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Like many sensory receptors, bacterial chemotaxis receptors form clusters. In bacteria, large-scale
clusters are subdivided into signaling teams that act as ‘antennas’ allowing detection of ligands with
remarkable sensitivity. The range of sensitivity is greatly extended by adaptation of receptors to
changes in concentrations through covalent modification. However, surprisingly little is known
about the sizes of receptor signaling teams. Here, we combine measurements of the signaling
response, obtained from in vivo fluorescence resonance energy transfer, with the statistical method
of principal component analysis, to quantify the size of signaling teams within the framework of the
previously successful Monod–Wyman–Changeux model. We find that size of signaling teams
increases 2- to 3-fold with receptor modification, indicating an additional, previously unrecognized
level of adaptation of the chemotaxis network. This variation of signaling-team size shows that
receptor cooperativity is dynamic and likely optimized for sensing noisy ligand concentrations.
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Introduction

Transmembrane receptors of the chemotaxis network in
Escherichia coli allow bacteria to sense chemicals in the
environment, allowing cells to swim toward nutrients (attrac-
tant chemicals) and away from repellents (toxic chemicals).
The chemotaxis network possesses remarkable signaling
properties, including high sensitivity to small changes in
chemical concentration over a wide range of ambient
concentrations. These signaling properties rely on receptor
clustering (Bray et al, 1998), which occurs at multiple length
scales. At a small scale, the chemotaxis receptors form stable
homodimers, which then assemble into larger complexes in
which receptors of different chemical specificities are inter-
mixed (Studdert and Parkinson, 2004; Lai et al, 2005). Trimers
of dimers (Kim et al, 1999; Ames et al, 2002; Studdert and
Parkinson, 2004) are believed to be the smallest signaling unit
(Boldog et al, 2006). At a larger scale, B10 000 receptors form
large polar and lateral receptor clusters (Maddock and Shapiro,
1993; Ames et al, 2002; Zhang et al, 2007). Theoretical analysis

of in vivo fluorescence resonance energy transfer (FRET) data
suggests that large receptor clusters are composed of smaller
signaling teams each consisting of about 10 strongly coupled
receptor dimers (see Box 1 for details) (Sourjik and Berg, 2004;
Mello and Tu, 2005; Keymer et al, 2006; Skoge et al,
2006), which is consistent with receptor cooperativity
(Hill coefficients of dose–response curves) observed in vitro
(Li and Weis, 2000).

Signal transduction by receptor signaling teams requires
association with the kinase CheA, and the adapter protein
CheW; both CheA and CheW affect receptor cooperativity
(Sourjik and Berg, 2004) and large-scale clustering (Maddock
and Shapiro, 1993; Liberman et al, 2004; Shiomi et al, 2005).
CheA’s kinase activity is inhibited by attractant binding to
receptors. When active, CheA autophosphorylates using ATP
and transfers the phosphoryl group to the response regulator
CheY. Phosphorylated CheY (CheY-P) diffuses to the flagellar
motor and induces clockwise motor rotation and cell
tumbling. CheY-P is dephosphorylated by its phosphatase
CheZ. In the absence of CheY-P, flagellar motors rotate
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counterclockwise and the cell runs straight. Adaptation
in wild-type cells relies on methylation/demethylation of
glutamates at 4–6 specific modification sites (depending on the
receptor type) by the enzymes CheR/CheB, the latter being
activated through phosphorylation by CheA.

Despite the excellent characterization of much of the
bacterial chemotaxis network, very little is known about the

sizes of receptor signaling teams, which are difficult to resolve
by fluorescence or electron microscopy. However, receptor
methylation has been observed to affect polar clustering
slightly. Receptor clusters are relatively stable, as demon-
strated for polar clusters using fluorescence recovery after
photobleaching (Schulmeister et al, 2008) and for trimers of
dimers (Studdert and Parkinson, 2005) using crosslinking
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Chemoreceptors cluster at multiple scales ranging from receptor dimers, to trimers of dimers, to large polar and lateral clusters. Signaling properties are believed
to arise from groups of several trimers of dimers forming signaling teams. Within a signaling team, receptors are assumed to be coupled strongly enough that
the receptors are either all in the on state or all in the off state (A). In the on state, the receptor-associated kinase CheA is assumed to be active,
autophosphorylating itself and transferring the phospho-group to the response regulators CheY and CheB. In the off state, CheA is inactive and unable to
autophosphorylate (B). Importantly, the two-state property of the receptor dimers and signaling teams leads to two characteristic regimens of activity as
described below.
Single two-state receptor: We assume that an individual chemoreceptor (homodimer) has two states, on or off (Asakura and Honda, 1984). Attractant binding
favors the off state, in which the receptor-bound kinase CheA is inactive, whereas modification of the receptor favors the on state, in which CheA is active. At
equilibrium, the probability that the receptor dimer is on is

pon ¼ e�fon

e�fonþe�foff
¼ 1

1 þ eDf

where all energies are expressed in units of the thermal energy kBT. The receptor dimer free-energy difference between on and off states is given by

Df ¼ f on � f off ¼ DeðmÞ þ log
1þ½L�=Koff

D

1þ½L�=Kon
D

� �

where ligand binding in the on (off) state with dissociation constant KD
on (KD

off) is included. For attractant binding KD
offoKD

on, and for repellent binding, KD
off4KD

on. The
modification state of the receptor dimer enters only through the offset energy De(m). The probability of the on state is considered to be the receptor activity.

Two regimens of activity are apparent. (C) A schematic energy-level diagram as a function of attractant (ligand) concentration [L] for a fully demethylated
(unmodified) receptor dimer (left, regimen I) and a fully modified receptor dimer (right, regimen II) is shown (Keymer et al, 2006). The receptor dimer can either be
on or off. For clarity in the figure, only the off state can bind attractant (red disc), with ligand dissociation constant KD

off. Methyl groups or glutamines (diamonds)
lower the free energy of the on state. In regimen I, the on-state free energy is above the off-state free energy (De40) in the absence of attractant, leading to a low
activity; the crossing of the lowest levels occurs at [L]¼KD

off (black dot). In regimen II, the on-state free energy is below the off-state free energy (Deo0) in the
absence of a ligand, leading to a high activity; the crossing of the lowest levels occurs at an increased ligand concentration [L]¼KD

offexp(|De|) (black dot). In both
regimens I and II, the crossing of the lowest levels corresponds to the inhibition constant Ki (ligand concentration at half-maximal activity), obtainable from
dose–response curves.
Receptor signaling team: Within the allosteric Monod–Wyman–Changeux (MWC) model (Monod et al, 1965), two-state receptor dimers form signaling teams
with all receptors in a team either on or off together (Sourjik and Berg, 2004; Mello and Tu, 2005; Keymer et al, 2006). Assuming for simplicity a single receptor
type, such as Tar, the equilibrium probability that a signaling team of N receptor dimers will be on is

pon ¼ e�N fon

e�N fonþe�N f off ¼
1

1 þ eNDf

Importantly, signaling-team formation enhances the difference between the two regimens (Keymer et al, 2006). In regimen I, where De40 (e.g. for Tar{EEEE}),
receptor dimers have an even lower activity, Bexp(�NDe), and an inhibition constant KiBKD

off/N, indicating an N times higher sensitivity than that of a single
receptor dimer. In regimen II, where Deo0 (e.g. for Tar{QQQQ}), receptor dimers are even more fully active, and turn off at attractant concentration
KiBKD

offexp(|De|) with enhanced cooperativity, specifically with a Hill coefficient nHBN.
The strong effect of signaling-team size on the sensitivity of demethylated (unmodified) receptors and on the Hill coefficient of more highly modified receptors

allows us to deduce signaling-team size from signaling dose–response curves (Supplementary Table I; Keymer et al, 2006; Endres et al, 2007).

Box 1 Model for receptor signaling
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experiments. However, there is some evidence that demethy-
lation or attractant binding decreases the stability of polar
receptor clusters (Shrout et al, 2003; Homma et al, 2004;
Lamanna et al, 2005; Vaknin and Berg, 2006), although the
effects on the size of the polar and lateral clusters appear to be
minor or none (Lybarger and Maddock, 1999; Liberman et al,
2004; Lybarger et al, 2005; Shiomi et al, 2005). In vitro,
receptor cooperativity has been observed to increase with
receptor modification (Li and Weis, 2000), but such an
increase in cooperativity is expected with increasing activity
even for fixed-size signaling teams (see Box 1; Keymer et al,
2006).

Here, we report a method to reliably extract the size of
receptor signaling teams from variable in vivo FRET signaling
data (Figure 1), and apply the method to cells that express only
the aspartate-specific Tar receptor. We examined both adapting
receptors in the presence of the modification enzymes CheR
and CheB, as well as genetically engineered receptors in
particular modification states in non-adapting cheRcheB cells.
To analyze dose–response curves (activity versus MeAsp
concentration), we first applied the statistical method of
principal component analysis (PCA) to properly treat corre-
lated variability in the data. Next, we fitted our previously
established two-state model of signaling to the PCA-treated
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Figure 1 Determining sizes of receptor signaling teams from signaling dose–response curves. Signaling-team size N, i.e. the number of receptor dimers per signaling
team, may differ depending on the receptor modification state (glutamate (E) or glutamine (Q) at four specific receptor modification sites). Variable signaling-team sizes
are illustrated schematically by membrane patches of trimers of dimers (blue circles) with signaling teams of two trimers (N¼6 dimers) for Tar{QEEE}, or signaling teams
of six trimers (N¼18 dimers) for Tar{QQQQ}. When directly fitting the free-energy model of receptor activity to the noisy data, the fitted curves and model parameters vary
widely, due to the large error bars (middle panel), preventing quantitative analysis of signaling-team sizes. However, use of principal component analysis (PCA)
separates the reproducible variation of the data from the sampling noise, allowing quantitative evaluation of parameters, and revealing a systematic dependence of
signaling-team size on receptor modification level in living cells.
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data to extract parameters with error bars, including signaling-
team sizes and modification-dependent receptor energies.
As a result of this quantitative data analysis, we discovered a
new level of adaptation in the E. coli chemotaxis network.
Specifically, we found that signaling-team size increases about
three-fold with receptor modification, such as that occurs
during adaptation to an attractant. Furthermore, we present a
theory that the observed variation in signaling-team size is a
novel adaptive mechanism to optimally measure noisy ligand
concentrations.

Results

To measure signal processing by the receptor signaling teams
in living bacterial cells under defined conditions, we expressed
the high-abundance aspartate chemoreceptor Tar in an
otherwise receptorless strain of E. coli and used in vivo FRET
to measure the concentration of CheY-P/CheZ pairs, which is
proportional to total CheA activity (Sourjik and Berg, 2002,
2004; Sourjik et al, 2007; see Supplementary information). For
this purpose, CheY and CheZ were expressed as fusions to
yellow (YFP) and cyan (CFP) fluorescent proteins, respec-
tively, which allows energy transfer upon pair formation. From
the high sensitivity and cooperativity (Hill coefficient) of dose–
response curves previously measured by FRET (Sourjik and
Berg, 2002, 2004), and quantitatively interpreted within the
Monod–Wyman–Changeux (MWC) model (see Box 1; Monod
et al, 1965; Sourjik and Berg, 2004; Mello and Tu, 2005;
Keymer et al, 2006), receptor signaling teams are believed to
consist of approximately N¼10–20 receptor dimers (3–7
trimers of dimers). In the MWC model, a receptor signaling
team is an effective two-state system, where all receptors are
either on (active) or off (inactive) (Asakura and Honda, 1984),
and bind ligand with the dissociation constants KD

on and KD
off,

respectively. Attractant binding is more favorable in the off
state, and hence a high concentration of attractant [L] tends to
turn receptors off, whereas receptor modification favors the on
state. The probability that a receptor signaling team is active
depends only on the free-energy difference between its on and
off states, which is N times the free-energy difference of a
single receptor, DF ¼ NDf ðDe;Kon

D ;Koff
D ; ½L�Þ, where De is the

free-energy difference in the absence of ligand.De does depend
on receptor modification: for unmodified receptors, De40,
whereas for modified receptors, Deo0. Only in their on state
do receptors induce the kinase activity of receptor-bound
CheA. This model has been very successful in describing high
sensitivity to ligand, precise adaptation, and signal integration
by mixed receptor types (Endres and Wingreen, 2006; Keymer
et al, 2006), and is believed to reflect an organization of
receptors in small tightly coupled signaling teams that are then
interlinked to form the large polar and lateral clusters.

Previous studies indicated that increasing receptor modifi-
cation can enhance protein interactions in receptor clusters
(Shrout et al, 2003; Shiomi et al, 2005; McAndrew et al, 2006).
To test whether the size of receptor signaling teams depends on
the modification state (cf. top of Figure 1, showing a schematic
of different sized signaling teams of trimers of dimers), Tar
receptors were genetically engineered to have either a
glutamate (E) or a glutamine (Q) at the four modification sites

in the cytoplasmic domain, and expressed in cells lacking all
other receptors (see Supplementary information). In chemotaxis,
a glutamine (Q) is functionally similar to a methylated
glutamate. For instance, strains expressing only Tar{QQQQ}
are highly active at zero attractant concentration, whereas
strains expressing only Tar{EEEE} are generally inactive.
Using a-methyl-DL-aspartate (MeAsp), a non-metabolizable
analog of aspartate, we measured dose–response curves, i.e.
the activity at various attractant concentrations, for adapting
cells (CheRBþ ) and for non-adapting mutants (cheRcheB) that
express Tar receptors in different modification states QEEE,
QEQE, QEQQ, and QQQQ. The resulting data for each strain
show large day-to-day variation (illustrated by the different
symbols in Figure 1, middle), despite the fact that the FRET
data are intrinsically independent of the number of measured
cells, as only fluorescence ratios are considered. The variation
presumably stems from a fluctuating expression of the Tar
receptor even at a defined inducer concentration. Because of
the large error bars on the data, a standard w2 analysis provides
only a weak constraint on signaling-team size. However, the
variation of the data is highly correlated, e.g. the overall
amplitudes of dose–response curves vary considerably,
whereas the shapes remain more consistent. To exploit this
consistency of the data, we used the statistical method of PCA
(Figure 2, see Materials and methods, and Supplementary
information). Given a set of dose–response curves, PCA
identifies the independently varying collective modes of the
data, specifically a highly variable amplitude mode and
multiple, less variable shape modes. Within standard w2

analysis, deviations between model and data are weighted by
the inverse of the variance at each data point. In contrast, our
fits of the MWC model to the data are weighted by the inverse
variance of the PCA modes, exploiting our greater confidence
in the least variable modes of the data. A sufficient number of
principal components are included to account for most of the
data variation while not overinterpreting the data due to small
sample size (Supplementary Figure 6). As a result, we were
able to obtain tight error bars on model parameters and to
draw quantitative conclusions on the variation of signaling-
team size with receptor modification. As a schematic example,
Figure 1 (bottom) shows illustrative high-confidence fits,
indicating that the number of receptor dimers per Tar{QEEE}
and Tar{QQQQ} signaling team is NB6 and B18 receptor
dimers, respectively.

Figure 3 shows experimental dose–response curves (sym-
bols) for all strains at high (about 3.6� native) Tar expression
level, as well as the corresponding theoretical best fits
obtained using PCA (curves) (see Supplementary Figure 7
for the data and fits at low (about 1.4�native) Tar expression
level). The results for both expression levels are summarized
in Figure 4, which shows the inferred signaling-team sizes N
(top) and receptor offset energies De (bottom) for low (left)
and high (right) Tar receptor expression levels: An increase in
signaling-team size with increasing receptor modification is
apparent, ranging from 5 to 7 receptor dimers for Tar{QEEE} to
16–19 receptor dimers for Tar{QQQQ} (depending on receptor
expression). On the basis of our error bars, at low expression
level, signaling-team sizes for Tar{QEEE} and Tar{QEQE}
are conclusively smaller than for Tar{QQQQ}, i.e.
NQEEE, NQEQEoNQQQQ, and at high expression level

Variable chemoreceptor signaling-team size
RG Endres et al

4 Molecular Systems Biology 2008 & 2008 EMBO and Nature Publishing Group



NQEEEoNQEQEoNQEQQ, NQQQQ (see Supplementary Table I for
numerical values of parameters). Additionally, receptor offset
energies De decrease systematically with modification state
and are approximately independent of receptor expression
level, as expected for an intrinsic single-receptor property,
providing further evidence for the reliability of our data
acquisition and analysis.

Our results indicate that the size of receptor signaling
teams depends directly on receptor modification state, not
on receptor activity. The Tar{QEQE}, Tar{QEQQ}, and
Tar{QQQQ} strains are all fully active at low MeAsp
concentrations (see Figure 3 and Supplementary Figure 7),

but signaling-team size nevertheless increases with the
number of glutamines (Figure 4). To further test the
dependence of signaling-team size on receptor modification
at high Tar expression level, we made use of the fact that
CheRBþ cells adapted to two different attractant concentra-
tions, 0 and 0.1 mM MeAsp, have the same activity (indicated
by arrows in Figure 3), but, respectively, low and high receptor
modification levels. Compared to cells adapted to zero
ambient, the receptor methylation level (as evident from the
offset energy) and signaling-team size have significantly
increased for cells adapted to 0.1 mM MeAsp (plus symbols
in Figure 3 and stripe pattern in Figure 4B and D).

To test whether our results for the sizes of receptor signaling
teams depended on the MWC model, we also obtained fits of
the FRET data using alternative models in which trimers of
dimers are coupled to their nearest neighbors in a triangular or
in a honeycomb lattice (see Supplementary information).
Although these Ising-type lattice models do not account well
for the data from mostly demethylated receptors (Skoge et al,
2006), adequate fits to dose–response curves were obtained
for the more highly modified receptors. The results strongly
confirm our conclusion that effective signaling-team size
increases significantly with receptor modification.

Do the observed variable complex sizes reflect an ‘optimal’
receptor signaling-team size that changes with ligand con-
centration? We address this question briefly here, with details
in the Supplementary information. Complexes of N receptor
dimers respond more strongly to changes in ligand concentra-
tion than do single receptor dimers, as the free-energy
difference of a receptor signaling team is NDf, where Df is
the free-energy difference of a single receptor dimer. Hence
larger signaling teams are better for detecting weak signals.
However, larger signaling teams are also noisier than smaller
signaling teams, as ligand noise gets amplified as well. For
instance, the standard deviation of the free-energy difference
of a signaling team due to ligand concentration noise d[L] is

sF ¼ N
dðDfÞ
d½L� d½L� ð1Þ
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Figure 2 Illustration of principal component analysis (PCA) applied to dose–response curves of receptor activity to obtain principal modes of data variation. Receptor
activity at various concentrations of attractant (MeAsp) was measured through in vivo FRET for E. coli cells expressing only Tar receptors. (A) Measured dose–response
curves show large variability, as exemplified by M¼7 individual curves for the receptor modification state QEQE in a cheRcheB mutant. (B) Illustration of a scatter plot of
data from (A) in a space of dimension D equal to the number of different attractant concentrations (projected onto two dimensions for clarity). Each data point (square)
corresponds to one dose–response curve. The average dose–response curve is shown as an open circle. PCA involves diagonalizing the covariance matrix C, where the
principal components—eigenvectors ni and eigenvalues li of C with i¼1,y, D—indicate the direction and magnitude of variation of the data. The sum of the
eigenvalues equals the total variance of the data. The open square illustrates our practice of leaving out one data point when determining the optimal number of principal
components to be included for fitting (see Supplementary Figure 6B).
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Figure 3 Individual receptor-activity dose–response curves (symbols) and
corresponding PCA fits (solid lines) for E. coli cells expressing only Tar receptors
at high (B3.6� native) expression level (see Supplementary information). Cell
types include adapting (CheRBþ ) and non-adapting, engineered cheRcheB
mutants (QEEE, QEQE, QEQQ, and QQQQ). CheRBþ cells are adapted either
to zero attractant (x symbols) or to 0.1 mM MeAsp (þ symbols). The arrows
indicate the adapted activity of 0.2. Measurement of the dose–response curves of
CheRBþ cells adapted to 0.1 mM MeAsp required not only addition but also
removal of MeAsp. The experimental data were normalized by the inverse
amplitude f�1 (see Materials and methods, and Supplementary Table I).
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where the derivative is

dðDfÞ
d½L� ¼ 1

Koff
D þ ½L�

� 1

Kon
D þ ½L� ð2Þ

A large standard deviation of the free-energy difference of a
signaling team, i.e. sF41 in units of the thermal energy kBT,
means that many signaling teams are either fully active or fully
inactive, making them unresponsive to small changes in the
mean ligand concentration, and therefore of no use for
chemotaxis. A restriction to sFt1 sets an upper limit on the
size of signaling teams. The lowest possible uncertainty in
ligand concentration is given by the Berg and Purcell limit
(Berg and Purcell, 1977) and generalized by Bialek and
Setayeshgar (2005) d½L�=½L� ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
paD½L�t

p
, where a is the

receptor dimension, D is the ligand diffusion constant, and t is
the averaging time. On the basis of this estimate, equation (1)
can be solved for the upper limit on the signaling-team size

Nt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
paD½L�t

p
½L�=ð½L� þ Koff

D Þ–½L�=ð½L� þ Kon
D Þ

ð3Þ

As a result, to optimize sensitivity the signaling-team size
increases as NB[L]1/2 for intermediate ligand concentrations
(KD

off 	 [L] 	 KD
on). In a nutshell, larger signaling teams are

more sensitive to small changes in ligand concentration, but as
a result are also more sensitive to ligand concentration noise.
Optimally, signaling teams will be as large as possible without
being saturated by this noise (i.e. fully active or fully inactive

and hence unresponsive to ligand concentration changes). As
the relative ligand noise decreases with concentration, the
optimal signaling-team size will grow with ligand concentra-
tion, as we observed.

Discussion

The chemotaxis network of E. coli exhibits remarkable sensing
and signaling properties that rely on receptor signaling teams.
Despite recent high-resolution electron microscopy (Weis et al,
2003; McAndrew et al, 2004, 2005, 2006; Briegel et al, 2008),
very little is known about what determines receptor signaling-
team formation and size (Kentner and Sourjik, 2006; Kentner
et al, 2006). Notably, because signaling-team size and
signaling sensitivity are closely related (Keymer et al, 2006;
Endres et al, 2007; Mello and Tu, 2007), receptor kinase
activity can be used to probe signaling-team size. Starting from
dose–response data on the activity of Tar receptors from in vivo
FRET experiments, we developed a robust analysis method to
extract signaling-team sizes and receptor offset energies
(Figure 1), interpreted within a well-established model for
cooperative receptor signaling (see Box 1). To achieve this, we
applied the unbiased statistical method of PCA (see Figure 2,
Materials and methods, and Supplementary information) to
the data to separate correlated variation in the data from noise
due to small sample size. Conventional w2 fitting to individu-
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Figure 4 Sizes of receptor signaling teams N (number of receptor dimers per signaling team, panels A and B) and offset energies De (panels C and D) obtained from
PCA fits shown in Figure 3 in the main text and Supplementary Figure 7. The left panels A and C correspond to low (B1.4� native) expression of Tar receptors,
whereas the right panels B and D correspond to high (B3.6� native) expression (see Materials and methods). Cell types include adapting (CheRBþ ) and non-
adapting, engineered cheRcheB mutants (QEEE, QEQE, QEQQ, and QQQQ). For numerical values of parameters and confidence intervals, see Supplementary Table I.
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ally normalized data curves misses the comparison of
amplitudes, and when applied to averaged data values and
their standard deviations overestimates the fluctuations by
missing the correlations among the data points within a dose–
response curve measured on the same day. Using our PCA
analysis, we then fitted the MWC model for receptor signaling
teams (see Box 1) to the principal components of the data,
allowing us to obtain receptor parameters with tight con-
fidence intervals (Figures 3 and 4, as well as Supplementary
Figure 7). Importantly for chemotaxis, we found that signal-
ing-team size increases significantly with receptor modifica-
tion level (Figure 4). Motivated by this discovery, we presented
a model describing how variable signaling-team size may
enable cells to optimally measure ligand concentrations.
Whereas both small changes in ligand concentration (signal)
and ligand concentration noise are increasingly amplified by
increasing signaling-team size, the noise decreases for
increasing ambient concentration. This allows the cell to
utilize larger signaling teams at larger ambient concentrations
and hence receptor modification levels without saturation of
the signaling teams by noise.

Our results based on Tar-only mutants suggest a previously
unrecognized level of adaptation relying on increasing
signaling-team size with receptor modification. Interestingly,
the opposite trend, i.e. a diminishing ability to cluster with
increasing receptor modification, was suggested to possibly
downregulate overall sensitivity with adaptation (Bray et al,
1998). In the MWC model, however, this downregulation
simply emerges from the two-state property (Box 1 and
Keymer et al, 2006). To show that variable signaling-team sizes
also apply to mixed receptor types, a similar detailed analysis
would need to be conducted on FRET data of wild-type cells.
As Tsr and Tar are the most abundant receptor types, at least
the numbers of Tsr and Tar receptor dimers per receptor
signaling team would need to be considered while ensuring
that the overall ratio of Tsr/Tar stays independent of
modification state. Previous standard analysis of such FRET
data showed that mixed Tar/Tsr signaling teams contain a total
of around 10–20 receptor dimers, consistent with our Tar
signaling teams. Additionally, as wild-type cells show high
degree of polar clustering (Maddock and Shapiro, 1993;
Sourjik and Berg, 2000; Liberman et al, 2004), the deduced
clustering ability of Tar receptors is not an artifact of the
homogeneous receptor expression.

What are the possible mechanisms responsible for receptor
signaling-team formation and the increase in signaling-team
size with increasing receptor modification? Receptor modifica-
tion reduces the electrostatic repulsion between neighboring
dimers by removing charged glutamate residues, potentially
stabilizing larger signaling teams. However, the modification
sites of neighboring receptor dimers are at least 3 nm apart in
the partial crystal structure (Kim et al, 1999). For a Debye–
Hückel screening length of 1 nm, the resulting screened
electrostatic interaction is only 1% of the thermal energy for
a pair of charged glutamates. Therefore, other mechanisms
may contribute to the observed dependence of signaling-team
size on receptor modification: (1) binding of CheA and CheW
affects both large-scale clustering of receptors (Maddock and
Shapiro, 1993; Sourjik and Berg, 2000; Liberman et al, 2004)
and the sizes of signaling teams (Sourjik and Berg, 2004), and

the relevant binding affinities of CheA and CheW appear to
depend on the level of receptor modification (Shrout et al,
2003); (2) receptor activity has been shown to respond to
receptor–membrane interactions (Draheim et al, 2006) and
changes in osmotic pressure (Vaknin and Berg, 2006), so
inter-dimer coupling could be mediated by elastic membrane
deformations, as proposed for the approximate two-state
osmolarity-sensing MscL pore (Ursell et al, 2007). Our data
also indicate that signaling-team size increases moderately
with expression level (Figure 4 and Supplementary Table I),
perhaps because more available receptors push the distribu-
tion of signaling teams toward larger sizes (Endres et al, 2007).

Many other sensory systems cluster, including B cell
(Schamel and Reth, 2000), T cell (Germain and Stefanova,
1999), synaptic (Griffith, 2004), and ryanodine (Yin et al,
2005), indicating that receptor clustering is an important
regulatory mechanism for the cell, e.g. to adjust signaling
properties or by recruiting auxiliary proteins. As eukaryotic G-
protein-coupled receptors become covalently modified as well,
e.g. by phosphorylation, receptor modification may prove to
be a general mechanism for dynamic regulation of cluster size
and optimization of signal response.

Materials and methods

Model for receptor signaling team

To extract parameters of receptor signaling teams from fitting to in vivo
FRET data, we describe signaling teams by the allosteric MWC model
(Monod et al, 1965), as described in Box 1. Briefly, in this model
signaling teams are composed of two-state receptors with all receptors
in a signaling team either on or off together (Sourjik and Berg, 2004;
Keymer et al, 2006). The number of receptor dimers per signaling team
is treated as a continuous parameter, reflecting the degree of
cooperativity among receptors, independent of the suborganization
of dimers into trimers of dimers. Assuming a single receptor type, such
as Tar, the equilibrium probability that an MWC signaling team of N
receptor dimers will be on is

pon ¼ 1 þ exp N DeðmÞ þ log
1þ½L�=Koff

D
1þ½L�=Kon

D

� �� �	 
� ��1

ð4Þ

where De(m) is the offset energy, which depends on the receptor
modification level m, [L] is the attractant concentration, and KD

on(off) is
the attractant dissociation constant in the on (off) state. All energies
are expressed in units of the thermal energy kBT. We obtain the
signaling-team size N and the modification-dependent off-set energies
De(m) from the fitting procedure described next. The attractant
dissociation constants for the on and off states are taken from Keymer
et al (2006).

PCA

To obtain w2 fits, including confidence intervals for parameters, it
requires a representation of the data where deviations from average
values are uncorrelated. This is achieved by diagonalizing the
covariance matrix of the data for each strain to obtain the principal
(uncorrelated) components of the data (see Supplementary Figure 5).
Specifically, from the M dose–response curves xi¼1,y,M (L), each
measured for D different ligand concentrations L, the D�D covariance
matrix C is calculated through

CðL1;L2Þ ¼
1

M

XM
i¼1

½xiðL1Þ � xaveðL1Þ�½xiðL2Þ � xaveðL2Þ� ð5Þ

where L1 and L2 are ligand concentrations, and xave(L) is the average of
all M curves at concentration L. Each covariance matrix is diagonalized
by V�1CV¼U where V is a matrix with the eigenvectors of C as the
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columns and U is the diagonal matrix of the eigenvalues lm¼1,y,D.
These eigenvectors and eigenvalues are the principal components of
the data. Standard fitting of a calculated curve c(n; L), which depends
on a set of fitting parameters n, to xave would require minimizing

w2 ¼
XD

j¼1

½cðLjÞ � xaveðLjÞ�
sLj

 !2

ð6Þ

where sL is the experimental standard deviation of the data at ligand
concentration L. But this neglects the observed correlations within
each dose–response curve (cf. Figure 2A). Instead, we express w2 in
the PCA basis set by using c̃¼V�1(c�xave) and replacing the sum over
D ligand concentrations by the sum over D principal components

w2
PCA ¼

XD

m¼1

~c2
m

lm
ð7Þ

For fits using equation (7), we included only the 3–5 largest principal
components (see Supplementary Figure 6). We fitted the data for all
five strains QQQQ, QEQQ, QEQE, QEEE, and CheRBþ simultaneously
by minimizing the total w2

PCA, as one fitting parameter, an overall
amplitude factor f, is common to all five strains. The calculated dose–
response curve for each strain also depends on an offset energy De and
signaling-team size N, leading to a total of 11 fitting parameters n¼(f,
De1, N1,y, De5, N5) for the low expression level data (cf. Supplemen-
tary Figure 7A and Figure 4A), and 13 fitting parameters n¼(f, De1,
N1,y,De6, N6) for the high expression level data (cf. Figures 3 and 4B).
The dissociation constants for MeAsp binding by Tar in the on and off
states were taken to be KD

on¼0.5 and KD
off¼0.02 mM, respectively

(Keymer et al, 2006).

Confidence intervals

We followed the method of Press et al (2002), but expressed the
curvature matrix

a ¼ q2w2

qnkqnl

 2

XD

j¼1

1

s2
Lj

qcðLjÞ
qnk

qcðLjÞ
qnl

ð8Þ

in the PCA basis by transforming c̃¼V�1(c�xave) and calculating

aPCA 
 2
XD

m¼1

1

lm

q~cm

qnk

q~cm

qnl
¼ 2BTAB ð9Þ

with A¼(V�1)TU�1V�1 and Bqk¼qc(Lq)/(qnk). Confidence intervals
were obtained from the total (aPCA

tot ) summed over the five strains.
From the corresponding covariance matrix Ca¼(aPCA

tot )�1, the con-

fidence interval of parameter nk is given by dnk ¼ �
ffiffiffiffiffiffiffiffi
Dw2

p ffiffiffiffiffiffiffi
Ca

kk

p
where

Dw2¼4 for 95.4% confidence.

Experimental protocol

Cell growth, FRET measurements, and immunoblots were performed
essentially as before (Sourjik and Berg, 2002, 2004; Sourjik et al, 2007).
Briefly, receptorless cells co-expressing a CheZ-CFP/CheY-YFP FRET
pair and Tar receptors in one of the modification states were grown to
mid-exponential phase in the presence of appropriate antibiotics.
Expression of the FRET pair was induced with 50mM isopropyl b-D-
thiogalactoside. Expression of receptors was induced with either 1 or
2mM sodium salicylate, corresponding to low and high levels,
respectively. Cells were harvested, washed, and assayed for attrac-
tant-induced changes in FRET signal in a flow chamber mounted on a
custom-modified Zeiss Axiovert 200 microscope. Fluorescence of a
field of 300–500 cells was monitored in each experiment. FRET was
defined as the fractional change in cyan fluorescence due to energy
transfer, and was calculated from changes in the ratios of yellow and
cyan fluorescence signals (Sourjik and Berg, 2004). See Supplementary
information for measurement details and for the list of strains and
plasmids used in this study.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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