMed | ISI | ChemPort |
  40. Sourjik V, Vaknin A, Shimizu TS, Berg HC (2007) In vivo measurement by FRET of pathway activity in bacterial chemotaxis. Methods Enzymol 423: 363–391
  41. Studdert CA, Parkinson JS (2004) Crosslinking snapshots of bacterial chemoreceptor squads. Proc Natl Acad Sci USA 101: 2117–2122 | Article | PubMed | ChemPort |
  42. Studdert CA, Parkinson JS (2005) Insights into the organization and dynamics of bacterial chemoreceptor clusters through in vivo crosslinking studies. Proc Natl Acad Sci USA 102: 15623–15628 | Article | PubMed | ChemPort |
  43. Ursell T, Huang KC, Peterson E, Phillips R (2007) Cooperative gating and spatial organization of membrane proteins through elastic interactions. PLoS Comput Biol 3: e81 | Article | PubMed | ChemPort |
  44. Vaknin A, Berg HC (2006) Osmotic stress mechanically perturbs chemoreceptors in Escherichia coli. Proc Natl Acad Sci USA 103: 592–596 | Article | PubMed |
  45. Weis RM, Hirai T, Chalah A, Kessel M, Peters PJ, Subramaniam S (2003) Electron microscopic analysis of membrane assemblies formed by the bacterial chemotaxis receptor Tsr. J Bacteriol 185: 3636–3643 | Article | PubMed | ChemPort |
  46. Yin CC, Blayney LM, Lai FA (2005) Physical coupling between ryanodine receptor–calcium release channels. J Mol Biol 349: 538–546 | Article | PubMed | ChemPort |
  47. Zhang P, Khursigara CM, Hartnell LM, Subramaniam S (2007) Direct visualization of Escherichia coli chemotaxis receptor arrays using cryo-electron microscopy. Proc Natl Acad Sci USA 104: 3777–3781 | Article | PubMed | ChemPort |