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Quantum phase transition in a 
realistic double-quantum-dot 
system
Yaakov Kleeorin1 & Yigal Meir1,2

Observing quantum phase transitions in mesoscopic systems is a daunting task, thwarted by the 
difficulty of experimentally varying the magnetic interactions, the typical driving force behind these 
phase transitions. Here we demonstrate that in realistic coupled double-dot systems, the level energy 
difference between the two dots, which can be easily tuned experimentally, can drive the system 
through a phase transition, when its value crosses the difference between the intra- and inter-dot 
Coulomb repulsion. Using the numerical renormalization group and the semi-analytic slave-boson 
mean-field theory, we study the nature of this phase transition, and demonstrate, by mapping the 
Hamiltonian into an even-odd basis, that indeed the competition between the dot level energy 
difference and the difference in repulsion energies governs the sign and magnitude of the effective 
magnetic interaction. The observational consequences of this transition are discussed.

Quantum phase transitions (QPTs), where a system changes its zero-temperature phase when a physical param-
eter is continuously varied, is one of the focal research areas in physics in general and condensed matter physics 
in particular1,2. While usually QPTs are associated with bulk systems, they may be observed even in mesoscopic 
systems. One simple example is a single Kondo impurity - a magnetic moment embedded in a Fermi sea3. As was 
pointed out by Anderson4, the system changes its character from a Kondo state, where the electrons in the Fermi 
sea screen the impurity, to a trivial state, where the magnetic interaction J between the impurity and the electrons 
renormalizes to zero, as the z-component of J changes from being anti-ferromangetic (AFM) to ferromagnetic 
(FM). Similarly, in a double-impurity system, one expects, as the AFM interaction between the two impurities 
is decreased, a transition from a state where this interaction dominates, yielding a zero-spin entity that is decou-
pled from the electrons, to a state where each impurity is Kondo screened by the Fermi sea5. In addition, a phase 
transition has also been predicted as the double dot system is driven from a triplet to a singlet ground state as J 
changes sign, similarly to the single-dot case6,7. While Kondo physics has been predicted8–10 and observed11,12 in 
quantum dots (QDs), observing such phase transitions in these highly controllable systems proved a daunting 
task, mainly due to the fact that it is very hard experimentally to continuously modify the magnetic interactions in 
the system. However, a transition between singlet and triplet ground states of a single dot can be induced experi-
mentally by a magnetic field13,14 or by changing the effective potential15, leading to a crossover from a non-Kondo 
to a Kondo regime.

In this paper we demonstrate that a realistic device, consisting of two QDs with different energies and with 
different inter-dot and intra-dot Coulomb interactions, coupled in parallel to two leads, displays a QPT by simply 
gate tuning the on-site energy difference between the two QDs at the chemical potential corresponding to the 
particle-hole (PH) symmetric point, where the two-dot system is doubly occupied. (Similar setups have already 
been studied, but with no energy difference between the dots16 or in the absence of inter-impurity repulsion17, 
both of which play an important role in our formulation.) After demonstrating the transition numerically, 
employing the numerical-renormalization-group (NRG) method, and semi-analytically, using slave-boson mean 
field theory (SBMFT), we show, by transforming the system Hamiltonian to an even-odd basis, that the difference 
between the dot energies, relative to the difference between the inter- and intra-dot repulsions, plays the role of a 
magnetic interaction, which changes its sign, from FM to AFM, at the point where the QPT takes place. We also 
discuss the nature of these two phases.

1Department of Physics, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel. 2The Ilse Katz Institute for 
Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel. Correspondence 
and requests for materials should be addressed to Y.K. (email: kleeorin@post.bgu.ac.il)

Received: 12 April 2018

Accepted: 29 May 2018

Published: xx xx xxxx

OPEN

mailto:kleeorin@post.bgu.ac.il


www.nature.com/scientificreports/

2Scientific REPORTS |  (2018) 8:10539  | DOI:10.1038/s41598-018-28822-y

Model
The Hamiltonian that describes the two-QD system, depicted in the inset to Fig. 1, is given by

∑ ∑ε= + +
σ

σ ↑ ↓ˆ ˆ ˆ ˆ ˆH n U n n U n n
(1)QD
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m m
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m m m2 12 1 2

where m = 1, 2 denotes the QD index, =σ σ σˆ †n d dm m m , = ∑σ σˆ ˆn nm m  ( σ
†dm  creates an electron in QD m with spin 

σ), and spin-degeneracy has been assumed (i.e. no magnetic field). In order to reduce the number of parameters, 
we assume the same intra-dot interaction on both dots, U1 = U2 = U, though this assumption is not necessary, and 
our results also hold when these energies are different. Without loss of generalization, we assume ε1 ≤ ε2. We also 
assume that U12 < U, as one would expect experimentally. Under these assumptions, the six two-electron states 
have 3 distinct energies: the 4 states |σ, σ′>, where each dot is occupied by a single electron (of spins σ and σ′, 
respectively) are degenerate with energy 2ε1 + Δε + U12, where ε ε εΔ ≡ −2 1, while the state ↑ ↓ ,0  where the 
two electrons occupy the dot with the lower energy state, has energy 2ε1 + U. The state ↑ ↓0,  is always higher in 
energy since Δε ≥ 0 and Δ ≡ − >U U U 012 . Thus, as Δε increases from zero, the degeneracy of the ground 
state changes from being 4 to 5, for Δε = ΔU, and then to a non-degenerate ground state for larger Δε. It is the 
transition around this special point that we concentrate upon in this paper. The full Hamiltonian of the 
double-QD system, connected in parallel to a single channel in the leads, is then given by

∑ ∑ε= + + + .
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σ σ
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σ σ
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where σ
†ck  creates an electron with spin σ in the left (L) or right (R) lead in momentum state k. For simplicity, the 

tunneling amplitude is chosen to be momentum, site and spin independent, Vmk = V.

Results
Numerical Renormalization Group. We first describe density-matrix numerical renormalization group 
(DM-NRG) results. We used the open-access Budapest Flexible DM-NRG code18,19. The expectation values and 
the transmission spectral function see below), required for the evaluation of the conductance through the double 
dot device20, were calculated, assuming, for simplicity, equal couplings to the left and right leads, Γ = πρV2, and 
equal and constant density of states ρ in the two leads, with a symmetric band of bandwidth D around the Fermi 
energy. In the following we set U to be the unit of energy. The bandwidth value in the calculations is D = 3.33 U, 
the intra- and inter- dot interaction difference is ΔU = U/6 and the coupling to the leads is Γ = U/15.

Defining the retarded Green functions θ− ′ = − 〈 ′ 〉σ σ σG t t i t d t d t( ) ( ) { ( ), ( )}ij
r

i j,  and the transmission spectral 
function ω μ ω= Γ∑σ π σ

t T Im G( ; , ) [ ( )]ij ij
r1
, , where ωσ

G ( )ij
r
,  is the Fourier transform of σG t( )ij

r
, , the current is given 

by20
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Figure 1a depicts a two-dimensional plot of transmission spectral function at the particle-hole symmetry 
chemical potential, μ ε ε≡ + + + ΔU U( 2 )/2PH 1 12 , as a function of energy ω and energy difference Δε between 
the two dots, for a fixed ΔU and low temperature T = 3 · 10−6 U. The most striking feature of the data is the sharp 

Figure 1. (a) NRG results for the transmission spectral function, defined in the text, as a function of energy, 
and of Δε, at temperature T = 3 · 10−6 U. Inset: The setup studied in this paper. (b,c) Transmission spectral 
function for two values of Δε, denoted by the dotted line in (a), as a function of energy. The Kondo peak for  
Δε/ΔU < 1 seen in (b), develops a dip in the vicinity εΔ ΔU (c), before the Kondo peak disappears 
altogether for εΔ Δ U/ 1.
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change of behavior near εΔ Δ U . For εΔ ΔU  (lower part of Fig. 1a) the transmission spectral function 
displays a sharp peak at the Fermi level (Fig. 1b), while for εΔ ΔU there is a sharp dip at the Fermi level inside 
a wider peak (Fig. 1c). The transition between these two regimes is very sharp: Fig. 1d displays the linear response 
conductance at that chemical potential (which is proportional to the transmission spectral function at ω = 0), as 
a function of Δε/ΔU. We see that the conductance G drops sharply from G = 2e2/h to nearly zero, indicating a 
quantum phase transition. In agreement with this interpretation, the critical regime becomes wider with increas-
ing temperature1,2. We will demonstrate below why this transition is indeed a QPT. The phase for εΔ Δ U  is 
relatively well understood: there are 4 degenerate states, as each dot is singly occupied with either spin. The states 
↑ ↑, , |↑ ↓〉 + |↓ ↑〉1/ 2 ( , , ) and ↓ ↓,  form an S = 1 entity (see also21), while |↑ ↓〉 − |↓ ↑〉1/ 2 ( , , ) is an S = 0 
entity, that for equal coupling of the two dots to the leads, is, in fact, decoupled from the triplet (no tunneling 
through the leads). Thus this phase corresponds to the underscreened Kondo impurity7,22. On the other hand, for 

εΔ Δ U  the first dot is doubly occupied, while the second one is empty, and thus there is no net magnetic 
moment on the double-dot system. Accordingly one would expect a small, finite contribution to the spectral 
function at ω = 0, and to the conductance, from the tails of the standard Coulomb blockade peaks. However, we 
find that the conductance there is exactly zero, within numerical accuracy. This is due to a sharp dip at the trans-
mission spectral function in the middle of a wider peak, that reaches all the way to zero (Fig. 1c). As we will show 
below, this is due to a two-stage screening mechanism.

In order to further demonstrate the peculiar role played by the chemical potential μPH, we plot in Fig. 2a the 
conductance as a function of chemical potential, for different values of Δε, at the same temperature, T = 3 · 10−6 
U. Indeed, while for Δε < ΔU the conductance exhibits a sharp Kondo peak in the middle of the 
double-occupation valley (A conductance peak at the PH symmetric point, similar in appearance to our case, also 
appears near the singlet-triplet transition, tuned by a magnetic field as studied in23), the conductance G(μPH) 
vanishes there around Δε = ΔU, in accordance with the vanishing of the transmission spectral function at the 
chemical potential. Intriguingly, as shown in Fig. 2b, as temperature is increased, G(μPH) for that value of Δε 
increases, developing a sharp resonance, which is suppressed for yet higher temperatures. This might be expected 
from the form of the transmission spectral function: as the temperature increases beyond the width of the dip, the 
conductance should increase, and then decrease when the temperature becomes larger than the wider peak. The 
dependence of G(μPH) on temperature, for various Δε, is plotted in Fig. 2c. Such a non-monotonic dependence 
of the conductance on temperature, as seen for εΔ ΔU/ 1, is usually expected in the context of two-stage 
Kondo screening, with TK1 and TK2 the temperatures for the first and second stages. As the temperature T is 
reduced below TK1 the conductance starts to rise, but then falls towards zero for T < TK2. As seen in Fig. 2, TK2 
becomes non-zero at εΔ Δ U/ 1, and increases sharply with increasing Δε/ΔU. Interestingly, for large enough 
values of Δε/ΔU, TK2 becomes larger than TK1 and the first stage does not fully form - the conductance decreases 
monotonically to zero with decreasing temperature due to local singlet formation.

Slave-Boson Mean-Field Theory. In order to gain more insight into the physics behind the transition and 
in order to look beyond the linear response regime, we have employed the slave-boson mean-field approach in the 
Kotliar-Ruckenstein (KR) formulation24. In this method (see Methods) one ends up with an effective 
non-interacting Hamiltonian, with renormalized parameters εm and ∼Vm, which, on average, obey the same con-
straints as the full interacting Hamiltonian. The transmission spectral function for the effective non-interacting 
model can then be easily expressed in terms of the renormalized parameters,
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ω ε ω ε
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where πρΓ =
∼

 Vm m
2
 (note that even if V1 = V2 in the original Hamiltonian, the renormalized parameters ∼Vm do not 

have to be the same when ε ε≠1 2). The temperature and chemical potential dependence of t(ω; μ, T) arise from 

Figure 2. NRG results for the conductance through the double-dot device as a function of chemical potential, 
for (a) various values of Δε, at T = 3 · 10−6 (all energies are in units of U, the intra-dot interaction), and (b) for 
various values of temperature, with fixed Δε = ΔU. At zero temperature the conductance at the symmetry point 
μ = μm is exactly zero, but a peak develops there at finite temperatures. (c) The temperature dependence of the 
conductance at the particle-hole symmetry point, μ = μPH, for different values of Δε/ΔU. As one lowers the 
temperature the conductance starts to rise at T TK1. For εΔ ΔU/ 1 the conductance rises and saturates at 
G = 2e2/h, in accordance with the underscreened Kondo effect. For Δε/ΔU > 1 the conductance first rises 
around T TK1, but then falls to zero for T < TK2, demonstrating two-stage Kondo effect. While TK1 seems 
independent of Δε/ΔU, TK2 increases exponentially with Δε/ΔU. The broken line corresponds to the slave-
boson mean field approximation, plotted in the low temperature range where it is more reliable.
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the dependence of the renormalized parameters εm and Γm on these parameters. The resulting conductance, as a 
function of chemical potential, for the special point Δε = ΔU is depicted in Fig. 3a for = . Δ =U U UD 3 33 , /6 
and Γ = U/30. The results of the SBMFT approximation closely resemble those of the accurate NRG calculation 
(except for an overestimated width of the middle region), with the conductance going to zero at the symmetry 
point, only to increase with increasing temperature, giving rise again to a finite-temperature Kondo effect. The 
temperature dependence of the conductance at Δε = ΔU in the SBMFT treatment is plotted along with the NRG 
results in Fig. 2c. The similarity between NRG and SBMFT results gives additional credence to this approxima-
tion, at least in this parameter regime. The above comparison was done for Γ = Γ2NRG SBMF, which is a known 
discrepancy between NRG and SBMFT25.

In addition to the features in the linear-response conductance, the predicted dip in the spectral function can 
be probed by measuring the voltage-dependent differential conductance G(V) through the double-dot system 
for Δε = ΔU. Figure 3b depicts G(V) for several temperatures, using the SBMFT approximation. As one might 
expect, G(V) exhibits a dip at zero bias, corresponding to the shift of the peaks in the spectral function from 
the Fermi energy. At high enough voltage the Kondo effect is suppressed, though in the SBMFT approach, this 
appears as an unphysical abrupt transition26.

Within SBMFT, the emergence of a Kondo peak in the spectral function, and the resulting zero-bias anomaly 
in the conductance, are due to the renormalization of the effective energies εi toward the chemical potential. For 
a single dot, in the Coulomb-blockade valley corresponding to total unit occupation, each spin state is 
half-occupied, on average. Thus, in order to obtain the same occupation by an effective non-interacting model, 
the energy of each spin state lies exactly at the Fermi energy, leading to a resonance at that energy which is inter-
preted as the Abrikosov-Suhl resonance associated with the Kondo effect (for a review, see3). On the other hand, 
in the single-dot Coulomb-blockade valleys which correspond to either zero or double occupation, the renormal-
ized energy levels are shifted to well above or below the Fermi level, leading to suppression of the spectral func-
tion at the Fermi energy. Thus, in order to understand the features in the spectral function in the double-dot 
system, one needs to determine the corresponding energy shifts. For Δε < ΔU the two dots are singly occupied, 
and thus their energies are degenerate, and, as in the single-dot case, are shifted to the chemical potential, leading 
to a peak at the spectral function at that energy. On the other hand, for Δε ≥ ΔU, the occupation of dot 1 is larger 
than that of dot 2, so the energies ε1 and ε2 straddle the Fermi energy symmetrically (since the occupation has to 
add up to n = 2). Moreover, the two symmetric Abrikosov-Suhl resonances on the two sides of the Fermi energy 
give rise to the exact same transmission amplitude, which interfere destructively due to a phase difference of π 
between sub-resonance and sup-resonance transmission through the individual dots. This interference is the 
origin of the central dip and the finite-temperature effect. Interestingly, exactly at the transition point, where 
Δε = ΔU, the occupations of the two dots in the SBMFT treatment are n1 = 6/5 and n2 = 4/5, so the renormalized 
energies assume specific values in the mixed-valence regime, but the conductance is still exactly zero during the 
above-mentioned interference effect.

The SBMFT formulation offers an alternative point of view of the physics of the transition. Concentrating on 
the PH symmetry point, μ = μPH, the constraints of the SBMFT equations require ε ε= − 1 2 and =

∼ ∼V V1 2. 
Transforming into the even-odd basis, = ±σ σ σd d d( )oe

1
2 1 2 , the effective SBMFT Hamiltonian takes the follow-

ing form:
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So in the even-odd language, the leads are only coupled to the even state, with possible hopping between the 
even and the odd state, which is proportional to ε1. As was shown above, for Δε < ΔU the SBMFT equations lead 
to ε = 01 , resulting in a single state coupled to the leads, exactly on resonance, which is the standard SBMFT 
Kondo solution. On the other hand, for Δε ≥ ΔU ε1 becomes finite and grows, thus allowing for tunneling 
between the even and odd states, resulting in splitting of the energies symmetrically around the Fermi energy. 
This is identical to the results of the SBMFT calculation for side-coupled quantum dot (depicted in the inset to 
Fig. 4b)27, where Δε − ΔU plays the role of the effective magnetic interaction between the dots. Thus in this lan-
guage, the QPT discussed above is expressed in terms of the standard Kondo transition from a FM to AFM 
interaction4.

The Hamiltonian in the language of even-odd states. Motivated by the insight provided by the 
SBMFT results, we rewrite the Hamiltonian (Eq. 1) in the even-odd basis,

Figure 3. Slave-boson mean-field results. (a) The linear-response conductance through the double-dot device 
as a function of chemical potential, for various values of temperature, with fixed Δε = ΔU. Other parameters 
are the same as in Fig. 2b, except Γ which is smaller by a factor of 2 than the NRG calculation, Γ = U/30SBMF . 
(b) The differential conductance dI/dV at the particle-hole symmetric point as a function of voltage bias.
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little to the dynamics in the given range. The full Hamiltonian, including tunneling and leads becomes
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which shows, as before, that the odd level is entirely decoupled from the leads. While most of the specific values 
are of little qualitative importance, there are two new terms which draw the most interest. The hopping amplitude 
t gives rise to an effective AFM interaction JAF = 2t = Δε(unlike the usual side coupled effective interaction 

∼
Δ

JAF
t
U

4 2
, here the extra terms of JF = −ΔU and A = ΔU/2 change the spectrum so that ε= = ΔJ t2AF ) 0.4 in 

the ne = n0 = 1 subspace, while the interaction JF is a FM one. As a result, the effective Kondo model would repre-
sent a conduction spin coupled AFM to a localized spin which is further coupled to another spin via 

ε= + = Δ − ΔJ J J Utot AF F  (There is an additional n = 2 level which is degenerate with the spin-triplet state. 
This level does not incur spin-flip processes through the leads and does not contribute to the Kondo screening.) 
The competition between JF and JAF governs the quantum phase transition between the two phases mentioned. 
This analysis is supported by Fig. 4, which shows the spin-spin correlation between the even and odd states, an 
indicator for the sign of the magnetic interaction and its magnitude. The transition from FM to AFM occurs a 
little below εΔ Δ U/ 1 due to level renormalization through the continuum, a temperature dependent effect. 
For FM ε< Δ < ΔJ U0( )tot  the two localized spins form an S = 1 triplet, leading to an under-screened Kondo 
impurity6 (with an additional, uncoupled level with S = 0, which gives rise to →

⋅
→

= . ⋅S S 0 25e o
3
4

). As Δε 
increases further →

⋅
→

S Se o  become negative, eventually saturating at . ⋅0 75 1
2

, as the ground state for εΔ Δ U 
is an equal superposition of the two singlets, |↑ ↓ 〉 − | ↑ ↓〉( ,0 0, )1

2
 and |↑ ↓〉 − |↓ ↑〉( , , )1

2
. The transition 

from positive to negative spin-spin correlation function demonstrates that indeed Δε − ΔU plays the role of the 
magnetic interaction which drives the system between the two phases.

Discussion
We have demonstrated in this paper that for a realistic double quantum-dot device, one can tune the system 
through a quantum phase transition, leading to a sharp change in the conductance and in the shape of the 
zero-bias anomaly. The transition between the reported phases and their respective conductance signatures have 
been studied here as two facets of the same effect. On one hand it is described by the destructive vs constructive 
interference between the two dot branches. On the other side it is described by the transition between ferro- or 
anti-ferromagnetic interaction between two impurities in a side coupled setup, which are relatively well under-
stood. The predicted features in the conductance, either as a function of gate voltage (Fig. 2a,b) or as a function of 
temperature (Fig. 2c), can be easily checked in the double-dot setup, depicted in the inset of Fig. 1, where each dot 
is controlled by a different gate voltage. The intra- and inter-dot interactions, U and U12, and consequently 
ΔU = U − U12, are usually determined by the geometry of the system and cannot be easily modified. However the 
energy difference between the two dots, ε ε εΔ = −1 2 , can be readily tuned. Thus, for a given setup, one can 
change this relative voltage until the Kondo peak at the valley midpoint is suppressed and the conductance van-
ishes. As discussed above, this should happen around the point where Δε reaches the value ΔU. While in this 
paper we have concentrated on the single-channel case, where both dots are connected to the same channel in the 
leads, one can easily extend the calculation to the general case of mixed channels, where the lead states the two 
dots couple to are not identical. Even in this case one expects that the transition studies here will also give rise to 
an observable effect as long as these lead wave-functions are not orthogonal. Thus, we hope that the results pre-
sented here will stimulate experiments in this direction.

Figure 4. NRG results for the spin-spin correlation function in the even-odd basis (a) as a function of 
temperature for different values of Δε, (b) as a function of Δε for various temperatures, demonstrating a 
transition from ferromagnetic to anti-ferromagnetic correlations with changing Δε/ΔU. Inset: the effective 
system in the even-odd language. Only the even “dot” is coupled to the leads, and Δε and ΔU generate 
ferromagnetic and antiferromagnetic couplings between these dots, respectively.
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Methods
Within the KR slave-boson framework24, the Hamiltonian is replaced by an effective non-ineracting Hamiltonian 
where slave bosons are added as an accounting tool for the different many-body states of the system. In order to 
accommodate the larger Hilbert space of the two-dot Hamiltonian, an enlarged boson space is introduced25, 
where each boson accounts for one of the impurity dimer states: e for empty dimer, pσm for single occupation of 
an electron with spin σ on dot m, xm for two electrons on dot m, 



ys  for two electrons on different dots with total 
spin s and z-component of total spin , hσm for triple occupation, with a missing electron on dot m with spin σ, 
and b for four electrons in the dimer. Since the system can be in only one of these states (or a linear combination 
with total weight equal to unity), the bosons are constrained to have unit total occupation 

= + ∑ + ∑ + ∑ + ∑ +σ σ σ σ σ σ
† † † † † †I e e p p x x y y h h b bm m m i i i sl sl sl m m m . Given the boson operators, the electron num-
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ˆ † † † †Q e e p p x x y ym m m m m m 12 12
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1
2 0 0 . Including these constraints, the Hamiltonian (2) can be exactly 
mapped into the slave-boson Hamiltonian, = + +H H H HSB QD lead cons2 , where:
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where = − + + + + +σ σ σ σ σ σ σ σ
−
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ˆ † † † † †z Q e p p x p y p y y x h(1 ) ( ( )/2m m m m m m m m m,
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−ˆ† †y h h b Q2 )( )m m m12 ,
1/2. In the mean-field approximation, all the boson operators are replaced by their 

expectation values, and one solves for these values using the self-consistent equations of motion and constraints 
(see ref.25 for further details). As a result of the mean-field approximation, one ends up with an effective 
non-interacting model, where the parameters of the two dots are renormalized (ε ε ε λ→ ≡ + σm m m m and 

→ ≡
∼

σV V z Vm m m ), where we assume spin degeneracy, so the bosonic expectation values are independent of σ.
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