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Local Moment Formation in Quantum Point Contacts
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Spin-density-functional theory of quantum point contacts (QPCs) reveals the formation of a local
moment with a net of one electron spin in the vicinity of the point contact —supporting the recent
report of a Kondo effect in a QPC. The hybridization of the local moment to the leads decreases as the
QPC becomes longer, while the on site Coulomb-interaction energy remains almost constant.
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The discovery of the extra conductance plateaus at
0:7�2e2=h� in quantum point contacts (QPCs) [1–3] and
at 0:5�2e2=h� in clean quantum wires [4], in addition to
the usual quantization of the conductance into steps of
2e2=h [5,6], has focused attention on the role of electron-
electron interaction in these low-dimensional quantum
systems [7–12].

A recent experiment on QPCs has revealed several
features characteristic of the Kondo effect [13].
Specifically, there is a zero-bias peak in the differential
conductance which splits in an in-plane magnetic field
[14]. A single energy scale, the ‘‘Kondo’’ temperature TK,
sets the width of the zero-bias peak, the magnetic field
required to split the peak, and the crossover temperature
to perfect transmission. Moreover, the extra conductance
plateau at 0:7�2e2=h� can be explained using an Anderson
model in which the hybridization of a localized electron
to the band depends on energy and valence [15]. A puz-
zling question is how a localized spin can form in an open
QPC system.

In this work, we employ spin-density-functional theory
(SDFT) and find that a local moment with a net of one
electron spin is formed in the vicinity of a QPC. The
splitting between the two spin directions at high in-plane
magnetic fields [14] approaches a finite residual splitting
at zero field, which we interpret as the Coulomb-
interaction energy U between electrons at the site of the
QPC. From the width of the localized state, we infer that
the hybridization to the leads decreases for longer QPCs,
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while the Coulomb U remains nearly constant. Our inter-
pretation that a dynamical local moment forms at the
QPC differs from that of Wang and Berggren [7], who
infer a true spin-polarized ground state. We believe that
the experimental observation of signatures of the Kondo
effect [13], combined with a theorem forbidding spin
polarization in one dimension [16], strongly favor the
dynamical-spin interpretation.

The electronic states of a realistic quantum point con-
tact are obtained using density-functional theory within
the local-density approximation [17]. This method allows
us to study both potential confinement and electron-
electron interaction in a unified framework. First, for a
clean quantum wire uniform in the x direction and with a
parabolic confining potential in the y direction of
V0
ext�y� � �1=2�m�!2

yy2, we readily find the wave func-
tions e�ik

�
n x �n �y�, chemical potential �, band-edge ener-

gies ��n , and the charge density �0��y� for a given density
n1D [18]. Here n is the subband index and � is the spin
index, respectively.

Next, we introduce the QPC potential,

VQPC�x; y� � V�x�=2�m��!y � V�x�= h�2y2=2	 V0
ext�y�;

(1)

(see insets in Fig. 1), where V�x� � V0= cosh
2�x=d�, with

decay length d �
�����������������
2V0=m

�
p

=!x, and solve the follow-
ing Kohn-Sham equation [19] for wave functions with
energy �,
�
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Electrons incident from the two leads (x! �1) are scattered elastically by the effective QPC potential �V��x; y� �
VQPC�x; y� � �VH�x; y� � �V�xc�x; y�, which is the difference between the QPC self-consistent potential and that of the
clean wire. The Hartree and exchange-correlation parts of the potentials are written, respectively, as
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e2

�
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; (3)
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FIG. 1. Results for QPC potentials of increasing sharpness: (a),(d) h!x � 1:0 meV, (b),(e) h!x � 1:5 meV, and (c),(f) h!x �
2:0 meV. (a)–(c) Self-consistent ‘‘barrier’’, i.e., energy of the bottom of the lowest 1D subband �0�x� at temperature T � 0:1 K as a
function of position x in the direction of current flow through QPC. The chemical potential � is indicated by an arrow on the left.
Solid lines are for spin-up and dashed lines are for spin-down electrons. Insets: local density of states '���� at the center of the
QPC. (d)–(f) 1D electron density in QPC. The solid line gives the net spin-up density and the dashed line gives the spin-averaged
density. Insets: contour plot of the QPC potential VQPC�x; y�.

P H Y S I C A L R E V I E W L E T T E R S week ending
17 JANUARY 2003VOLUME 90, NUMBER 2
�V�xc�x; y� �
�Exc��; ��
����r�

	
�Exc��

0; �0�

��0��y�
; (4)

where we have introduced an image-charge plane at a
distance a � 100 nm to model the experimental ge-
ometry [18]. The exchange-correlation energy func-
tional Exc��; �� is treated in the local-density
approximation with the local spin polarization ��r� �
��"�r� 	 �#�r��=��r� [20].

The eigenstates of (2) can be characterized as waves
incident from the left �L

n;k�n
�x; y� and from the right

�R
n;k�n

�x; y�. Expanding, �L
n;k�n

�x; y� �
P
m u

L
n;m;k�n

�x� �m�y�,
uLn;m;k�n �x� has the form of plane waves with wave vectors
k�n �

���������������������������
2m���	 ��n �

p
= h far from the QPC region:

uLn;m;k�n �x� �

(
eik

�
n x�n;m � r�n;me	ik

�
mx; x � 	x0;

t�n;me
ik�mx; x � x0;

(5)

where r�n;m and t�n;m are the elements of unknown reflec-
tion and transmission matrices and where jx0j � 500 nm
is sufficiently far from the QPC that �V�x; y� is negligible.
�R
n;k�n

�x; y� is expanded analogously. We employ the re-
cursion-transfer-matrix method [21] to solve the Kohn-
Sham Eq. (2) with the above boundary conditions. From
the resulting wave functions, the density ��x; y� is con-
structed as a sum over occupied states,

��x; y� �
1

2%

X
n;�
L=R

Z 1

0
f
�
��n �

h2k�2n
2m�

�
j�L=R

n;k�n
�x; y�j2dk�n ; (6)

where the Fermi distribution function is f��� �
1=�expf��	��=kBTg � 1�. These procedures are iterated
until self-consistent solutions are obtained for the elec-
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tron density n1D. We use the material constants for GaAs,
m� � 0:067m0, � � 12:9, g � 0:44 and fix the exter-
nal confinement in the y direction in the wire such as
h!y � 2:0 meV.

Figure 1 shows the electronic properties of QPCs with
V0 � 3:0 meV at T�0:1K for three different lengths:
(a),(d) d�82:6nm (h!x�1:0meV); (b),(e) d�55:0nm
(h!x�1:5meV); and (c),(f) d�41:3nm (h!x�
2:0meV). The density far from the QPC is taken as n1D�
2:80�10	2 nm	1, where the electrons far into the wire
are unpolarized and only the lowest two spin subbands
contribute to transport [18]. We find that a solution with
broken spin symmetry coexists with an unpolarized so-
lution. To obtain the broken-symmetry solution, we first
apply an in-plane magnetic field of up to B�6T [14] and
then solve the Kohn-Sham equations self-consistently
while reducing the magnetic field to zero.

In Figs. 1(a)–1(c) we show the self-consistent QPC
barrier as a function of position x in the direction of
current flow. Specifically, we plot the energy of the bot-
tom of the lowest 1D subband ��0 �x� relative to the band
edge ��0 far into the wire, for both spin-up (solid lines)
and spin-down (dashed lines) electrons. Small Friedel
oscillations with a period of 2%=2kf ’ 72 nm are present
far into the wire. The self-consistent QPC barrier is
strongly spin dependent in all three cases, with the chemi-
cal potential � lying above the spin-up barrier but below
the spin-down barrier. These observations are consistent
with the results of Wang and Berggren [7].

In Figs. 1(d)–1(f) we show the 1D electron density in
the QPC. The solid lines give the net spin-up density and
the dashed lines give the spin-averaged densities, which
026804-2



FIG. 2. Local density of states at the center of the QPC for in-
plane magnetic fields Bk from 0 to 10 T in steps of 1 T [14].
Traces are vertically offset by a constant amount. The solid
lines are for spin-up and the dashed lines are for spin-down
electrons.
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approach n1D=2 � 1:40� 10	2 nm	1 far into the wire.
For all three QPC lengths, there is an excess spin-up den-
sity in the vicinity of the barrier, with Friedel oscillations
persisting into the wire. In each case, the integrated net
spin-up density is close to 1 spin: 0.85 for (a), 0.93 for (b),
and 0.90 for (c). Thus, there is a local moment with a spin
of 1=2 formed at the QPC.

The local moment found within SDFT results from the
self-consistent flattening of the QPC barrier. For ex-
ample, above a square barrier there is a series of quasi-
bound states, resulting from multiple reflections from the
edges of the barrier. While the bare QPC potential does
not give rise to resonances, the self-consistent potential is
flattened for spin-up, particularly for the longer QPCs,
and the first resonance in the spin-up local density of
states is clearly resolved. Since this resonance lies below
the chemical potential, it is fully occupied. The result is a
localized net spin of 1=2 at the QPC.

An important question is whether SDFT is reliable in
predicting a local moment. SDFT is a mean-field theory
and has limited utility for strongly correlated electron
systems. In particular, consider an Anderson model con-
sisting of a single site with a Coulomb interaction U
between two spin-degenerate orbitals of energy "0, with
hybridization � to band electrons [22]. For partially
occupied orbitals, the local density of states for each
spin splits into two peaks, one at "0 and the other at
"0 �U (and at low temperatures an additional Kondo
peak at the chemical potential) [23]. Taken at face value,
SDFT is inadequate for this model as it can give only one
peak for each spin. However, SDFT has been applied
successfully to calculate local moments in a system
closely corresponding to the Anderson model, namely,
transition-metal adatoms on surfaces [24]. The key is
that, even though the SDFT solution breaks spin-rotation
symmetry, the frozen magnetization can still be reliably
interpreted as the magnitude of the dynamic local mo-
ment. In practice, we follow the SDFT method developed
by Janak to find the magnetization of metallic metals
[25]. Specifically, we first solve the SDFT equations in a
polarizing magnetic field and then reduce the field to zero
to extract the parameters U and � of the underlying
Anderson model.

To estimate the properties of the bound state, we go
beyond the formal validity of SDFT and study the Kohn-
Sham orbitals. Specifically, we plot the local 1D density
of states '���� at the center of the QPC in the insets of
Figs. 1(a)–1(c) for the respective physical parameters.
Below the chemical potential, the local density of states
'"��� for spin-up electrons shows a resonance which
broadens as the QPC is shortened.

Figure 2 depicts the local 1D density of states '���� for
h!x � 1:5 meV in the presence of in-plane magnetic
fields B from 0 to 10 T in steps of 1 T [14]. Traces are
vertically offset by a constant amount. The solid lines are
for spin-up and the dashed lines are for spin-down elec-
trons.With increasing Zeeman splitting, the resonance for
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spin-up electrons shifts to lower energies, while the onset
of the spin-down density of states shifts to higher ener-
gies. From the residual splitting between these features at
B � 0, we obtain an estimate for the Coulomb-interaction
energy U in a local-moment description of the QPC.
Similarly, we obtain the hybridization � from the width
of the spin-up resonance.

Figure 3 shows the dependence of the Coulomb en-
ergy U and the hybridization � on the length of the
QPC. U is obtained from the energy difference between
the resonance center of '"��� and the energy at which the
derivative of '#��� is a maximum. � is obtained from the
FWHM of a Lorentzian fit to the resonance in '"���.
The hybridization energy � increases sharply from
� ’ 0:1 meV up to ’ 0:6 meV as the QPC is shortened
from d � 80 nm to d � 40 nm. The Coulomb energy U,
on the other hand, stays nearly constant at ’ 0:6 meV over
this range.

Within the Anderson model, a strong Kondo peak in
the differential conductance is expected when kT <
kBTK < � � U. This suggests that there is an optimal
range of QPC lengths for observing the Kondo effect: for
very long QPCs, � and therefore the Kondo temperature
TK will be too small compared to the real temperature,
whereas for very short QPCs, the resonance width � will
be too broad for a Kondo effect ever to develop.
Experimentally, Reilly et al. [4] observed that the extra
conductance plateau in QPCs decreased from 0:7�2e2=h�
to 0:5�2e2=h� with increasing QPC length, suggesting a
suppression of the Kondo effect [15]. Our SDFT results
026804-3



FIG. 3. Hybridization energy � and on-site Coulomb en-
ergy U as a function of h!x, the sharpness of the external
QPC potential. � is obtained from the FWHM of the
Lorentzian fit to the resonance. U is obtained from the energy
difference between the resonance center and the maximum of
d'���=d� for the high-energy spin. Inset: '"��� and d'#���=d�
at the center of QPC for h!x � 1:5 meV. The dashed line is the
Lorentzian fit to the resonance of '"���. Hybridization energy �
and on-site Coulomb energy U are indicated.
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suggest that it is primarily the decreasing hybridization
of the local moment to the leads that is responsible for the
decrease of the Kondo temperature and the evolution of
the conductance plateau.

We have presented SDFT results only for chemical
potentials sufficiently above the resonance energy that
the local moment is fully formed. SDFT is generally
unreliable for a partially filled orbital, unless self-
interaction effects are explicitly removed [26], and this
is not practical for an open system with long range
interactions such as a QPC.

In conclusion, we studied the electronic states of quan-
tum point contacts using the spin-density-functional
method. We found that a local moment with a spin of
1=2 is formed in the vicinity of the QPC barrier. This
strongly supports recent claims of a Kondo effect in
transport through a quantum point contact [13]. For the
local moment, we obtained estimates for both the on site
Coulomb-interaction energy and the hybridization to the
leads. The latter decreases rapidly with increasing length
of the QPC.
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Note added.—Recently, K.-F. Berggren and I. I.
Yakimenko reported evidence for ferromagnetism in a
QPC based on spin-density functional calculations [27].
The net ferromagnetism was less than one electron spin,
consistent with our interpretation of local-moment for-
mation at the QPC.
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