Physical Review Letters HomepageBrowse Available VolumesSearchSubscriptionsContact InformationToC AlertRSSHelpAPS Journals HomepagePhysical Review Letters Homepage

Phys. Rev. Lett. 95, 126603 (2005)

Probing the Kondo Density of States in a Three-Terminal Quantum Ring

R. Leturcq,1 L. Schmid,1 K. Ensslin,1 Y. Meir,2 D. C. Driscoll,3 and A. C. Gossard3

1Solid State Physics Laboratory, ETH Zrich, 8093 Zrich, Switzerland
2Department of Physics, Ben Gurion University, Beer Sheva 84105, Israel
3Materials Department, University of California, Santa Barbara, California 93106, USA

(Received 14 April 2005; published 15 September 2005)

We have measured the Kondo effect in a quantum ring connected to three terminals. In this configuration nonlinear transport measurements allow us to check which lead contributes to the Kondo density of states (DOS) and which does not. The ring geometry allows a fine-tuning of the coupling to each lead through the Aharonov-Bohm effect via application of a magnetic field. When the ring is connected to two strongly and one weakly coupled leads, conductance through the weakly coupled lead provides a direct measurement of the DOS in the Kondo regime. By applying a bias between the two strongly coupled leads, we demonstrate directly the splitting of the out-of-equilibrium Kondo DOS.



References

For more information on reference linking in this journal, see Reference Sections and Reference Linking in Abstracts.

  1. J. Kondo, Prog. Theor. Phys. 32, 37 (1964). [ISI]
  2. D. Goldhaber-Gordon et al., Nature (London) 391, 156 (1998); [Inspec] [ISI]
    S. M. Cronenwett, T. H. Oosterkamp, and L. P. Kouwenhoven, Science 281, 540 (1998); [Inspec] [ISI]
    J. Schmid, J. Weis, K. Eberl, and K. v. Klitzing, Physica (Amsterdam) 256–258B, 182 (1998). [Inspec]
  3. U. F. Keyser et al., Phys. Rev. Lett. 90, 196601 (2003).
  4. A. Fuhrer, T. Ihn, K. Ensslin, W. Wegscheider, and M. Bichler, Phys. Rev. Lett. 93, 176803 (2004).
  5. L. Kouwenhoven and L. Glazman, Phys. World 14, 33 (2001). [Inspec] [ISI]
  6. S. Hershfield, J. H. Davies, and J. W. Wilkins, Phys. Rev. B 46, 7046 (1992). [ISI]
  7. Y. Meir, N. S. Wingreen, and P. A. Lee, Phys. Rev. Lett. 70, 2601 (1993); [ISI]
    N. S. Wingreen and Y. Meir, Phys. Rev. B 49, 11 040 (1994).
  8. J. König, J. Schmid, H. Schoeller, and G. Schön, Phys. Rev. B 54, 16 820 (1996).
  9. A. Kaminski, Y. V. Nazarov, and L. I. Glazman, Phys. Rev. Lett. 83, 384 (1999); [ISI]
    Phys. Rev. B 62, 8154 (2000). [ISI]
  10. A. Rosch, J. Kroha, and P. Wölfle, Phys. Rev. Lett. 87, 156802 (2001).
  11. P. Coleman, C. Hooley, and O. Parcollet, Phys. Rev. Lett. 86, 4088 (2001); [ISI]
    Y.-W. Lee and Y.-L. Lee, Phys. Rev. B 65, 155324 (2002);
    T. Fujii and K. Ueda, Phys. Rev. B 68, 155310 (2003);
    J. Paaske, A. Rosch, and P. Wölfle, Phys. Rev. B 69, 155330 (2004).
  12. J. Paaske, A. Rosch, J. Kroha, and P. Wölfle, Phys. Rev. B 70, 155301 (2004).
  13. Q.-F. Sun and H. Guo, Phys. Rev. B 64, 153306 (2001).
  14. E. Lebanon and A. Schiller, Phys. Rev. B 65, 035308 (2002).
  15. J. Li, W.-D. Schneider, R. Berndt, and B. Delley, Phys. Rev. Lett. 80, 2893 (1998); [ISI]
    V. Madhavan et al., Science 280, 567 (1998). [Inspec] [ISI]
  16. S. De Franceschi et al., Phys. Rev. Lett. 89, 156801 (2002).
  17. R. Held et al., Appl. Phys. Lett. 73, 262 (1998); [ISI]
    A. Fuhrer et al., Superlattices Microstruct. 31, 19 (2002). [Inspec] [ISI]
  18. R. Leturcq et al., Europhys. Lett. 67, 439 (2004). [ISI]
  19. A. Fuhrer et al., Nature (London) 413, 822 (2001).
  20. D. Goldhaber-Gordon et al., Phys. Rev. Lett. 81, 5225 (1998); [ISI]
    W. G. van der Wiel et al., Science 289, 2105 (2000). [Inspec] [ISI]
  21. The fact that we use a quantum ring or, mathematically speaking, a nonsingly connected dot gives us the opportunity to fine-tune the tunnel couplings with a magnetic field. The same precision in tuning with gate electrodes, which would be required for a standard quantum dot, is probably feasible, but experimentally much harder. Such a ring geometry is not expected to affect the characteristics of the Kondo effect compared to singly connected quantum dots.
  22. N. E. Bickers, Rev. Mod. Phys. 59, 845 (1987). [ISI]
  23. We find that the decrease rate of the peak is weaker when V1 is positive than when it is negative (whatever the sign of V0). This asymmetry might be attributed to the proximity of the single-particle level for positive voltage, while it is further away for negative voltage. Since the Kondo temperature increases when approaching the single-particle level 20, the decrease rate of the peak at high bias might be due to a competition between dephasing and change of the Kondo temperature.
  24. S. Y. Cho, H.-Q. Zhou, and R. H. McKenzie, Phys. Rev. B 68, 125327 (2003).
  25. D. Sánchez and R. López, Phys. Rev. B 71, 035315 (2005). [ISI]
  26. A. Silva and S. Levit, Europhys. Lett. 62, 103 (2003). [Inspec] [ISI]
  27. M. Avinun-Kalish, M. Heiblum, A. Silva, D. Mahalu, and V. Umansky, Phys. Rev. Lett. 92, 156801 (2004).
  28. A decrease of the Kondo peak height without significant increase of the peak width has been obtained theoretically for a quantum dot in the Kondo regime in weak interaction with a biased quantum point contact 26. This result has been interpreted as a suppression of the spectral weight of the resonance near the Fermi level due to the interaction, and an absence of dephasing.
CrossRef The American Physical Society is a member of CrossRef.


[ Back To Hit List | Previous / Next search result abstract | Issue Table of Contents  | Top of Page]