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Unifying Model for Several Classes of Two-Dimensional Phase Transition
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A relatively simple and physically transparent model based on quantum percolation and dephasing is
employed to construct a global phase diagram which encodes and unifies the critical physics of the
quantum Hall, ‘‘two-dimensional metal-insulator,’’ classical percolation and, to some extent,
superconductor-insulator transitions. Using real-space renormalization group techniques, crossover func-
tions between critical points are calculated. The critical behavior around each fixed point is analyzed and
some experimentally relevant puzzles are addressed.

DOI: 10.1103/PhysRevLett.94.156406 PACS numbers: 71.30.+h, 73.43.Nq, 74.20.Mn
Two-dimensional phase transitions have been a focus of
interest for many years, as they may be the paradigms of
second order quantum phase transitions (QPTs). However,
in spite of the abundance of experimental and theoretical
information, there are still unresolved issues concerning
the behavior of some of these transitions at and near
criticality, most simply exposed by the value of the critical
exponent � (describing the divergence of the correlation
length at the transition). Below we discuss three examples
which underscore these problems. First, in the integer
quantum Hall (QH) effect, which is usually described
within the single particle framework, various numerical
studies yielded a critical exponent � � 2:35 [1], in agree-
ment with heuristic arguments [2]. Some experiments in-
deed reported values around 2.4 [3], while others reported
exponents around 1.3 [4], close to the classical percolation
exponent �p � 4=3. Even more perplexing, some experi-
ments claim that the width of the transition does not shrink
to zero at vanishing temperature [5], in contradiction with
the concept of a QPT. Additionally, the observation of a
QH insulator [6] is inconsistent with the QPT scenario [7].
Consider secondly the superconductor (SC) insulator tran-
sition (SIT), for which theoretical studies suggest several
scenarios. Similar to the QH situation, some experiments
yield a value � � 1:3 [8], not far from the value � ’ 1,
predicted by numerical simulations within the random
boson model, but closer to the classical percolation value.
Other experiments, however, yield � ’ 2:8 [9], while some
experiments claim an intermediate metallic phase [10]. As
a third example, consider the recently claimed metal-
insulator transition (MIT) [11]. The critical exponent is
again close to 1.3 [12,13] but the occurrence of such phase
transition is in clear contrast with the scaling theory of
localization.

The basic question which naturally arises is then
whether it is possible to unify these phase transitions
within a single theory and thereby resolve some of the
problems raised above. A hint toward an affirmative an-
swer is gained by experimental indications that percolation
plays a key role in both the QH transition [14] and in the
SIT [15]. Moreover, its relevance to the MIT has been
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argued theoretically and observed experimentally
[12,13,16]. The QH and the SIT have been treated within
a percolationlike model in Ref. [17], consisting of SC or
QH droplets connected via quantum tunneling, similar in
spirit to the model presented in [18].

In the present work we address these issues using a
physically transparent picture. This formalism is a general-
ization of an approach which proved to be quite successful
for describing the QH transition and some aspects of the
SIT [18]. Introducing decoherence into the model, we are
able to include the QH transition (or the SIT), classical per-
colation, and the MIT all within the same phase diagram.
Employing real-space renormalization group (RSRG)
techniques, we calculate the critical exponents, analyze
this phase diagram to understand the possible critical be-
haviors, and expose the physical conditions necessary to
observe them. The crossover between different critical
points, which may be explored experimentally, is inves-
tigated and concrete experimental predictions are made.

For the sake of completeness, the model used to describe
the QH effect [18] is briefly explained here. In strong
magnetic fields, electrons with Fermi energy �F perform
small oscillations around equipotential lines. When �F is
small, their trajectories are trapped inside potential valleys,
with weak tunneling occurring between adjacent valleys.
We associate each such potential valley with a site in a
lattice. Nearest neighbor valleys (localized orbits) are con-
nected by links representing quantum tunneling between
them. As �F increases and crosses the saddle-point energy
separating two neighboring valleys, the two isolated tra-
jectories coalesce; the electron can freely move from one
valley to its neighbor and the link connecting them be-
comes perfect (or SC). The QH transition occurs when an
electron can traverse the sample along an equipotential
trajectory (an edge state), which in the model occurs
when a cluster of SC links connects the two sides of the
system (a percolating cluster). Consequently, the QH prob-
lem maps onto a mixture of SC and quantum links on a
lattice. Each link carries a left-going and a right-going
channel. In accordance with the physics at strong magnetic
fields there is no scattering in the junctions (valleys) and
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FIG. 1. (a) The three possible links: a superconducting link
(top), where the transmission along the link is unity; a quantum
link (middle), where the transmission is determined by a random
scattering matrix; and an incoherent link (bottom), where the
electron phase is randomized by a current-conserving reservoir.
In the calculations such reservoirs were attached to all 4 sides of
the scatterer. (b) The mapping of a 2� 2 square onto a 1� 1
square, resulting in reducing the lattice size by a factor of 2.
(c) The RG calculation for the Wheatstone bridge. Each link is
one of the three possibilities depicted in (a), with initial proba-
bilities p, 1� p� q, and q, respectively. The transmission
through the equivalent link is evaluated, and determines the
nature of the link and its parameters for the next iteration.
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the edge state continues propagating uninterrupted accord-
ing to its chirality, while the scattering occurs on the link
(saddle point) itself. Each scatterer is characterized by its
scattering matrix Si, namely, a transmission probability Ti
and phases. The critical behavior of the QH transition is
encoded by the scaling behavior near the SC percolation
point of this lattice model. Calculation of the transmission
through such a system, using two different numerical
approaches, yielded a diverging localization length, with
an exponent � � 2:4� 0:1, close to the results of other
numerical estimates [1]. Importantly, as pointed out in
[18], this model, unlike other models describing the QH
transition—such as the Chalker-Coddington model [19]—
has two diverging length scales: the localization length and
the percolation coherence length.

An important feature, which may be very relevant to the
experimental observations, is dephasing. In order to incor-
porate it into the above model, a fraction of the links is
attached to current-conserving phase-disrupting reservoirs
[20]. An electron propagating along such a link enters the
reservoir and it, or another electron, emerges from it with a
random phase (there is no net current into the reservoir).
Transport along this link is therefore incoherent. The lat-
tice now consists of three types of links [Fig. 1(a)]: a
fraction p of SC links (i.e., quantum links whose trans-
mission is unity), a fraction q of classical, or incoherent
links, and fraction 1� p� q of quantum tunneling links.
The principal objective is then to construct a phase diagram
in the (p; q) plane of parameters and to identify the various
critical transitions.

For simplicity we will study the model on a square
lattice, and our main tool will be the RSRG scheme.
Rescaling the lattice by a factor of 2, each 2� 2 square
is mapped onto a 1� 1 square [Fig. 1(b)]. Each link is
characterized by a scattering matrix and whether or not it is
connected to a phase-breaking reservoir. Given the infor-
mation for each link, the transmission through the whole
unit is evaluated by attaching leads to its left and right sides
(see below). This enables us to follow the distribution of
the transmission amplitudes, and the fraction of incoherent
links, from one iteration to another, and eventually evaluate
the distribution for the entire lattice. For the classical
problem, this calculation reduces to the evaluation of
transport through a Wheatstone bridge, where the symme-
try of the square lattice has been used. For simplicity we
use the same geometry for the quantum problem
[Fig. 1(c)], and later verify that the addition of dangling
bonds does not modify the critical behavior.

Let us first demonstrate the process for q � 0, which
reduces to our previous, fully coherent model. For each
realization of disorder, i.e., the scattering matrices on the 5
links, each determined by transmission probability Ti and
phases, we can evaluate exactly the transmission probabil-
ity through the Wheatstone bridge, T̂�fTig; �
, where �
stands for all the independent phases, and thus follow its
distribution from one iteration to another, allowing us to
15640
determine the fixed points and the RSRG flow. If one starts
with a distribution of scattering matrices whose phases are
uniformly distributed, they remain so, and thus we will be
interested only in the scaling of the distribution of the
transmission probabilities,

Gfng�T
 �
Z

. . .
Z

��T � T̂�T1; . . . ; T5; �
��

Gfn�1g�T1
   Gfn�1g�T5
dT1    dT5d�:
(1)

The initial distribution can be written as

Gf0g�T
 � p��T � 1
 � �1� p
Ĝf0g�T
; (2)

where p is the fraction of SC links (namely, the fraction of
saddle-point energies that are below the Fermi energy).
Ĝf0g�T
 is determined by the dependence of the transmis-
sion on energy and by distribution of the saddle-point
energies. However, the initial distribution Ĝf0g�T
 does
not affect the critical behavior, as the distribution always
flows toward one of three possible fixed-point
distributions.

Since the probability that the transmission is unity is
determined by the classical percolation probability, one
finds

Gfng�T
 � Pn�p
��T � 1
 � �1� Pn�p
�Ĝ
fng�T; p
; (3)

where Pn�p
 is the classical percolation probability after n
iterations, and Ĝfng can be exactly expressed in terms of
Ĝfn�1g. Clearly, if p < pc, P�p
 flows toward zero, while
for p > pc it flows to unity. At p � pc the distribution Ĝ
flows toward a two-peak fixed distribution, similar to pre-
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FIG. 2. The phase diagram of the model in term of the pa-
rameters p, the concentration of a perfect-transmission link, and
q, the probability of incoherent links. The phase diagram dis-
plays three different phase transitions between the three different
phases. The broken line represents a possible experimental
trajectory leading to a finite metallic phase.
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viously obtained results for the QH transition [21]. The
critical behavior can be deduced by investigating the length
dependence of the averaged transmission near the critical
point and its collapse using T�p; L
 � T�L=��p
�, where
��p
 is an energy (or concentration) dependent localization
length. We find that ��p
 diverges at pc � 1=2 with an
exponent � � 2:4� 0:1, consistent with previous numeri-
cal calculations for the QH transition [1].

Having demonstrated the power of the RSRG technique
for q � 0 (no dephasing) we now treat the model at an
arbitrary point (p; q). Qualitatively, several phase transi-
tions can be identified. For q � 0 the QH transition is
recovered as demonstrated above. For p� q � 1 (no
quantum links) the point q � pc �

1
2 describes the classi-

cal conductor-superconductor percolation transition. For
the case of p � 0, all the links are either quantum (with
T < 1) or classical. This is the model suggested in
Refs. [12,16] to describe the ‘‘apparent’’ metal-insulator
transition in two dimensions. The flow lines can be deter-
mined without the full quantum calculations by noticing
that the rescaled cell will be SC if a cluster of SC links
percolate, while it will be an incoherent metal if there is
percolation of classical links, and no percolation of SC
ones. These conditions define the RSRG equations for the
quantities p and q,

p0 �2�1�p
3p2�8�1�p
2p3�5�1�p
p4�p5

q0 �qf10p4�20p3�1�q
�2p�1�q
�2�5�1�q
q�

�q�2�2q�5q2�2q3
�2p�2�3q�10q2�5q3
g:

(4)

The full phase diagram thus contains three limiting
phases: an Anderson insulator, a superconductor (or a
QH phase), and an incoherent metal, and is depicted in
Fig. 2. The fact that for p > 1

2 one gets a QH phase is easily
understandable, as once there is percolation of SC links
there is an edge state propagating without backscattering
through the system. The transition between an Anderson
insulator and an incoherent metal is more intriguing. Once
p� q > 1

2 an electron can propagate freely from one side
of the system to the other, but necessarily undergoes an
incoherent scattering event, and thus this phase is an inco-
herent metal. For p� q < 1

2 , however, there is no trajec-
tory that allows the electron to traverse the system without
quantum tunneling. These tunneling events, however, are
intertwined with incoherent scattering, and thus the con-
ductance of the system will be of the order of exp��L�=�
,
where L� � q�1=2� is the average distance between inco-
herent scattering events. As q decreases, the conductance
of the system goes to zero, ending up as an Anderson
insulator. For finite p, however, the existence of incoherent
scattering is not expected to affect the quantization of the
Hall conductance [22]. Thus one may characterize the
phase with finite p and q, but with p� q < 1

2 as a ‘‘Hall
insulator.’’ In agreement with previous treatments of this
phase, we also conclude that it only exists for finite de-
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phasing (q > 0), as for q � 0 the system flows to an
Anderson insulator. Further investigation of this phase
will be reported elsewhere.

Beyond the characterization of the different phases, the
model allows a direct calculation of the crossover between
them. RSRG on the line p � 1

2 allows, as a function of q, to
study the crossover between the quantum SIT (or the QH
transition) to the classical superconductor-conductor tran-
sition. Following the RSRG flow along this line, we find
that the average transmission obeys

T
�
q; p �

1

2

�
� T0

�
1� �

�
L

L��q


�
0:91

�
; (5)

with L��q
 defined above and � some nonuniversal con-
stant. This function correctly reproduces the two fixed-
point behaviors, T � T0 at the QH transition and T �

Lt=�p at the classical percolation critical point. The values
of t, the resistance critical exponent, and �p obtained
separately by RSRG are 1.33 and 1.42, respectively, giving
t=�p � 0:93, in good agreement with the limiting behavior
of the crossover function (5). The effect of incoherent
scattering on the critical behavior may explain the different
critical exponents observed in QH and in SITs, which
mostly agree with one of the critical exponents associated
with these two critical points.

The QH to the MIT crossover has been demonstrated
experimentally [23]. The present formalism allows us to
study this crossover theoretically, by following the con-
ductance along the line p� q � 1

2 . The dependence of the
transmission on length for different values of q along this
line is depicted in Fig. 3. There is a clear crossover from a
constant (QH behavior) to T � Lt=�p (classical behavior) as
before. The length scale determining this crossover (see
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FIG. 3. Crossover from the QH critical point to the MIT:
transmission as a function of length (on a log-log scale) for
different values of �pc � p
, demonstrating the crossover from
the QH behavior (length-independent transmission) to a classical
power-law dependence. Inset: the crossover length �co as a
function of the �pc � p
 on a log-log scale, with a slope � �
1:23, close to the percolation correlation exponent.
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inset of Fig. 3) is found to be the percolation correlation
length; namely, for L < �p the system behaves quantum
mechanically, and classically for L > �p.

All these observations have clear experimental rele-
vance. As mentioned above, the QH to the MIT crossover
has been investigated experimentally, but with no detailed
investigation of the critical behavior. We thus predict that
the critical exponent along this line will be the classical
percolation exponent, �p, and not the QH exponent, with
two relevant length scales for any finite system. Similarly,
one can experimentally investigate the quantum SIT to the
classical superconductor-conductor transition, for different
temperatures. The theory predicts that once the dephasing
length becomes smaller than the system size (i.e., q be-
comes nonzero), the critical behavior will correspond to
classical percolation. Moreover, we predict that the con-
ductance at the critical point will vary from its universal
value at the quantum transition, as observed experimen-
tally [24] by a length dependent value according to Eq. (5).

Another result of the proposed phase diagram is the
existence of an intermediate metallic regime in the QH
and in the SITs. Imagine changing a physical parameter
(e.g., density or magnetic field) along the broken line in
Fig. 2. Then there is one transition from an insulator to an
incoherent metal, and then from a metal to a QH liquid (or
a superconductor), consistent with experimental observa-
tions for the QH transition [5] and the SIT [10]. The critical
behavior of both of these transitions is determined by
classical percolation. Thus the theory predicts that the
QH critical behavior can only be observed in system where
these transitions coalesce into a single transition. This can
be tuned, for example, by lowering the temperature and
changing the dephasing length. Thus the theory can explain
the different exponents observed experimentally and pre-
dicts a crossover between the different critical behaviors as
a function of temperature.
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It should be noted that some aspects of this phase
diagram are not dissimilar to the one presented in
Ref. [25]. Here, however, we do not invoke any zero
temperature dissipation. Rather, if, as expected, the de-
phasing length diverges at T ! 0 (i.e., q ! 0), the theory
predicts only two stable phases: the QH (or superconduct-
ing) phase and the Anderson insulator phase.
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