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The shot noise in the current through a quantum dot is calculated as a function of voltage from the
high-voltage Coulomb-blockaded regime to the low-voltage Kondo regime. Using several complementary
approaches, it is shown that the zero-frequency shot noise (scaled by the voltage) exhibits a nonmonotonic
dependence on voltage, with a peak around the Kondo temperature. Beyond giving a good estimate of
the Kondo temperature, it is shown that the shot noise yields additional information on the effects of
electronic correlations on the local density of states in the Kondo regime, unaccessible in traditional
transport measurements.
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The Kondo effect has become one of the main paradigms
of condensed matter physics as it is one of the simplest
models that exhibit many-body correlations [1]. The origi-
nal model was devised to explain the nonmonotonic re-
sistivity of metal due to enhanced scattering by magnetic
impurities below the Kondo temperature. This effect, how-
ever, was also predicted to play a dramatic role in trans-
port through quantum dots [2–4], due to the enhancement
of the local density of states at the Fermi energy. In-
deed, the recent observation of the Kondo effect in trans-
port through a quantum dot [5,6] has paved the way for a
new class of experimental investigations of strongly cor-
related electrons in general and the Kondo effect in par-
ticular. These and later experiments [7–12] demonstrated
the ability to exploit the tunable physical characteristics of
the quantum dot in order to yield important information
on Kondo systems, information unavailable from experi-
ments in bulk systems. Such studies, for example, included
the full crossover between the Kondo limit, the mixed va-
lence regime and the nonKondo limit [7], the emergence
of the unitarity limit [8], the determination of the phase
of the transmission coefficient through such an Anderson
impurity [9], the study of the Kondo effect under external
irradiation [10], and even surprises such as the observa-
tion of the Kondo effect for an integer-spin dot [11] and
the enhancement of the Kondo effect by a magnetic field
[12]. These new probes enhanced our understanding of
the Kondo system and provided critical tests of various
theoretical approximations, an imperative step towards bet-
ter understanding of strongly correlated electron systems.
Nevertheless, detailed experimental information on how
electronic correlations affect the density of states is still
lacking.

In this Letter we propose and explore theoretically an-
other experimental tool to probe the Kondo regime–shot
noise measurements. Such measurements proved very suc-
cessful in mesoscopic structures formed in other strongly
correlated electron systems, such as a fractional Hall liquid
[13] or a superconductor [14]. Here we demonstrate that
the noise measurements yield additional information on the
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structure of the local density of states, information unavail-
able by the usual transport measurements. In addition shot
noise yields a direct estimate of the Kondo temperature.

Current noise, defined as

S�t� � �I�t�I�0�� 2 �I�2, (1)

or, alternatively, its Fourier transform, S�v�, has been
studied extensively in the context of mesoscopic systems
in the past couple of decades [15] (I above is the cur-
rent operator). While the equilibrium zero-frequency noise
S0 � S�v � 0� can be related to the conductance via
the fluctuation-dissipation theorem, and does not carry
additional information, the zero-frequency noise out of
equilibrium (shot noise) can yield information on charge
fluctuations in the mesoscopic system. Since for voltage
bias much larger than temperature, finite temperature can
be ignored, we concentrate in the following on T � 0,
where the thermal noise vanishes and the only contribution
to the current noise is shot noise. Because of the lack of a
single accurate method that can describe the Kondo system
out of equilibrium in all regimes, we employed five differ-
ent methods that span all physically relevant regimes.

The current I through a quantum dot in the presence of
a dc voltage bias V can be directly related to the transmis-
sion coefficient through the dot, T �e, V �, which, in turn, is
proportional to the local density of states r�e, V� [16,17],
I � 2e�h

ReV
0 T �e, V � de, where the factor 2 is due to

spin-degeneracy. For noninteracting electrons, T �e, V � is
voltage independent, and thus the differential conductance,
dI�dV , yields directly T�e � V �, and hence the full local
density of states. In the present case, however, the Kondo
peak at the Fermi energy is dramatically affected by volt-
age [3,4]. Thus, while its structure is of major importance,
current measurements cannot yield the energy-dependent
transmission coefficient T �e, V �, but rather its average
over a scale 0 # e # eV . Since r�e, V� is of major in-
terest, due to the Kondo resonance, an experimental probe
of, e.g., its higher moments is highly desirable.

For noninteracting electrons the shot noise can be ex-
pressed in terms of the transmission coefficients [18],
© 2002 The American Physical Society 116802-1
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S0�V � �
4e2jV j

h

Z eV

0
T �e� �1 2 T �e�� de . (2)

One might expect anomalous shot noise dependence on
voltage or temperature due to the Kondo effect because
of the following argument. In the absence of the Kondo
effect (e.g., when temperature or bias are much larger
than the Kondo temperature) the conductance through a
quantum dot, or the effective transmission coefficient, is
suppressed due to the Coulomb blockade (except at the
Coulomb blockade peaks), and T �1 2 T � is very small.
With lowering of temperature or voltage, the conductance
is enhanced (for an odd number of electrons on the dot),
leading to an increase in the shot noise. However, at the
unitarity limit, at zero temperature and linear response,
T � 1 (for the special case of symmetric barriers), and the
noise again vanishes. Thus one may expect a nonmono-
tonic dependence of the noise (scaled by V ) on voltage, for
example. As we will show below, such nonmonotonicity
should indeed be observed.

Shot noise through a quantum dot has been studied in the
past, with an emphasis on the Coulomb blockade regime
[15,19]. These studies revealed indeed that the shot noise
is quite small at the conductance valleys at high voltages
(or temperatures). Several attempts to look at the Kondo
regime have been made. Perturbative results were reported
[20], while an exact solution is available for a particular
limiting case (not quite relevant to the present case) [21].
Here we report calculations made in the noncrossing ap-
proximation (NCA) [22], augmented by high-voltage per-
turbation theory, renormalization group (RG) calculations,
perturbation theory around the zero-voltage Fermi-liquid
point, and by slave-boson mean field theory (SBMFT).
While NCA is valid for a wide range of voltages, includ-
ing eV , T , TK (except a small region for small eV and
T ), the RG calculation is valid at high voltages, while the
SBMFT is valid at small voltages. Thus our methods com-
plement each other and give a consistent view of the de-
pendence of shot noise on voltage.

Our starting point is the infinite- U single-impurity An-
derson Hamiltonian,

H �
X

s;keL,R

eksc1
kscks 1

X
s

e0d1
s d1

s

1
X

s;keL,R

�Vksc1
ksds 1 H.c.� , (3)

where c1
ks �cks� creates (destroys) an electron with mo-

mentum k and spin s in one of the two leads, and d1
s �ds�

creates (destroys) a spin-s electron on the quantum dot.
Coulomb interactions among electrons, in the limit of
U ! `, forbid double occupancy of the quantum dot.
The last term describes the hopping between the leads and
the dot, and determines this coupling G � GL

s 1 GR
s , via

GL�R�
s �v� � 2p

P
keL�R� jVksj

2d�v 2 eks�.
We start by studying the limiting cases, eV ¿ TK and

eV ø TK . In these regimes it is more convenient to study
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the Kondo Hamiltonian, obtained from the Anderson Ham-
iltonian (3) by a Schrieffer-Wolf transformation. For con-
venience, one performs first a unitary transformation where
the dependence on external voltages is shifted to the cou-
plings GL�R�

s [23]. The resulting Kondo Hamiltonian is

HK �
X

ksj�L,R

jkc
y
kjsckjs 1

X
j,j0�L,R

Jjj0�t�c
y
j �0�P̂cj 0�0� ,

(4)

with P̂ �
1
4 Î 1 �S ? �s and where Î , �s, and �S are identity,

electron spin operator of the leads, and and of the electron
on the impurity, respectively. The coupling parameters Jjj 0

are related to those of the Anderson Hamiltonian and due
to the unitary transformation depend on time,

JLR � J�
RL � J0 exp

∑
iteV

h̄

∏
, J0 �

p
GLGR

pne0
,

Jjj �
Gj

pne0
,

(5)

where n is the density of states in the leads. Using the
Keldysh formalism [24] we can evaluate the noise S0 to
third order in the coupling,

S0�V � �
2e3jV j

2h
�pnJ0�2

1
3e3jV j

h
�pnJ0�2

∑
1 1 2n�JLL 1 JRR� log

D

eV

∏
.

(6)

Here D is the effective bandwidth, and the leading term
is separated into two terms, expecting the RG procedure.
Indeed, to get an expression that is also valid for lower
voltages, one can use the RG to sum up the diverging
logarithms [second line in (6)], leading to

S0�V � �
3e3gjV j

4h

∑
p

log�eV�TK �

∏2

(7)

with g � 4GLGR��GL 1 GR�2, and where the relation be-
tween the renormalized coupling J0�V � and TK , J0�V � �
p

g�2n log�eV�TK � [23], was used.
In the other limit, of small voltage, eV ø TK , one can

expand around the strong coupling Fermi-liquid fixed point
[25]. Identifying the current operator around this point
[23], a straightforward, lengthy calculation yields

S0�V � �
2e3

h
jV j

�GL 2 GR�2

�GL 1 GR�2 1
4e3g

3h
jV j

µ
eV
TK

∂2

.

(8)

In the case of symmetric barriers GL
s � GR

s , where the
effective transmission coefficient is unity, we find that
S0�V ! 0 as V ! 0, in agreement with the expectation
from the noninteracting noise formula.

To expand the treatment beyond second order in volt-
age, we transform the Anderson Hamiltonian (3) into a
new Hamiltonian, expressed in terms of new local opera-
tors [26]. These operators create the three possible states of
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the site: a boson operator b1, which creates an empty site,
and two fermion operators, f1

s , which create the singly oc-
cupied states. The ordinary electron operators on the site,
which transform the empty site into a singly occupied site
or vice versa, are decomposed into a boson operator and
a fermion operator, ds �t� � b1�t�fs�t�. The additional
constraint, that the number of fermions and bosons is equal
to one, prevents double occupancy on the site, as required
by the U ! ` limit.

In the slave-boson representation, the Hamiltonian for
the infinite-U Anderson model becomes

H �
X

s;keL,R

eksc1
kscks 1

X
s

esf1
s fs

1
X

s;keL,R

�Vksc1
ksb1fs 1 H.c.� , (9)

where the Hamiltonian operates only in the subspace where
the total number of fermions and bosons is one. The ad-
vantage of the slave-boson representation is that the hop-
ping term, which is usually the smallest physical term,
can be treated perturbatively using standard diagrammatic
techniques.

We first apply the SBMFT, a theory that is known to
give the correct qualitative behavior at low temperatures
and voltages �eV , T # TK�. In this theory, motivated
by a large-N expansion, where N is the degeneracy of
the level, one replaces the boson operator by a classical,
nonfluctuating value, giving rise to an effective resonant-
tunneling model, whose parameters are obtained self-
consistently [26]. These equations were numerically
solved for a set of parameters leading to the same Kondo
temperature used for the above calculations, and indeed
reduced to the results of the Fermi-liquid perturbation
theory for small voltages.

To bridge the small-V treatment with the large-V treat-
ment, we next employ the NCA, which has been used suc-
cessfully to treat the infinite-U Anderson model in [22]
and out [4] of equilibrium. At lowest order in perturbation
theory the boson self-energy involves the fermion propa-
gator while the fermion self-energy involves the boson
propagator. By using the two relations self-consistently,
one obtains a set of coupled integral equations, which can
be solved numerically. Solving these self-consistent equa-
tions corresponds to summing a subset of diagrams to all
orders in the hopping matrix element. It can be shown
[22] that all diagrams of leading order in 1�N , where N
is the number of spin degrees of freedom, are included in
this subset. Therefore, the noncrossing approximation is
expected to be a quantitative approach in the limit of large
N . For the case N � 2, of interest for quantum dots, Cox
[22] has shown that the calculated equilibrium occupancy
and susceptibility agree with the exact Bethe ansatz results
to within the 0.5% convergence accuracy of the NCA. For
the electrical current calculations [4], which use an ex-
tension of the above equations to include Keldysh Green
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functions [24], at worse an overestimate of 15% on the lin-
ear response conductance has been observed [4].

Here we employ a two-step approximation. The gen-
eral noise diagram involves two single-particle Green func-
tions, which, in the first step, are decoupled, i.e., vertex
diagrams are neglected. In the second step, these single-
particle Green functions are replaced by their NCA val-
ues [4]. This procedure ensures that our expression for the
noise obeys exactly the zero-voltage fluctuation-dissipation
theorem. All the calculations were done for T � 1024G,
well below the Kondo temperature.

Figure 1 summarizes our main findings, depicting S0�V
as a function of log�eV�TK �, the natural parameter in the
Kondo regime. In (a) we plot results from three different
approaches. The RG calculation agrees with the NCA re-
sult at large voltages, but becomes nonphysical once eV
is about 10TK , while the SBMFT, which agrees with per-
turbation theory around the Kondo fixed point at low volt-
ages, complements our NCA calculations for eV ø Tk ,
where the NCA approximation stops to be valid. Thus
we have a quantitative picture of the noise on the whole
range of voltages. Here and in (b) the NCA results are
for e0 � 22G, resulting in TK 	 0.005G. Figure 1(b)
demonstrates that S0�V exhibits a maximum of a value
about 1�2, as one might expect from the heuristic argu-
ments above. Indeed, one can notice the similarity of
S0�V to Eq. (2) (long-dashed line), where T�e, V � was
calculated from the NCA for the same bias. Thus the
noise gives a direct measurement of the second moment
of the density of states. In order to check how sensitive
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FIG. 1. The main results of this work (see text). (a) Three of
the methods used to estimate the noise in the different regimes.
(b) Comparison of the results of the NCA approximation to
the naive noninteracting formula [Eq. (2)] without and with the
voltage-dependent transmission coefficient, obtained from the
differential conductance. (c) S0�V for different level energies
(and different Kondo temperatures). (d) Comparison of the
maxima of S0�V to the Kondo temperature.
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the noise is to the effects of electronic correlations, we
also plot in the same figure (short-dashed line) the ex-
pected noise for a noninteracting system, with the same
differential conductance. The significant difference be-
tween the two curves is due to the effect that, because
of the interactions, the density of states is strongly depen-
dent on the bias voltage. This also demonstrates that the
information available in noise measurements cannot be ob-
tained in the usual transport experiments. In Fig. 1(c) we
plot S0�V for different values of e0, the electron level en-
ergy, leading to values of TK differing by a factor of 20.
Nevertheless, the value of V�TK where S0�V is maximal
changes by less than a factor of 2, demonstrating that the
peak position gives a reliable estimate of the value of the
Kondo temperature. This point is further demonstrated in
Fig. 1(d), where we plot the dependence of the position
of the peak on voltage and compare it to the known NCA
values of TK � �GD2�2pe0�1�2 exp�2pe0�G�. Thus shot
noise measurements lead to a straightforward determina-
tion of the all important Kondo temperature, which in usual
current measurements can only be determined by further
nontrivial analysis.

To conclude, we have used several methods which give
a consistent determination of the current noise through
a quantum dot in the Kondo regime, demonstrating the
importance of the electronic correlations. It has been
shown that the noise yields additional information about
the Kondo state, and we hope that this paper will indeed
motivate experimental effort in this direction.
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