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Tunneling spectroscopy of disordered two-dimensional electron gas in the quantum Hall regime
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The tunneling density of states (TDOS) into a disordered two-dimensional electron gas is calculated in the
quantum Hall regime, including electron-electron interactions. Combining general arguments and a detailed
Hartree-Fock calculation, it is demonstrated that the quenching of the kinetic energy by the applied magnetic
field leads to several universal features, nearly independent of the disorder potential, corresponding to the addition
and removal spectrum in the valleys and tips of the disorder potential. These features are manifested as “sashes”
in the TDOS spectra, and are in quantitative agreement with recent measurements. It is predicted that more such
features will become observable with decreasing potential fluctuations.
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The quantum Hall effect (QHE) has been at the forefront
of science in the past three decades,1,2 as the interplay
between high magnetic field, disorder, and electron-electron
(e-e) interactions led to a plethora of unique phenomena, in
particular, different types of fractionally charged, possibly
non-Abelian quasiparticles.3,4 As there is great interest in
the experimental search for such elementary excitations,
it is imperative to understand which of the experimental
observations indeed indicate such unique physics, and which
can be explain by more mundane physics. In this spirit
we analyze in detail recent measurements of the tunneling
density of states (TDOS) into the bulk of a QHE system,
which were reported by Dial et al.5 using time domain
capacitance spectroscopy.6 These measurements revealed a
set of TDOS features (“sashes”), comprising high-energy
bands, whose bottom decreases linearly with density. These
observations led to some excitement, as one of the suggested
explanations of these features involved alternate types of
excitations in the quantum Hall regime. The ramifications
of such yet unseen excitations on the physics of the QHE
may be far reaching. However, we present here a possible
mechanism that quantitatively reproduces these observations
based on standard quantum Hall physics in the presence of e-e
interactions without invoking any such mechanism. Moreover,
this mechanism demonstrates that these features are nearly
universal, independent of the details of the disorder potential.

Three energy scales determine the measured spectrum:
the cyclotron energy h̄ωC , the disorder potential fluctuations
�Vdisorder, and the Coulomb interaction between electrons,
characterized by e2/εlB . Here ωC = eB/m∗, e the electron
charge, B the applied magnetic field, m∗ the effective mass, ε

the sample dielectric constant, and lB = √
h̄/eB the magnetic

length (with h̄ = h/2π , h being Planck’s constant). The
picture described below is valid under strong magnetic fields,
and assumes e2/εlB,�Vdisorder < h̄ωC . The electron density is
described by the filling factor ν = BA/φ0, where A is the sample
area and φ0 = hc/e is the quantum flux (c is the velocity of
light). In addition to the magnetic length, there are two other
length scales, the distance lG to the metallic gate (from which
the electron tunnel), and the thickness d of the two-dimensional
electron gas (2DEG). lG screens the e-e interactions and the
potential fluctuations, thus leading to the fact that electrons
localized at different dips of the disorder potential are only

weakly interacting, while the interaction between electrons
within the same potential dip is practically unscreened. Thus,
for small ν the effective Hamiltonian for the system is given
by

H =
∑
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The first sum considers separately local minima in the disorder
potential, and the sum over m and m′ are over the eigenstates
of each such potential dip (here, cD

m,σ
⊥, cD

m,σ , and nD
m,σ are

the creation, annihilation, and number operators for these
states, respectively). The energy associated with occupying
such states arises from the local disorder potential V m

D , and the
Coulomb interaction V mm′

C with other electrons occupying the
same valley. We expect the lowest-energy wave functions to
span an area of ∼l2

B and hence V 00
C ∼ e2/εlB , up to a correction

due to the finite thickness d. The last term in (1) corresponds
to extended states, not localized by a specific disorder well,
and giving rise to a continuous energy spectrum.

Following the convention used in Ref. 5, where the Fermi
level EF is set to E = 0, unoccupied states give rise to an
E > 0 band, corresponding to adding electrons to the empty,
disorder-broadened Landau level [I in Fig. 1(a)]. This band
will persist for higher filling factors, but the top of the band
will decrease linearly, as EF rises with ν. Two additional
features will become relevant for the TDOS with increasing
ν: Removing an electron from an occupied state gives rise to
an E < 0 band [II in Fig. 1(a)], and adding a second electron
(of opposite spin) to an occupied state, with the cost of an
additional Coulomb energy V 00

C , effectively creates a “second
Hubbard band” [H1 in Fig. 1(a)]. Since V 00

C is independent of
density for high magnetic fields, the high-energy band should
replicate the band of occupied states, shifted by the constant
energy V 00

C .
As ν increases, the bottom of the higher Hubbard band

should extrapolate to zero at ν = 1, since there all the
single-particle states are occupied and the Fermi energy lies
at the bottom of the second Hubbard band. The whole TDOS
structure for ν < 1 is reflected about the E = 0 axis for ν > 1
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FIG. 1. (Color) (a) Schematic of the TDOS dependence on the
filling factor. For ν = 1, the TDOS comprises a disorder-broadened
band (I). Energies are defined with respect to the chemical potential.
For small filling factors, populated states (II) comprise electrons
sitting at the ground state of disorder wells. Under strong magnetic
field, the wave functions of the lowest-energy states in a disorder
potential well are only weakly dependent on details of the disorder
potential. A second Hubbard band is created (H1), resulting from the
strong Coulomb interaction of adding an opposite-spin electron to an
occupied state. Arrows indicate spin orientation. (b) Schematic of the
TDOS dependence on the filling factor, including secondary bands
arising from interactions with higher angular momentum eigenstates.
In addition to the high-energy band H1, a lower band (H2) arises from
the injection of an electron into the more extended, higher-energy
eigenstate. A higher-energy band (H3) is expected for larger filling
factors, corresponding to the addition of an electron to a disorder
potential valley already occupied by two particles.

due to particle-hole symmetry. We identify the entire gap to the
second Hubbard band as the “ν = 1 sash” reported in Ref. 5.

In principle, this description should be augmented by the
physics of exchange and correlations which become relevant
as ν increases. Close to ν = 1 a strong exchange gap7–9 arises
between the two spin types [III in Fig. 1(a)]. The energy to add
a neighboring same-spin electron becomes lower, leading to
an abrupt upshift of the TDOS of the minority spins. We claim
that the ingredients described above and modeled in detail
below are enough to understand the experimental observations,
indicating that electronic correlations, leading, for example,
to the fractional quantum Hall effect, are not necessary to
explain the experiment. An additional feature observed in the
tunneling measurements is a gap near E = 0. This gap arises
from effective impedance to the tunneling, due to the required
redistribution of charge in the system in order to allow for the

injection of an electron.10–12 This effect is well understood,
and will not be modeled here.

A quantitative estimate of the characteristic gap to the
second Hubbard band V 00

C can be obtained by assuming
a specific form for the ground state in a specific valley.
Assuming, for simplicity, radial symmetry near the bottom of
the valley, the Hartree energy between the two spins occupying
this state, for a 2DEG well width of 23 nm (Ref. 5) is
V 00

C ≈ 3.5 meV for B = 4 T, in excellent agreement with the
measurements.5 Furthermore, this energy gap scales as B1/2,
in agreement with the reported observation.

Additional lower-energy bands may be created, arising
from the injection of electrons into higher-energy states in
the well [H2 in Fig. 1(b), and m′ > 0 in Eq. (1)]. Experimental
observation of such features requires that the energy cost
associated with this tunneling process be larger than the
disorder broadening. Importantly, the short distance between
the tunneling electrode and the 2DEG (Ref. 5) acts to lower
the interaction energy with higher-energy states, as these are
spatially more extended [see the inset to Fig. 1(b)]. Calculating
the Coulomb interaction between two electrons occupying
the two lowest-energy states gives V 01

C ≈ 2 meV at 4 T and
V 01

C ≈ 2.8 meV at 8 T, again in excellent agreement with
the measured feature termed the “2CF sash” in Ref. 5. The
exchange interaction between different eigenstates is very
weak, so that in the limit of small filling factors no discernable
separation is expected between the secondary bands arising
from different spins. An important attribute of the V 01

C gap is its
symmetry at approximately ν = 1/2 [IV in Fig. 1(b)], reflecting
the electron-hole symmetry in the majority-spin band. Again,
this property is observed in the measurements5 (“ν = 1/2
sash”). In addition to the low-energy bands, higher-energy
features can emerge, in principle, which correspond to the
addition spectrum of an electron to a location that is already
doubly occupied [H3 in Fig. 1(b)]. These features are not
observed in the measurements, probably due to their stronger
dependence on the local disorder potential profile, smearing
them beyond the experimental resolution limit.

The actual calculation of the TDOS into a two-dimensional
system in the presence of strong magnetic field, disorder,
and e-e interactions is numerically challenging. Here we
present a restricted Hartree-Fock calculation of the TDOS into
a quasi-one-dimensional system, and demonstrate that it is
sufficient to reproduce the physics described above, when the

FIG. 2. (Color) (a) The Hartree-Fock model employed to study the influence of Coulomb interactions on the tunneling density of states.
(b) The background disorder potential (black line) gives rise to a broad tunneling density of states. When an electron occupies a potential valley,
the resulting Coulomb interaction creates high-energy bands for additional occupation of the same site with an opposite spin electron, as well
as occupation of nearby sites. (c) The resulting tunneling density of states is comprised of the low-energy disorder-broadened band, and several
high-energy bands corresponding to the discrete energies to occupy neighboring states of an occupied site.
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FIG. 3. (Color) (a) A Hartree-Fock calculation of the TDOS, when the screening length is comparable to the magnetic length (lsc ≈ lB ).
White features correspond to high TDOS. The strong feature marked by the dashed blue line is a “second Hubbard band” created due to the
added energy required to inject a particle into a disorder well already occupied by an opposite spin particle. (b) Calculated TDOS when the
screening length is larger than the magnetic length (lsc ≈ 4lB ). Additional high-energy features arise due to interactions between neighboring
states (see the text).

width of the wire L corresponds to the quantum confinement
of the wave function in the two-dimensional system (L ∼
50 nm). Due to the quenching of the kinetic energy, the
Hamiltonian contains only two terms, the disorder potential
and the exponentially screened Coulomb interactions. The
calculation is limited to states in the lowest Landau level, and
the electronic wave functions are assumed to be eigenstates
of the disorder-free Hamiltonian (in the Landau gauge).
Disorder is introduced in the model by randomly determining
a background potential profile. Calculations involve averaging
over many (several thousands) such potential instances, so
as to avoid any disorder-specific effects. The model assumes
periodic boundary conditions in the transverse direction,
quantizing the separation between neighboring states to �x =
φ0/BL [Figs. 2(a) and 2(b)]. Since the wave functions are
not calculated self-consistently, this approximation effectively
assumes that the disorder profile varies only in one direction.
The role of higher-energy eigenstates is played by farther-away
neighbors, giving rise to lower-energy bands similarly to the
qualitative description [see Figs. 2(b) and 2(c)].

The TDOS is given by the tunneling current

I (V ) ∝
∫

[f (ε − eV ) − f (ε)]ν2DEG(ε; T )νM (ε)dε, (2)

where ν2DEG(ε;T) and νM (ε) are the density of states in the
probed 2DEG and in the metallic electrode, respectively, f(ε)
is the Fermi function, and V is the bias applied between the
metallic electrode and the 2DEG. We assume, for simplicity,
that the density of states in the metallic electrode is inde-
pendent of energy, while that of the 2DEG, as mentioned
below, may depend on temperature, due to the interactions.
Figure 3 presents the results of the calculation. In Fig. 3(a),
the screening length is assumed equal to the magnetic length,
strongly attenuating the Coulomb interactions between states
at different sites and reproducing the first Hubbard band
alone (dashed blue line). For longer screening lengths [4lB in
Fig. 3(b)], two additional features are observed, corresponding
to the described bands H2 and H3. Additional features resulting

from considering farther-away occupied sites are attenuated by
screening and disorder.

An important ingredient in the reported experimental
results5 is a strong temperature dependence of the high-energy

FIG. 4. (Color) (a), (b) Simplified model for the 2DEG density
of states, presenting the nontrivial influence of temperature. (a) For
T = 0, all states below the Fermi level (set here to E = 0) are occupied,
giving rise to a duplicate high-energy band H1. (b) For T0, occupation
of the low-energy states is broadened. The high-energy second
Hubbard band duplicates this broadening. (c) The calculated TDOS at
T = 0 (blue) for low filling factor of ν = 0.03. A temperature increase
to 4 K smears the TDOS structure, but the characteristic structure
is still observable (red). Considering, in addition, the influence of
the heated charge distribution in the tunneling electrode renders this
structure undistinguishable (green).
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features that are shown to vanish for temperatures significantly
smaller than the energy gap V 00

C . Our model reproduces this
strong temperature dependence: besides the trivial broadening
of the Fermi function in the metal gate, temperature also
affects the occupation of states in the 2DEG. Since the
high-energy features (the higher Hubbard band) depends on
these occupations, they will be sensitive to small temperature
variations.

Thus, temperature influences the observed signal in two
ways: First, because of the Fermi function population, the
occupations of the 2DEG and the metallic electrode are
modified from a sharp profile in which all states below the
Fermi energy are populated and no states above it are [Fig. 4(a)]
to a smooth occupation distribution [Fig. 4(b)]. Second, since
the TDOS of the second Hubbard band directly mirrors the
occupied state distribution, it will be similarly broadened.
Note that this smearing of the high-energy band is independent
of the energy gap V 00

C . While the high-energy bands remain
distinguishable when considering the temperature smearing
arising from each of these mechanisms alone, their combined
effect leads to the complete vanishing of these features.

Including temperature into the calculation, we indeed find
that the high-energy features are strongly smeared [red line in
Fig. 4(c)]. Allowing, in addition, for the temperature smearing
of the metallic electrode we find the high-energy structure
becomes completely indiscernible [green line in Fig. 4(c)],
reproducing the reported observations.5 While this model
should be used with caution, due to its quasi-one-dimensional

nature, the qualitative and quantitative agreement with the
picture presented earlier and the experiment is encouraging,
and demonstrates that fractional-QHE physics, resulting from
electronic correlations, is not necessary to understand these
particular features.

Recently an alternative possible explanation for Ref. 5
was given by MacDonald.13 There, the appearance of high-
energy sashes in the TDOS is explained based on correlation
physics. Similarly to our analysis, Macdonald considers the
low-density limit, and shows there is an energy gap when
adding a same-spin electron to a region already occupied
by an electron. The energy gap is explained in terms of the
different correlation energies of the possible ground states of
two same-spin and two opposite-spin electrons. Due to the
complexity of the model, the mathematical analysis of the
resulting energy gap is far more thorough in Ref. 13 than in our
description here, and shows the gap can be described in terms
of Haldane pseudopotentials. However, we believe the simple
picture presented above provides a consistent description of all
experimental observations without requiring such an elaborate
formalism and specific mechanism.

To conclude, we have demonstrated that standard quantum
Hall physics in the presence of interactions can explain the
features observed in the experiment, demonstrating the caution
one has to employ in interpreting experimental data by more
exotic physics.
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