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The Anderson localization problem for a noninteracting two-dimensional electron gas subject to a
strong magnetic field, disordered potential, and spin-orbit coupling is studied numerically on a square
lattice. The nature of the corresponding localization-delocalization transition and the properties of the
pertinent extended states depend on whether the spin-orbit coupling is uniform or fully random. For
uniform spin-orbit coupling (such as Rashba coupling due to a uniform electric field), there is a band of
metallic extended states in the center of a Landau band as in a “standard” Anderson metal-insulator
transition. However, for fully random spin-orbit coupling, the familiar pattern of Landau bands
disappears. Instead, there is a central band of critical states with definite fractal structure separated
at two critical energies from two side bands of localized states. Moreover, finite size scaling analysis
suggests that for this novel transition, on the localized side of a critical energy Ec, the localization length

diverges as ξðEÞ ∝ expðα= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijE − Ecj
p Þ, a behavior which, together with the emergence of a band of

critical states, is reminiscent of a Berezinskii-Kosterlitz-Thouless transition.

DOI: 10.1103/PhysRevLett.114.096803 PACS numbers: 73.20.Fz, 71.30.+h, 73.43.Nq

Traditionally, noninteracting disordered electronic sys-
tems subject to a random potential are classified according
to the symmetries of their Hamiltonian under time reversal
(TR) and spin rotation (SR) transformations. Considering
the Hamiltonian as a random matrix [1–3], its symmetries
determine to which random matrix Gaussian ensemble (or
universality class) it belongs, orthogonal (TR and SR sat-
isfied), symplectic ( SR violated), or unitary (TR violated).
This classification is intimately related to one of the most

fundamental concepts in the physics of disordered elec-
tronic systems: the Anderson localization transition (ALT)
[4,5], which is a quantum phase transition between local-
ized and extended states in a disordered system. The critical
dimension for existence or nonexistence of ALT is d ¼ 2.
For d < 2 there is no ALT, while for d > 2 there is always
ALT. Hence, for a two-dimensional electron gas (2DEG),
ALT (if it exists) is of special interest. The scaling theory
[6] together with calculations based on the nonlinear sigma
model [7,8] established that for d ¼ 2 ALT does not exist
for the orthogonal and unitary classes (zero or finite
magnetic field, respectively), and does exist for the sym-
plectic class [finite spin-orbit coupling (SOC) and zero
magnetic field]. Later, topology was also recognized as a
property determining the pertinent universality class [10].
In the presence of a topological term in the action of the
corresponding nonlinear sigma model [11], it was estab-
lished that if SR invariance is respected, the system is in the
IQHE universality class characterized by a Hall transition
between localized and critical states occurring at discrete
energies. What happens in the presence of the topological

term when SR invariance is broken is still unclear. To the
best of our knowledge, there is so far no rigorous extension
of the nonlinear sigma model for an IQHE system in the
presence of strong SOC.
In this work, we investigate the nature of transition

between localized and extended states for a disordered
2DEG subject to a strong magnetic field in which SR
invariance is broken due to SOC. In Ref. [12], the effect of
random SOC between the two lowest Landau levels was
shown to lead to split percolation transitions. Here we show
that the nature of the SOC (uniform or fully random)
dramatically affects the pertinent transition. Our main
results are as follows: (1) For uniform SOC, the pattern
of separated Landau bands persists. Focusing attention on
the lowest Landau band entered at E0, there are two critical
energies, Ec1 and Ec2 , in the sense that the states ψEðrÞ for
Ec1 < E < Ec2 are metallic, while for E ∉ ½Ec1 ; Ec2 �, they
are localized. This is a “usual” ALT between a band of
localized states and a band of metallic states. (2) However,
for fully random spin-orbit coupling, the structure of
broadened Landau bands that is the hallmark of the
IQHE is completely washed out. In turn, there is a broad
band of critical states with definite fractal structure (of
dimension 1.82� 0.02). Finite size scaling analysis suggests
that for this novel transition, the localization length diverges
as ξðEÞ ∝ expðα= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijE − Ecj

p Þ, a behavior reminiscent of a
Berezinskii-Kosterlitz-Thouless (BKT) transition [13].
To substantiate our claims we consider a tight-binding

Hamiltonian for 2DEG on a square lattice of length L and
width M (the lattice constant is set to unity),
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H ¼
X
i;σ

ϵic
†
i;σci;σ þ

X
hiji;σ;σ0

expðiϕijÞVijðσ; σ0Þc†i;σ0cj;σ: ð1Þ

Here, i ¼ ðni; miÞ is a lattice site specified by integer
coordinates ni and mi with 1 ≤ ni ≤ L and 1 ≤ mi ≤ M.
c†i;σ (ci;σ) is electron creation (annihilation) operator of spin
σ ¼ � on site i. The on-site energy ϵi are random and
uniformly distributed in the range of ½−W=2;W=2�, so that
W measures the degree of randomness. The symbol hiji
indicates that i and j are nearest neighbor sites. The
magnetic field is introduced through the Peierls’ substitu-
tion [14] by endowing the hopping coefficient with a phase,

ϕij ¼ ðe=ℏÞ R j
i
~A · d~l, where ~A is the vector potential. A

constant magnetic field B is expressed as magnetic flux in
units of Φ0 ¼ ch=e through a unit square.
The SOC is encoded by 2 × 2 matrices Vij acting in spin

space. We will explore both the case of constant SOC
matrices along the axes and the case of fully random SOC
matrices. In the case of constant SOC matrices, they are
parametrized as Vij ¼ Vx (Vy) for hiji along the x direction
(y direction). In order to get nontrivial results due to SOC,
one requires ½Vx; Vy� ≠ 0.
The Rashba form of uniform SOC reads

Vx ¼
�

1 a

−a 1

�
and Vy ¼

�
1 −ia

−ia 1

�
; ð2Þ

where a is a real constant encoding the strength of the
SOC for the Rashba model. Random SOC is encoded
by matrices Vij ∈ SU(2), thereby defining the SU(2)
model [15],

Vij ¼
�
e−iαij cosðβij=2Þ e−iγij sinðβij=2Þ
−eiγij sinðβij=2Þ eiαij cosðβij=2Þ

�
; ð3Þ

where αij, and γij are uniformly distributed in [0, 2π] and
sinðβij=2Þ is uniformly distributed in [0, 1]. Such a random
SOC model can mimic 2DEGs of semiconductor hetero-
structures with charged impurities (donors or acceptors)
[16], and has been successfully applied to describe weak
localization effects in, e.g., GaAs=AlGaAs wells [17].
Interestingly, this model can also be mapped onto a
BCS model, thereby describing dirty superconductors [18].
Localization-delocalization transition in an electronic

system is characterized not only by divergence of the
localization length but also by the nature of the wave
functions ψEc

ðrÞ at the critical energies. Analysis of these
two independent criteria usually requires two different
numerical procedures.
Identification of ALT.—We consider a scattering problem

for an electron at Fermi energy E living on a square lattice
of length L → ∞ (along x) and finite width M (along y).
Periodic boundary conditions are imposed along y to avoid
edge states contribution.

Since the system is quasi one-dimensional, it has a finite
localization length λMðEÞ depending on the scattering
energy E and the system’s width M. Using the transfer
matrix technique we calculate λMðEÞ by a standard iteration
algorithm [4,19]. In our calculations L > 106 ≫ λMðEÞ and
self-averaging is virtually achieved, requiring averaging over
a small number of realizations to achieve good statistics. The
width M takes values between 32 and 96. The identification
of a mobility edge Ec is guided by the following observa-
tions: (1) For metallic (insulating) states, λ̄MðEÞ≡
λMðEÞ=M is an increasing (decreasing) function of M.
(2) For critical states, λ̄MðEÞ is independent of M. (3) For
energy E close to Ec but on the insulating side, λ̄MðEÞ obeys
a single parameter finite size scaling. Explicitly, let us denote
by ξðEÞ≡ λ∞ðEÞ the localization length for a system of
widthM → ∞. At the critical energy we expect ξðEcÞ ¼ ∞,
and finite size scaling implies λ̄MðEÞ ¼ f½M=ξðEÞ�, where
fðxÞ is a universal (disorder independent) scaling function.
Results for constant SOC, Eq. (2).—In this case, the

pattern of separate LBs remains intact, and our attention is
focused on the lowest LB. The upper panel of Fig. 1(a)
displays λ̄MðEÞ vs E for B ¼ 1=5 andW ¼ 1 in the absence
of the SOC (a ¼ 0). It is evident that all curves for different
widthsM coalesce at Ec, where λ̄MðEcÞ peak. On both sides
of Ec, all states are localized because λ̄MðEÞ decreases with
M. However, at the critical point Ec, λ̄MðEÞ is independent
of M, and the corresponding states are critical [20]. The

FIG. 1 (color online). λ̄MðEÞ (averaged over 40 disorder
realizations), vs E for B ¼ 1=5 and W ¼ 1. (a) Without SOC
(upper panel) and with constant Rashba SOC, Eq. (2) with a ¼
0.1 (bottom panel). The system widths (top to bottom) are M ¼
32 (square), 48 (circle), 64 (up triangle), 80 (down triangle), and
96 (left triangle). The inset at the bottom panel is an enlargement
of the crossing region around Ec ¼ −2.985. (b) When the points
λ̄MðEÞ shown in (a) are expressed in terms of x ¼ M=ξðEÞ, they
fall on a smooth curve thereby display the scaling function.
(c) ln ξðEÞ vs lnðjE − EcjÞ, Ec ¼ −2.985, for the constant Rashba
SOC. The solid line is a linear fit with slope ν ¼ 2.2.
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bottom panel displays λ̄MðEÞ for the same values of B and
W as in the upper panel when the constant (Rashba) SOC
strength is a ¼ 0.1. Here, in contradistinction from the case
of zero SOC, curves of different M cross at two energies
(Ec;1 ≃ −2.91, Ec;2 ≃ −2.985). States ψEðrÞ for E ∈
½Ec;1; Ec;2� are metallic because λ̄MðEÞ increases with M,
indicating that these are extended states.
Now we employ a finite size one-parameter scaling

hypothesis to substantiate the criticality of the transition, by
showing that for E close to Ec;i, λ̄MðEÞ ¼ f½M=ξðEÞ�. The
results are summarized in Figs. 1(b) and 1(c). As shown in
Fig. 1(b), in the vicinity of the crossing points, all data
points λ̄MðEÞ for the Rashba SOC case collapse on to a
single smooth scaling curve fðxÞ. Like in the standard ALT
or Hall transitions, ξðEÞ diverges at Ec as a power,
jE − Ecj−ν. This is substantiated in Fig. 1(c) that displays
ln ξðEÞ vs ln jE − Ec;2j for the Rashba SOC case, Eq. (2).
The fit to a straight line is rather satisfactory, yielding a
slope ν1 ¼ 2.2� 0.1 that is somewhat smaller than both
critical exponents of the 2D disordered systems ν≃ 2.75
for the 2D symplectic symmetry class [15] and ν≃ 2.34 for
the IQHE [5].
Results for the random SU(2) model, Eq. (3).—In the

absence of a magnetic field, the SU(2) model supports a
standard ALT. This is substantiated in the upper panel of
Fig. 2(a) which plots ln ¯½λMðEÞ� vs E forW ¼ 1 and various
M. All curves cross at Ec ¼ −3.259, showing all states
of E ∈ ½−3.259; 3.259� are extended because ln ¯½λMðEÞ�
increases withM as shown clearly in the inset of the enlarged
crossing region. Finite size scaling yields the value ν ¼
2.73� 0.02 commensurate with earlier calculations [15].
We come now to the main result of the present work.

Switching on a strong magnetic field (here we take
B ¼ 1=5) one would expect a pattern of LB modified
due to the presence of SOC. However, what we find is that
the curves λ̄MðEÞ do not display separate LB peaks, but,
rather, a single band. More remarkably, in contradistinction
with the symplectic case (SOC ≠ 0 and B ¼ 0), the curves
λ̄MðEÞ that display a localized region for energies fEg near
the band edge [that is, λ̄MðEÞ decreases with M], do not
cross but merge as the energy approaches the band center.
This is evident by looking at the bottom panel of Fig. 2(a)
that displays ln½λ̄MðEÞ�, averaged over 40 ensembles, as a
function of E for B ¼ 1=5, W ¼ 1 and various system
widths M. The inset is an enlargement of the merging
region. For E < Ec ¼ −3.001 the system behaves as an
insulator where λ̄MðEÞ decreases with M. But for E ≥ Ec
all curves merge, forming a band of critical states for
which λ̄MðEÞ is independent of M, and, as we shall see
below, the corresponding wave-functions cover only a
fractal part of 2D space. This band of critical states
prevails for all energies jEj < jEcj ¼ 3.001, namely, the
pattern of separate Landau bands is completely washed out.

To explore the nature of this localization-delocalization
transition we inspect the behavior of ξðEÞ on the insulating
side E < Ec. Figure 2(b) depicts the collapse of all curves
λ̄MðEÞ for different widths M, supporting the quantum
phase transition interpretation. However, if one analyzes
the divergence of ξ in terms of a power law, as shown by the
red dotted line in the log-log plot in Fig. 2(c), the goodness-
of-fit [21] to the numerical data (red circles) is about
5.2 × 10−7, which is 4 orders of magnitude smaller than an
acceptable value. Moreover, the resulting exponent turns
out to be ν≃ 6.4, much higher than any known critical
exponent in disordered 2D systems. We argue that the
transition between bands of localized and critical states
exposed here is reminiscent of a BKT phase transition [13],
where ξðEÞ ∝ expðα= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijEc − Ejp Þ. Indeed, the curve dis-
playing ln ξ vs 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E − Ec

p
in Fig. 2(c) is well fitted by a

straight line, the corresponding goodness of fit to the
numerical data (black squares) is about 8 × 10−3, far better
than the power-law fit, thereby supporting our claim
pertaining to a BKT-type transition [19].
Fractal structure of critical states.—To confirm the

criticality of all states at energies jEj < Ec, we compute,
by exact diagonalization, the normalized electron wave
functions ψEðiÞ on a square lattice of finite extent [for
convenience we take a rectangle of area MðM þ 1Þ]. Here

FIG. 2 (color online). (a) lnðλ̄MÞ vs E of the SU(2) model with
W ¼ 1 and M ¼ 32 (square), 48 (circle), 64 (up triangle), 80
(down triangle), and 96 (left triangle). The top panel is for B ¼ 0,
and the inset is an enlargement of the crossing region in linear
scale. The bottom panel is for B ¼ 1=5, and the inset is an
enlargement of the merging region. (b) The scaling function
obtained from the bottom panel in (a) by collapsing data of λ̄M
near the merging point into a single curve. (c) ln ξ vs jE − Ecj−1=2
for Ec ¼ −3.001 (squares). The solid line is a linear fit with slope
α ¼ 8.3� 0.3. For a comparison, ln ξ vs − ln jE − Ecj with Ec ¼
−3.051 (circles) is also plotted. Larger deviation in the linear fit
(dashed line with goodness of fit of 5.2 × 10−7) indicates that an
interpretation in terms of BKT-type transition (with goodness of
fit of 8 × 10−3) explains the data better.
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i ¼ ðxi; yiÞ is a site on this lattice. According to our
previous discussion, the wave functions for energies jEj <
3.001 belong to the band of critical states. Their fractal
nature can be confirmed by computing the participation
ratio,

PRðEÞ≡ 1

N
P

ijψEðiÞj4
; ð4Þ

where N is the number of sites. For a state whose wave
function occupies a fractal space of dimension DðEÞ [22],
PR scales with N as PR ∝ N−1þDðEÞ=2, withDðEÞ ≥ 0. For
a localized (metallic) state DðEÞ ¼ 0 [DðEÞ ¼ 2]. The
upper panel of Fig. 3(a) displays PR × N as a function of
energy for B ¼ 1=5, W ¼ 1 (same as those in Fig. 2) and
various M. All curves for E < Ec (localized region) merge
at DðEÞ ¼ 0, showing the independence of PR × N on M.
Thus, fψEðiÞg for E < Ec are indeed localized. For
0 ≥ E > Ec, PR × N increases with M. To demonstrate
that these states are critical with a nontrivial fractal
structure, we display ln½PR� vs lnN in Fig. 3(b) for 10
different energies. The corresponding curves are virtually
parallel straight lines with a common slope of 0.91� 0.01,
indicating DðEÞ ¼ 1.82� 0.02 for those states.
The fractal nature of the critical states is universal in the

sense that DðEÞ does not depend neither on the magnetic
field (as long as it is strong enough) nor on energy (as long
as E > Ec). This is substantiated in the bottom panel of
Fig. 3(a) where DðEÞ is plotted vs E for W ¼ 1 and
B ¼ 1=5 (red circles) and B ¼ 1=2 (blue triangles). It is

instructive to compare the fractal properties of the critical
wave functions discussed above with those of the wave
functions for the SU(2) model at zero magnetic field
(that is, the metallic side for the symplectic ensemble).
The fractal dimension of these wave function as a function
of E is also shown in the bottom panel of Fig. 3(a) (black
squares). In contrast, with the case B ¼ 1=5 for which
the fractal dimension is shown to be 1.82� 0.02, the
extended states in the absence of the field are metallic
[DðEÞ ¼ 2] and occupy the entire lattice. The fractal
dimension obtained in our calculations is higher than that
of the critical states in the IQHE (D ¼ 1.75 [23]) and in
the ALT for the SU(2) model at zero field (D ¼ 1.66�
0.05 [24]).
The critical point Ec that marks the edge of the band

of critical states clearly depends on the strength of
disorder W. The larger is W, the smaller is Ec. On
the other hand, for strong enough field, Ec is virtually
independent on the magnetic field. Figure 3(c) depicts
EcðWÞ vs W for B ¼ 1=5 (black squares) and B ¼ 1=2
(red circles). The fact that for W ≥ 6.5 all states are
localized (albeit in the absence of SOC), has already been
substantiated [20].
In conclusion, it is found that the nature of ALT for

2DEG with potential (site) disorder and SOC subject to a
strong perpendicular magnetic field depends on whether
the SOC is realized by constant or fully random SU(2)
matrices operating in spin space. For constant SOC, there is
a normal ALTon each LB, separating localized and metallic
states that form a band of finite width. The corresponding
critical exponent is similar to that obtained in the absence of
magnetic field for the symplectic ensemble. On the other
hand, for the fully random SU(2) model of the SOC,
Eq. (3), the pattern of separated LBs is smeared and the
system undergoes a BKT-type transition separating local-
ized states from critical states. The localization length
diverges as an exponential of an inverse square root and the
critical states form a band of finite width and occupy a
fractal space whose dimension is about 1.82. This is in
contrast with the zero field case, where, in the presence of
fully random spin-orbit scattering, the system undergoes a
regular ALT separating localized states from extended
(metallic) states. Interestingly, the interplay between the
symplectic transition in two dimensions, and the BKT
transition, has been pointed out recently [25] in the context
of the surface of layered topological insulators. It may be
that the model studied here is a microscopic implementa-
tion of such a theory.
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FIG. 3 (color online). (a) Upper panel: PRðEÞ × N, averaged
over 100 samples, as a function of E of the SU(2) model for
B ¼ 1=5 and W ¼ 1. The lattice size (from down up) is M ¼ 30,
40, 50, 60, 70, 80, 90, and 100. Lower panel: DðEÞ vs E for
W ¼ 1 and B ¼ 0 (black square); B ¼ 1=5 (red circle); B ¼ 1=2
(blue triangle). (b) The quantity ln½PRðEÞ × N� is plotted vs lnN
for E ¼ −2.9;−2.8;…;−2 (from up down). The solid lines are
the linear fits of slope 0.91� 0.01. (c) Phase diagram of the SU
(2) model for B ¼ 1=2 (red circle) and B ¼ 1=5 (black square) in
the E −W plane. Above Wc ¼ 6.3, all states are localized.
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