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Abrupt disappearance and re-emergence of the SU(4) and SU(2) Kondo effects
due to population inversion
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The interplay of almost degenerate levels in quantum dots and molecular junctions with possibly different
couplings to the reservoirs has lead to many observable phenomena, such as the Fano effect, transmission phase
slips, and the SU(4) Kondo effect. Here we predict a dramatic repeated disappearance and re-emergence of the
SU(4) and anomalous SU(2) Kondo effects with increasing gate voltage. This phenomenon is attributed to the
level occupation switching which has been previously invoked to explain the universal transmission phase slips
in the conductance through a quantum dot. We use analytical arguments and numerical renormalization group
calculations to explain the observations and discuss their experimental relevance and dependence on the physical
parameters.
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The coexistence of spin-degenerate levels with different
couplings to the leads is ubiquitous in quantum dots (QDs),
quantum wires, and molecular junctions. It has been pointed
out early on that such coexistence may develop in deformed
QDs [1,2], with important consequences on the relation
between the conductance and the transmission phase of
consecutive Coulomb-blockade (CB) peaks. Later on, it has
been demonstrated [3] that such a coexistence is actually
a generic effect in interacting QDs. In fact, the interplay
between levels with weak coupling to the leads and a strongly
coupled one has been invoked [2–9] to explain the intriguing
experimental observations [10–12] of sharp drops in the
transmission phase through a QD between CB peaks. These
drops have been attributed to “level occupation switching”
(LOS)—the abrupt emptying of the strongly coupled level and
the filling of a corresponding weakly coupled level, or vice
versa, as the gate voltage is continuously varied. These studies
have been further supported by a direct observation [13] of the
Fano effect, resulting from the interference between a wide and
a narrow level in a single quantum dot. Simultaneous transport
through several molecular levels has also been demonstrated
[14] in molecular junctions, and the interplay of weakly and
strongly coupled levels has been predicted [15] to lead to
observable effects in the CB peak structures.

In a seemingly different context, the coexistence of almost
degenerate levels has been argued [16–22] to give rise to
SU(4) Kondo physics [23], which has indeed been observed
in carbon nanotubes [24–26], in atoms [27], and in single [28]
and double [29,30] semiconductor quantum dots. In all these
systems, the degenerate levels are not necessarily coupled
equally to the leads [31,32]. However, in spite of the plethora
of studies of the physics of LOS in QDs on one hand, and
of SU(4) Kondo physics in such systems on the other hand,
the interplay of these two effects has not been addressed
so far. In this paper, we predict dramatic abrupt suppression
and re-entrance of the Kondo effect due to LOS. We present
numerical renormalization group (NRG) calculations, backed
up by analytical arguments, and show that in the presence
of two spin-degenerate levels, with very different couplings
to the leads, then as the gate voltage is varied (Fig. 1), the
enhanced conductance due to the Kondo effect is abruptly

suppressed, only to likewise abruptly re-emerge at higher gate
voltages. This disappearance and re-emergence may occur
more than once. Below, we elaborate on the physics behind
this effect, on its dependence on temperature, the ratio of
the couplings of the two levels to the leads, on their energy
difference and other physical parameters.

The Hamiltonian that describes the two-level QD is
given by

HQD =
∑

iσ

εi n̂iσ +
∑

i

Ui n̂i↑n̂i↓ + U12n̂1n̂2, (1)

where i = 1,2 denotes the level index, n̂iσ = d
†
iσ diσ , n̂i =∑

σ n̂iσ (d†
iσ creates an electron on the dot in level i with spin

σ ), and spin degeneracy has been assumed (i.e., no magnetic
field). We will first concentrate on the fourfold degenerate
case, εi = ε and U1 = U2 = U12 = U . Each one of the levels
couples to a different linear combination of states in the
leads, which, for simplicity, we assume to be orthogonal. The
resulting Hamiltonian is then given by

H = HQD +
∑

iσk∈L,R

εikc
†
iσkciσk +

∑

iσk∈L,R

(Vikd
†
iσ ciσk+H.c.),

(2)
where c

†
iσk creates an electron with spin σ in the left (L) or

right (R) lead in momentum state k that couples to level i

in the dot. Again, for simplicity, the tunneling amplitude is
chosen to be momentum (and spin) independent, but different
between the two levels, Vik = Vi . The expectation values
and the spectral function, required for the calculation of
the conductance [33], are calculated using a density matrix
numerical renormalization group (DM-NRG) procedure.1 We
assume equal couplings to the left and right leads, �i = πρV 2

i ,
and equal and constant density of states ρ in the two leads, with
a symmetric band of bandwidth D around the Fermi energy.
In the following, we set D to be the unit of energy.

1We used the open-access Budapest Flexible DM-NRG code,
http://www.phy.bme.hu/∼dmnrg/; O. Legeza, C. P. Moca, A. I. Toth,
I. Weymann, and G. Zarand, arXiv:0809.3143 (unpublished).

2469-9950/2017/96(4)/045118(5) 045118-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.96.045118
http://www.phy.bme.hu/~dmnrg/
https://arxiv.org/abs/0809.3143


YAAKOV KLEEORIN AND YIGAL MEIR PHYSICAL REVIEW B 96, 045118 (2017)

FIG. 1. Conductance through a two-level quantum dot as a
function of chemical potential for (a) different ratios of the tunneling
amplitudes �2/�1, with T = 10−7 and (b) different temperatures,
for �2 = 0. For both plots, �1 = 0.03 and U = 0.6 (in units of the
bandwidth). In both panels, level population switching events lead to
abrupt disappearance and re-emergence of the Kondo effect.

Figure 1(a) depicts the conductance as a function of the
chemical potential (gate voltage), for different values of
�2/�1. Each �i defines an effective SU(2) Kondo temperature
T

(i)
K . When �2 = �1, one reproduces the standard SU(4)-

symmetric Anderson model conductance plot: the conductance
G rises from zero to G = 2e2/h (where e is the electron charge
and h the Planck constant), then to G = 4e2/h, in agreement
with the Friedel sum rule, G = e2/h

∑
iσ sin2(πniσ ) (where

niσ = 〈n̂iσ 〉), which is accurate at such low temperatures.
However, when �2 is reduced, LOS starts to take place,
resulting in several conductance dips near the mid point, as
can be seen for the curves with �2 �= �1 in Fig. 1(a).

The effect is even more dramatic for smaller �2 where
T

(2)
K < T . In this regime, the conductance rises and plateaus

at its Kondo value, G = 2e2/h, only to drop sharply to almost
zero at a specific value of the chemical potential, slightly above
μ = ε + U/2.2 Then the conductance remains at zero, goes
through a narrow peak (around μ = ε + U ), of a peculiar
shape (see below), and eventually rises sharply again to around
the Kondo value below the mid-point μ = ε + 3U/2. Since
the model is symmetric around that point, the same behavior
is reflected around μ = ε + 3U/2.

2It is interesting to note that resemblant conductance plots have been
numerically obtained in a different model, where the orbital states in
a carbon nanotube are mixed while tunneling to the orbital states
in the leads [40]. That model, which is most likely experimentally
inaccessible, can be mapped in some regime to the Hamiltonian
studied here, but the occupation oscillations found in that paper were
differently interpreted.

FIG. 2. (a) The occupation in each level (n1,n2) and the con-
ductance G, calculated using the Friedel sum rule, as a function
of chemical potential. Here, �1 = 0.03, �2 = 0, T = 10−7, and
U = 0.6. (b) The separate contributions to the conductance from the
wide (with coupling �1) and the narrow (�2) levels for �2/�1 = 0.3,
demonstrating a transition between the respective Kondo effects.
The occupations for the wide and narrow levels, rounded to a
representative integer, are written in parenthesis in each regime.

Figure 1(b) depicts how this effect depends on temperature,
for the case �2 = 0. At high temperature, T 	 T

(1)
K , one repro-

duces the CB peak structure. Note that in spite of only one level
being coupled to the leads, there are 4 CB peaks, all of similar
width, indicating that in each case transport is through the
strongly coupled level [3]. However, for smaller temperatures,
switching events lead to enhancement of the conductance by
the Kondo effect, but only in specific regions of the chemical
potential, giving rise to the sharp drops in the conductance
mentioned above. This peculiar behavior of the conductance
can be understood by combining the Friedel sum rule, with
the physics of LOS. Figure 2(a) depicts the occupations of the
two levels, for �2 = 0, at the lowest temperature of Fig. 1(b),
and the resulting conductance, using the Friedel sum rule for
the �2 = 0 case: G = e2/h

∑
σ sin2(πn1σ ).

The physics of LOS is relatively well understood [9].
Consider, for example, the limit of �2 = 0. When μ lies
between the first two CB peaks, there is a competition between
two configurations: the partially occupied wide level and the
fully occupied narrow level. Due to tunneling (�1), the energy
of the former is reduced by an electron process (e-process)—
tunneling of the electron in that level to the leads, and by a hole
process (h-process)—tunneling of an electron from the leads
into the dot, making it doubly occupied. For small width, the
energy of this configuration is E1 = ε − �

2π
[ln( D

ε
) + ln( D

ε+U
)].

On the other hand, the second configuration energy is reduced
by lead electrons of either spin tunneling into the empty wide
level, i.e., twice the h-process, E0 = −2 × �

2π
[ln( D

ε+U
)]. As

μ crosses the symmetry point μ = ε + U/2, the reduction in
energy due to the h-process is larger than that of the e-process.
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FIG. 3. Logarithmic temperature dependence of the conductance
for the curves in Fig. 1(a), at μ − ε = 0.2264, depicting the change
in the Kondo temperature from its SU(4) value to its SU(2) one.
The circles on each plot are the corresponding phenomenological fit
functions (see text). For the curves from right to left, the fitting
parameters were (n,s) = {(3,0.2), (2,0.25), (2,0.22), (2,0.23)} and
the Kondo scales Tk = {68,21,5,2} × 10−4.

As a result of this, it is eventually energetically favorable to
occupy the narrow level instead of the wide level, and there
is a LOS event. As can be seen in Fig. 2(a), there are several
more switching events for similar reasons. As electrical current
flows mainly through the strongly coupled level, a sudden
switch in its occupation will lead to an abrupt change in the
conductance, in accordance with the Friedel sum rule. Indeed,
given the occupations, the conductance calculated using the
Friedel sum rule [Fig. 2(a)] agrees perfectly with the direct
calculation of the conductance (Fig. 1). Similar arguments
can be applied to the regime where transport occurs through
both levels, e.g., the curve �2 = 0.3�1 in Fig. 1, where both
Kondo temperatures obey T

(i)
K 	 T . In this case, when the

occupations switch from around (n1,n2) = (1,0) to around
(0,1), there is a switch from the Kondo effect due to level
1 to that due to level 2 [Fig. 2(b)], resulting in a small hump in
the conductance, visible in Fig. 1(a). On the other hand, when
the occupations switch from (2,0) to (1,1), there is an abrupt
jump in the conductance from almost zero to the coexisting
Kondo value of G = 4e2/h.

Interestingly, Fig. 1(a) demonstrates that one can induce,
by changing the ratio �2/�1, a crossover from SU(4) to
SU(2) Kondo physics. Figure 3 depicts the conductance
as a function of temperature for the values of �2, which
were used in Fig. 1(a). In this figure, the crossover between
SU(4) physics to SU(2) physics with decreasing �2/�1 is
manifested in the reduction of TK from T

SU(4)
K to T

SU(2)
K

and the corresponding change in the slope. To study this
crossover in more detail, we employ a phenomenological
fitting function G = G0[1 + (21/s − 1)( T

TK
)n]−s , where TK, s

and n are phenomenological fitting parameters. This function
has been shown [30,34] to accurately approximate the numer-
ical renormalization calculations, with s 
 0.22 and n = 2 for
the SU(2) case, and s 
 0.20 and n = 3 for the SU(4) case.
Thus fitting the numerical data to this function (Fig. 3) allows
direct estimate of the Kondo temperature TK and the slope n.
Employing this procedure, we indeed find that the parameter n

changes from n = 3 to n = 2 as �2/�1 decreases. Moreover,
we can infer the Kondo scales to be TK = (68,21,5,2) × 10−4,
respectively, for the four curves of decreasing �2/�1. Equating
these values to the expression for the Kondo temperature

FIG. 4. Conductance as a function of chemical potential for
various �1, with �2 = 0, T = 10−7 and U = 0.6. The larger �1 =
0.09 curve exhibit three wide Kondo peaks.

for the SU(N) symmetric case T
SU (N)
K ∝ D(NρJ )1/Ne−1/NρJ

[35], with J = UV 2/[(ε − μ)(ε − μ + U )] we can deduce
the effective N , and verify the transition from N = 4 to
Neff = 3.1,2.4 and finally to N = 2. Thus the numerical results
confirm the possibility to tune the symmetry by the modifying
the ratio of �2/�1.

It is interesting to note the unusual shape of the conductance
peak at μ = ε + U (μ 
 0.6 in Fig. 1). Consider first the case
�2 = 0. As the μ approaches ε + U , the wide level starts to
be gradually filled, its occupation, and as a result, the total
conductance, rises as a tail of a Lorentzian of width �1. At
the switching event its occupation jumps to almost 2, and the
conductance start decreasing, again as a tail of a Lorentzian
of width �1. Thus the line shape of this peak will consist of
a cusp formed by the intersection of the tails of two shifted
Lorentzians. For a finite �2, the LOS events will occur on this
scale, and we expect an additional narrow Lorentzian of width
�2 on top of the line shape described above.

Unlike the perturbative calculation [9], which predicts the
LOS event exactly at the midpoint between the CB peaks,
μ = ε + U/2, in the NRG calculation the switching occurs at
a higher chemical potential, which shifts to even higher μ as
�1 increases, as can be seen in Fig. 4. In fact, for values of
�1 larger than 
 U/10, the anomalous CB peak at μ = ε + U

turns into a dip. For such large �1 the LOS events are at
μ = ε + U and μ = ε + 2U , where the narrow level becomes
occupied by one and two electrons, respectively.

Between these points the occupation of the wide level rises
continuously from n1 = 1/2 to n1 = 3/2, and drops sharply
back to n1 = 1/2 at the switching point. Thus, in this regime,
we find another atypical situation: three consecutive wide
Kondo peaks, corresponding to the three possible occupation
states of the narrow level.

The results shown so far were for the fully degenerate case,
ε1 = ε2 and U12 = U1 = U2. Figure 5 depicts the conductance
as one varies �ε ≡ ε2 − ε1, or U12/U (where U1 = U2 = U

were still equal). As �ε increases from zero [Fig. 5(a)],
the switching point between the first two CB peaks shifts
to higher chemical potential, until it reaches the second
CB peak and disappears, producing a seemingly standard
single-level conductance plot in the Kondo regime. As one
expects, at this value of �ε, as the dot becomes doubly
occupied (both electrons occupy the wide level), there should
be no Kondo effect. However, as can be seen in Fig. 5(a),
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FIG. 5. Conductance as a function of chemical potential for (a)
various differences in level energies �ε = ε2 − ε1 and (b) various
ratios between inter and intra dot interaction strengths U12/U . Curves
in (b) are centered around the particle-hole symmetry point U12 +
U/2. Plots were calculated with U = 0.6, �1 = 0.03, and T = 10−7.

there is re-entrance into the Kondo regime at higher chemical
potential (e.g., μ = 1 for �ε = 0.0075), again to disappear
and to re-emerge again (e.g., at μ = 1.6 for same �ε).
These re-entrances into the Kondo regime occur due to LOS:
whenever the narrow level gets occupied by an additional
electron, the energy of the strongly coupled level shifts up, and
its occupation is reduced to below double occupation, leading
to reappearance of the Kondo effect [9]. When �ε is negative
(not shown) one finds the mirror image of the positive-�ε

chemical-potential dependence, as now the narrow level is
preferentially filled. Thus, even when breaking the energy
degeneracy, one still finds the abrupt transitions and the re-
entrances that one observes in the degenerate case. Similarly,
when U12/U is reduced from unity the LOS still persists,
though the first switching event shifts to lower chemical
potential.

This makes the first plateau (where n2 = 0) narrower
and the regions where n2 = 1 wider. For smaller U12/U ,
when the second plateau becomes wide enough and the
second n2 = 0 region disappears entirely, the conductance
exhibits Kondo peaks that are again abruptly suppressed
and then re-emerge as the narrow level becomes occu-
pied, with each peak corresponding to a different value of
n2 = 0,1,2.

The observation of the various predictions made in this
paper can be checked in different physical setups. One such
system would be a single quantum dot, where the physics of
level occupation switching has already been demonstrated by
the universality in the transmission phase and its abrupt drop
between Coulomb-blockade peaks [10–12]. In such a system,
since both levels occupy the same dot, one expects U1 


U2 
 U12. Thus if one can reach a regime where the Kondo
temperatures associated with the two levels obey T

(1)
K 	 T 	

T
(2)
K , then one should observe the physics described in the

this paper. Experimentally, by increasing the coupling of the
quantum dot to the leads, the π/2 phase shift associated with
Kondo effect has indeed been observed [36,37], indicating that
T

(1)
K > T . However, in that regime, no abrupt phase drops have

been observed, indicating that in this regime the condition T >

T
(2)
K has not been met. In order to fulfill this latter condition,

one may either tune the temperature to that regime, or select
a narrow level of a smaller �2. Another relevant example is
transport through nanotube quantum dots [38,39], where each
orbital level is fourfold degenerate. Again in this setup one
expects, for the same reason, that the Coulomb energies will be
of the same order of magnitude. By appropriate application of a
magnetic field and gate voltage one can tune the system to have
simultaneous transport through two different orbital states,
with different coupling to the leads. If the Zeeman splitting is
much larger than the coupling of the levels to the leads, then
this system will display the orbital SU(2) Kondo effect, as has
been observed in Ref. [38]. On the other hand, if the width of
the strongly coupled level is larger than the Zeeman splitting,
one may observe the abrupt disappearance and re-emergence
of the anomalous SU(4) physics detailed in this paper. Another
relevant physical system is the double quantum dot system that
was utilized to observe the SU(4) Kondo effect [29,30]. In this
system, the two separate quantum dots play the role of the
two levels in our theory. Experimentally, one can use gate
voltages to tune the QDs energies and couplings to the leads,
i.e., the parameters �i and εi . Thus, if one tunes to the already
observed SU(4) fixed point, and then gradually reduce the ratio
�2/�1, we predict a gradual transition from SU(4) Kondo
to SU(2) Kondo behavior and the eventual emergence of the
abrupt suppression and re-emergence of the Kondo peak, as
detailed in Fig. 1. One problem that may be relevant to the
two-dot setup is that the interdot Coulomb energy U12 is
typically smaller than the Ui , the intradot one. In principle,
in order to achieve degeneracy, one may tune the difference
in energies of the two dots, to compensate for the differ-
ence in the Coulomb energy. This physics will be explored
elsewhere.

To conclude, we have presented physical arguments and
numerical renormalization-group calculations that demon-
strate a dramatic suppression and re-emergence of the
SU(4)/SU(2) Kondo effect in quantum dots that contain two
spin-degenerate levels, with different couplings to the leads.
Since this has been claimed to be a generic phenomenon
in quantum dots and molecular junctions, we expect our
results to have a wide range of applicability. In particular, the
experiments that have already observed SU(4) Kondo effect,
either in carbon nanotube quantum dots, or in semiconductor
quantum dots, could be employed to study the physical
regime discussed in this paper, and to critically check our
predictions.

We thank P. Moca and G. Zarand for scientific discussions
and help with the DM-NRG code. YM acknowledges support
from ISF Grant No. 292/15.
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