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A recent experiment �M. Sigrist et al., Phys. Rev. Lett. 98, 036805 �2007�� reported switches between 0 and
� in the phase of Aharonov-Bohm �AB� oscillations of the two-terminal differential conductance through a
two-dot ring with increasing voltage bias. Using a simple model, where one of the dots contains multiple
interacting levels, these findings are explained as a result of transport through the interferometer being domi-
nated at different biases by quantum dot levels of different “parities” �i.e., the sign of the overlap integral
between the dot state and the states in the leads�. The redistribution of electron population between different
levels with bias leads to the fact that the number of switching events is not necessarily equal to the number of
dot levels, in agreement with experiment. For the same reason, switching does not always imply that the parity
of levels is strictly alternating. Lastly, it is demonstrated that the correlation between the first switching of the
phase and the onset of the inelastic cotunneling, as well as the sharp �rather than gradual� change of phase
when switching occurs, give reason to think that the present interpretation of the experiment is preferable to the
one based on electrostatic AB effect.
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I. INTRODUCTION

The phase of a transmission coefficient through a quan-
tum dot �QD� can be experimentally studied using an
Aharonov-Bohm �AB� interferometer with the QD embed-
ded in one of its arms.1,2 Since the early experiments,1 a
large body of theoretical work have been devoted to study of
the rich phase behavior experimentally discovered. When
studied in two-terminal geometry, such an interferometer ex-
hibits “phase rigidity,” i.e., the AB oscillations of conduc-
tance have either maximum or minimum at zero magnetic
field, which corresponds to a transmission phase equal to 0
or �. Phase rigidity has its origins in time-reversal symmetry
�i.e., unitarity of the transmission matrix�.3 In “open”
interferometers4 or two-terminal interferometers in nonequi-
librium conditions,5 the phase rigidity may be broken, i.e.,
the phase may change continuously. Particularly interesting
are phenomena connected to “phase lapses,” which are
abrupt changes of the transmission phase as a function of the
plunger voltage in the Coulomb blockade valley �i.e., be-
tween two successive Coulomb blockade resonances�. While
there has not been yet general agreement about the physics
underlying this phenomenon,6–8 it is believed to be the con-
sequence of the system undergoing transitions between re-
gimes where transport is dominated by different levels.6–9

Recently, an interesting new phase phenomenon has been
observed10 in an AB interferometer under nonequilibrium
conditions �i.e., with finite bias applied between the source
and the drain�. In this experiment, the differential conduc-
tance of a two-terminal interferometer was measured as a
function of the bias voltage and magnetic flux through the
interferometer. Both arms of the interferometer contained
quantum dots, which were tuned to the Coulomb blockade
regime, thus allowing only for cotunneling transport. As a
function of bias, several switches of the phase of the AB
oscillations between the values 0 and � were observed with
the first switch coinciding with the onset of inelastic cotun-
neling in one of the dots.

A possible explanation for this effect may be as the result
of electrostatic AB oscillations, as was studied in Refs. 11
and 12. Some features of the experiment, however, are in-
consistent with such an explanation. In particular, as men-
tioned above, there is apparent correlation between the onset
of the phase switching and the onset of inelastic cotunneling.
In addition, the phase of AB oscillation, which at finite bias
is not limited by symmetry to 0 or �, is in fact, changing
abruptly between these values as a function of bias, whereas
in Ref. 12 it changed smoothly.

An alternative explanation �motivated by “population
switching” studies�6,7,9 is that, depending on the bias voltage,
the elastic contribution to the transport through the quantum
dot may be dominated by different orbital states within the
dot. Depending on the sign of the matrix elements between
the state in the dot and the states in the leads13 �“parity” of
the state�, an electron can acquire phase 0 or �, additional to
the other phases acquired when traversing the interferometer.
This results in AB oscillations having maximum or minimum
depending on the parity of the current-transmitting state.
Thus, if the two adjacent QD states have different parities,
the phase switching may occur in the regimes when the state
dominating the coherent transport changes from one to the
other, which may happen with increasing bias.

From the simple theory described above, one would na-
ively expect that, if more than two levels in the dot are en-
ergetically accessible, multiple switching events would occur
only when the levels have alternating parities, and the num-
ber of switching events would then be equal to the number of
parity changes. This presumption contradicts the experiment
where the number of switchings can, in fact, be greater than
the number of inelastic onsets,10 i.e., greater than the number
of the QD levels involved. In what follows, we will show
that neither of these expectations is quite true, and a simple
model can reproduce all the features of the experiment10 as a
result of redistribution of electron population between QD
states. We also point out that at finite bias, “population in-
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version” is not a necessary condition for the phase switching
to be observed.

The plan of this paper is as follows: In Sect. II, we first
introduce our model of the interferometer, which, after a
Schrieffer–Wolff �SW� transformation,14 allows us to study
cotunneling processes in terms of a single particle scattered
from a local pseudospin degree of freedom. In Sec. III, this
model is solved in terms of rate equations and the differential
conductance is obtained as a function of the Aharonov-Bohm
flux threading the interferometer and source-drain bias. We
compare results with the experiment, showing, in particular,
that the number of switching events can be greater or less
than the number of levels, whose energy spacing is within
the bias window. We discuss how the switching behavior
may occur even when the parity of levels is not strictly al-
ternating, and compare our results with the electrostatic AB
scenario.

II. MODEL

A. Hamiltonian

We describe the interferometer by a tight-binding model,
schematically shown in Fig. 1. The Coulomb interaction is
present in one of the dots, which contains several electron
orbitals �interacting arm�, whereas the dot in the other arm of
the interferometer �reference arm� has only one level. The
chemical potential is set out of resonance, so that the trans-
port via the interacting arm occur only by means of cotun-
neling processes. The reference arm can be characterized by
its one-particle transmission coefficient, and placing a level
in it is a matter of computational convenience.

In the present experimental context, the Kondo effect is
irrelevant and its effects will be neglected in the present ap-
proach. In addition, for computational simplicity, we assume
that each level carries a different quantum number, which are
not mixed in the leads �i.e., we disregard difference between
spin and orbital channels�. The results obtained below can be
shown to be correct also in the case when the number of
channels in the leads is not equal to the number of states in
the quantum dot �e.g., when all the levels in the dot are
coupled to the same lead channel�. However, since the dot
levels in such a system are connected via tunneling into the
leads, the correct calculation is more complicated and re-
quires a decomposition procedure similar to that developed
in Ref. 15.

Cotunneling processes can be described as second order
transitions between different states which contain exactly
one electron in the dot.16 By performing a Schrieffer–Wolff
transformation14 �Appendix A�, we can reduce the problem
to that of one-particle scattered by local pseudospin degree
of freedom. As a result, we can describe the system by the
following �one-particle� Hamiltonian:

H = HL + HR + HD + Wref + W2 + W4 + W6, �1�

where

HL = �
�

�
n=−�

−1

�VLc�,n
+ c�,n − t�c�,n−1

+ c�,n + c�,n
+ c�,n−1�� ,

�2a�

HR = �
�

�
n=1

+�

�VRc�,n
+ c�,n − t�c�,n+1

+ c�,n + c�,n
+ c�,n+1�� ,

�2b�

HD = �
�

��n�, �2c�

Wref = − �
�

��rrc�,1
+ c�,1 + �lrc�,−1

+ c�,1 + �rlc�,1
+ c�,−1

+ �llc�,−1
+ c�,−1� , �2d�

W2 = − �
�

�vrr
� c�,1

+ c�,1 + vlr
�c�,−1

+ c�,1 + vrl
�c�,1

+ c�,−1

+ vll
�c�,−1

+ c�,−1� , �2e�

W4 = �
�,���

�vrr
��c�,1

+ d�
+d�c�,1 + vlr

��c�,−1
+ d�

+d�c�,1 + � �2f�

�vrl
��c�,1

+ d�
+d�c�,−1 + vll

��c�,−1
+ d�

+d�c�,−1� , �2g�

W6 = − �
�,���

�vrr
��n�c�,1

+ c�,1 + vlr
��n�c�,−1

+ c�,1 + vrl
��n�c�,1

+ c�,−1

+ vll
��n�c�,−1

+ c�,−1� . �2h�

with n�=d�
+d�. Here, � and � refer to the different dot levels

and/or lead channels, whereas n is the tight-binding site label
with n�0�n	0� in the right �left� lead. c�,n

+ �c�,n� creates
�annihilates� an electron in channel � on site n, whereas
d�

+�d�� creates �annihilates� electron in state � in the quan-
tum dot with energy ��. VL and VR are the potentials applied
to the leads, related to the chemical potentials as 
L,R=�F
+VL,R ��F is the Fermi energy�, and t is the hopping integral.

The terms HL and HR describe noninteracting leads, HD is
the Hamiltonian of the dot, and W2 and W6 describe elastic
cotunneling through the quantum dot when it is empty or
occupied by one electron, respectively. W4 describes inelastic
cotunneling, i.e., the processes when an electron incident in
channel � is scattered into channel �, while the dot changes
its state from � to �. Wref describes tunneling through the
reference arm, which we have taken as channel independent.
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L
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L
V

R
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FIG. 1. �Color online� Schematic diagram of the modeled de-
vice. Two infinite tight-binding chains, possibly with different
chemical potentials, are coupled to an Aharonov-Bohm interferom-
eter, one of the arms of which contains a multilevel quantum dot.
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The AB phase, �AB, can be attached to the matrix elements
for the reference arm: �rl=�

lr
* = ��rl�exp�i�AB�. The explicit

dependence of the tunneling parameters v and � on the origi-
nal parameters appear in Appendix A.

B. Scattering matrix

The energy of the system “QD+incident electron” is con-
served, so we can start with calculating the scattering matrix,
which we do by solving the Schrödinger equation,

H��� = E��� , �3�

where E is the energy of the system QD+incident electron,
and the wave function can be written as

��� = �
�,�
� �

n=−�

−1

�AL
��eiq�n + BL

��e−iq�n�d�
+c�,n

+ + �
n=1

+�

�AR
��eik�n

+ BR
��e−ik�n�d�

+c�,n
+ 	�0� , �4�

where �0� is the state with no particles. The wave vectors q�

and k� are defined as solutions of the equations

E = �� + VL − 2t cos q�,

E = �� + VR − 2t cos k� �5�

��L�q�=VL+�q and �R�k�=VR+�k, where �k=−2t cos k are
electron tight-binding eigenenergies in the two leads�. Let M
be the number of the channels, then AL, AR, BL, and BR are
vectors with M2 components and the amplitude scattering
matrix can be defined as �more details are given in Appendix
B�


BL

AR
� = Ŝ
AL

BR
�, Ŝ = 
 ŜLL ŜLR

ŜRL ŜRR

� . �6�

In order to normalize the wave function and the scattering

matrix to unit incident flux, we multiply Ŝ by velocity ma-
trices

Ŝ = û1/2Ŝû−1/2, û = 
ûL 0

0 ûR
� , �7�

where

uL
�,�;���� = �,���,��2t sin q�,

uR
�,�;���� = �,���,��2t sin k�. �8�

C. Transition rates

In order to get the rate equations, we write down the rate
at which electrons incident from channel � of lead 
�
=L ,R� are being scattered into channel �� of lead 
�,
whereas the impurity changes its state from � to ��. �In fact,
only two types of processes are possible: �a� elastic scatter-

ing, when ��=�, ��=�, and �b� inelastic scattering, when
��=�, ��=� ������.

W
�←

����←�� =

1

2�
�

−2t

2t

d��
−2t

2t

d��f0����1 − f0�����

��S
�;

����;���� + V
 + ����2�� + V
 + �� − ��

− V
� − ���� . �9�

Here, we wrote explicitly the dependence of the scattering
matrix on the energy of the system QD+incident electron,
whereas f0���=1 / 1+exp���−�F� / �kBT��� is the Fermi distri-
bution function; VL−VR=V is the bias voltage.

Level occupation numbers. The resulting rate equations,
describing transitions between different states of the quan-
tum dot, are

d

dt
P��t� = �

����

�w�;��P���t� − w��;�P��t�� , �10�

w�;�� = �

,
�

�
�,��

W
;
�
��;���� = �


,
�

W
;
�
���;���, � � ��,

�11�

where P��t� is the probability that the electron occupying the
quantum dot is in the state with energy ��. In a stationary
state, the occupation numbers P� can be calculated from
equations

d

dt
P��t� = 0 �12�

supplemented by the normalization condition for the total
number of electrons occupying the dot.

�
�

P� = 1. �13�

Current. The lead-to-lead current is given by I= Icoh
+ Iincoh as follows:

Icoh = �
�,�

P��WRL
��;�� − WLR

��;��� , �14a�

Iincoh = �
�,�

P��WRL
��;�� − WLR

��;��� , �14b�

where we have explicitly separated the elastic and inelastic
contributions.

The differential conductance is defined as

G�V,�AB� =
�I�V,�AB�

�V
, �15�

where �AB=2�� /�0 is the Aharonov-Bohm phase �propor-
tional to the magnetic flux, �, divided by the magnetic flux
quantum, �0�hc /e�.

III. RESULTS

We provide results obtained from the above equations for
an interferometer that has three levels in the interacting
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quantum dot. For the sake of clarity, we chose �3−�2=2��2
−�1�, so that inelastic cotunneling processes involving levels
1 and 2 begin at lower bias than the cotunneling processes
that involve levels 2 and 3. The couplings of the levels to the
leads increase with their energies: �2 /�1�3.2 and �3 /�1
�9. The complete set of parameters appear in Appendix C.

Our main result is Fig. 2, which shows a plot of the os-
cillating component of the differential conductance as a func-
tion of the magnetic flux through the AB ring �horizontal
axis� and the bias voltage applied to the interferometer �ver-
tical axis�. For comparison with the experimental results, we
normalized the conductance in the same way as in Ref. 10,
i.e., the quantity shown is

g�V,�AB� =
G�V,�AB� − Gmean�V�

Gmean�V�
, �16�

where Gmean�V� is the differential conductance averaged over
the period of the magnetic flux, �AB. Comparing this figure
to Fig. 3 of the experiment by Sigrist et al.,10 we observe the
same characteristic features: �i� depending on the bias volt-
age, AB oscillations of the differential conductance may
have maximum or minimum at zero magnetic flux; �ii� the
amplitude of the conductance oscillations relative to the
nonoscillating background decreases with increasing bias;
and �iii� the number of switching events �i.e., instances when
conductance AB oscillations change from maximum at �AB
=0 to minimum or vice versa� is not equal to the number of
inelastic onsets �in the case at hand, we have four switchings,
but only three inelastic onsets, corresponding to �2−�1, �3
−�2, and �3−�1, respectively�. Let us discuss these features
in greater detail.

The mean value and the oscillating component �at zero
magnetic flux� of the differential conductance as functions of
bias are shown in Figs. 3 and 4, respectively. In Fig. 3, one
can see clearly the three inelastic onsets, that is, three sharp

increases of conductance at bias voltage equal to spacing
between any two of the three levels in the system �arrows
corresponding to V=�i−� j�. For clarity, we show on the same
plot the first derivative of the conductance and the phase of
conductance oscillations �both multiplied by constant fac-
tors�. The phase is defined as the sign of the AB oscillations
relative to Gmean, i.e., it is � if the oscillations have maxi-
mum around zero magnetic flux and 0 otherwise. It is nec-
essary to point out that at finite bias the Onsager–Büttiker
symmetries for a two-terminal structure do not require that
the phase should be restricted to 0 ,�;5 therefore, our defini-
tion of phase is not mathematically strict. Nevertheless, for
the set of parameters used here �see Fig. 2� an extremum is
found at zero phase even at finite voltage.

The oscillating component of the conductance �Fig. 4�
changes its sign four times. The first change occurs when the
bias reaches value V=�2−�1, i.e., when inelastic cotunneling
process becomes possible, in which case an electron occupy-
ing level 1 leaves the dot, whereas another electron can enter
the dot and occupies level 2. While such processes do not
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v
o
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g
e
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V
)

g(V,�)

FIG. 2. �Color online� Normalized oscillating part of the differ-
ential conductance, Eq. �16�, as a function of magnetic flux and bias
voltage for the set of parameters appearing in Appendix C. The
conductance maximum as a function of flux, as zero bias, becomes
a minimum and then a maximum again, as bias is increased.
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FIG. 3. �Color online� Differential conductance �solid blue�, its
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as functions of bias voltage �dotted black�. The onset of the inelastic
processes, corresponding to V=� j −�i �arrows�, is evident.
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contribute to the coherent AB oscillations �they change the
state of the dot, thus leaving “trace in the environment”�,17

they play an important role in changing the occupation of the
different levels of the dot. In particular, population of level 2,
which was for small bias occupied only due to finite tem-
perature, increases, as can be seen in Fig. 5, where we show
how the populations of all three levels in the interacting arm
of the interferometer depend on the applied bias �at �AB=0�.
AB oscillations of conductance result from elastic cotunnel-
ing processes, in which electron can tunnel through any of
the dot levels. The relative weights of these processes are
proportional to the probability for the respective level to be
occupied, and therefore for low bias all tunneling processes
are suppressed, except those that happen via level 1 or via
intermediate state in which the dot is occupied by two elec-
trons �the latter will be suppressed, if the Coulomb interac-
tion is large�. Thus, the increase of the occupation of level 2
enhances the weight of the corresponding elastic cotunneling
processes, whose contribution to AB oscillations has phase
opposite to that of level 1 �due to the opposite parity of these
two levels�. Due to stronger coupling of level 2 to the leads,
the oscillations of opposite phase eventually outweigh those
due to level 1 and phase switching occurs.

This interplay between the level coupling strength and its
population leads to some interesting effects that happen
when the bias is further increased. At the second inelastic
onset, i.e., when V=�3−�2, occupation of level 3 starts to
grow due to transitions from level 2. However, the bias is
still not high enough to excite electrons from level 1 to level
3 directly; therefore, level 3 is still being intensively depopu-
lated by transitions to level 1, which results in simultaneous
increasing of the population of levels 1 and 3, and saturation
�or even a decrease� of the population of level 2. Therefore,
the second switching of AB phase occurs due to the change
in the relative populations of levels 1 and 2. It is necessary to
stress the role of the coupling strengths on the population
redistribution: For low temperatures, the population of level
3 may be extremely small, but the switching still occurs
since level 2 is effectively depopulated by transitions to level
1 via level 3.

Further increase of the bias leads to increase of the popu-
lation of level 2, which again outweighs that of levels 1 and
3 and causes the third switching. Finally, at the biases greater
than �3−�1, direct population of level 3 from the lowest en-
ergy level 1 starts and the contribution of transport with level
3 occupied eventually takes over all other contributions and
results in the fourth switching occurrence.

The contributions of different levels to the AB oscillations
are shown in Fig. 6. Let us also point out that a contribution
of a level to AB oscillations may not always have the same
sign. Thus, there is a regime in which two levels of different
parities �levels 2 and 3� give the same sign contribution to
AB oscillations. The reason for that is finite value of Cou-
lomb interaction, which allows for two cotunneling pro-
cesses: �a� hole tunneling via the occupied level �with inter-
mediate state being an empty dot�, and �b� electron tunneling
via an unoccupied level �with intermediate state being the
dot twice occupied�. These two processes have energy de-
nominators of different signs. In other words, the former pro-
cess involves exchanging the two electrons and therefore
contributes with the sign different from the latter process.
Thus, for example, the contribution of level 3 to the AB
oscillations is negative as long as this level is unoccupied,
but it becomes positive when the population of this level
becomes nonzero. This change of sign does not occur in the
limit of large Coulomb interaction, when only hole tunneling
�or only electron tunneling� is possible.

Coherent �elastic cotunneling� and incoherent �inelastic
cotunneling� contributions to the conductance are depicted in
Fig. 7. Inelastic cotunneling never contributes to AB oscilla-
tions and therefore presents a background, reducing visibility
of the oscillations. The contribution due to the elastic pro-
cesses contains both oscillating and constant �“elastic back-
ground”� components, whose relative size depends on the
relative transmission of the two arms of the interferometer.
The elastic background is minimized when the transmissions
through the two arms of the devices are of the same order.

So far, we have considered the system of levels with
strictly alternating parity, Fig. 8�a�. However, the effect of
redistribution of the dot population between different levels,
considered above, can manifest itself in an interesting way
also in cases when the parity of the levels is not strictly
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alternating, e.g., the case shown in Fig. 8�b�, where level 3
has the same parity as level 2. The oscillating contribution to
the differential conductance of such a system is shown in
Fig. 9, where the calculations were done with the parameters
used above, except the Coulomb interaction, which was
taken to be 2.4 times bigger. In addition to the first conduc-
tance switch �which occur when inleastic cotunneling with
participation of level 2 begins�, there are two more switching
events which appear after the second and third inelastic on-
sets �i.e., when level 3 starts being populated from level 2
and slows populating of the latter, and when level 3 starts to
be populated directly from level 1�.

Thus, the switching mechanism proposed in this paper has
rather moderate demands in respect to the statistics of level
parity in a quantum dot.

One may try to explain the results of Ref. 10 as originat-
ing from electrostatic AB effect.12 Indeed, due to their small
transmission, the quantum dots can be thought of as barriers
embedded in the two arms of the interferometer, the whole
device thus being an implementation of the proposal for
measuring electrostatic AB effect made by Nazarov11 and
van der Wiel et al.12 The main distinction between the elec-
trostatic AB effect and the scenario described in this paper
are the intervals between switchings. In electrostatic AB ef-
fect, the switchings have to occur with a certain bias voltage
period, determined by the electron time of flight through the

interferometer. This means that switching events have to be
separated by approximately equal bias voltage intervals �the
period varying to the extent that the density of states depends
on energy�. On the other hand, the mechanism proposed in
this paper allows for the switchings to be separated by un-
equal bias intervals, as indeed is the case in the experiment.10

Moreover, the first switching is clearly correlated with the
onset of inelastic cotunneling, which cannot be the case for
electrostatic AB effect. Experimentally, these two mecha-
nisms can be compared by studying interferometers with the
same size of quantum dots but different lengths of the arms,
i.e., different periods of electrostatic AB oscillations.

Another important way to distinguish between the two
possible explanations is by observing the characteristic be-
havior of the phase of AB oscillations as it changes between
0 and �. In electrostatic AB effect, this change is smooth,
almost linear in bias,12,18 whereas in the experiment by Si-
grist et al., the phase is almost constant, except when the bias
is close to its switching value, in which case the phase flows
rapidly between 0 and �. The latter phase behavior can be
reproduced within the switching mechanism proposed in this
paper. However, it requires application of many-body scat-
tering theory and cannot be done within the one-particle scat-
tering matrix approach employed above, as it incorrectly de-
scribes phase behavior at small bias. Therefore, we leave the
discussion of these interesting phase phenomena to another
publication.19

IV. CONCLUSIONS

We have addressed the findings of the experiment by Si-
grist et al.10 We have shown that switching of the phase of
the AB oscillations of the conductance between 0 and � as a
function of bias can be explained as the result of transport
through the interacting arm of the interferometer being domi-
nated at different biases by quantum dot states of different
parities.

The number of switching events is not necessarily equal
to the number of levels in the interacting arm, which agrees
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with experiment and finds its explanation in complex redis-
tribution of electron population between different levels. In
particular, the number of switching events may exceed the
number of level parity changes in the bias window �even
when the parity of the levels is not strictly alternating�.

Finally, the correlation between the first switching of the
phase and the onset of the inelastic cotunneling, as well as
unequal separation of the biases at which the switching oc-
curs, give reason to think that our explanation of the experi-
ment is preferable to the one based on electrostatic AB
effect.11,12
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APPENDIX A: SCHRIEFFER–WOLFF TRANSFORMATION
FOR A QUANTUM DOT INSERTED IN A TIGHT-

BINDING CHAIN

Let us consider the following Hamiltonian, describing a
QD sandwiched between two leads, where each level of the
dot is coupled to a separate channel in the leads. The chan-
nels in the leads are assumed to be identical, whereas the
states in the dot have different energies:

H = HL + HR + HD + HT, �A1�

HD = �
�

��n� +
U

2 �
�,���

n�n� �n� = d�
+d�� , �A2a�

HL = − t �
�,j=−�

−1

�c�,j−1
+ c�,j + c�,j

+ c�,j−1� + VL �
�,j=−�

−1

c�,j
+ c�,j ,

�A2b�

HR = − t �
�,j=1

+�

�c�,j+1
+ c�,j + c�,j

+ c�,j+1� + VR �
�,j=1

+�

c�,j
+ c�,j ,

�A2c�

HT = �
�

�tL�d�
+c�,−1 + t

L�
* c�,−1

+ d� + tR�d�
+c�,1 + t

R�
* c�,1

+ d�� .

�A2d�

In order to perform Schrieffer–Wolff �SW� transformation,14

we first transform the lead Hamiltonians to the representa-
tion, in which they are diagonal,

cR�k = �
n=1

+�

�k�n�c�,n, cL�k = �
n=−�

−1

�k�n�c�,n,

�k�n� =� 2

�
sin�kn� . �A3�

The reciprocal relations are

c�,n = �
0

�

dk�k�n�cR�k if n � 1;

c�,n = �
0

�

dk�k�n�cL�k if n � − 1. �A4�

The lead Hamiltonians take form

HL = �
�
�

0

�

dk��k + VL�cL�k
+ cL�k,

HR = �
�
�

0

�

dk��k + VR�cR�k
+ cR�k, �A5�

where

�k = − 2t cos�k� �A6�

is the kinetic energy of electron with quantum number k.
Now the tunneling Hamiltonian takes form

HT = �
�
�

0

�

dk�tL��k�− 1�d�
+cL�k + t

L�
* �k�− 1�cL�k

+ d�

+ tR��k�1�d�
+cR�k + t

R�
* �k�1�cR�k

+ d�� . �A7�

In order to perform the SW transformation, we need to
find an operator S that satisfies the equation

HT + �S,HL + HR + HD� = 0, �A8�

then the transformed Hamiltonian will take form

H̄ = HL + HR + HD + 1
2 �S,HT� . �A9�

We choose operator S as

S = F − F+,

F = �
�
�

0

�

dk�AR�kd�
+cR�k + �

���

BR�k,�n�d�
+cR�k

+ AL�kd�
+cL�k + �

���

BL�k,�n�d�
+cL�k	 . �A10�

This operator is sufficient in the case when the number of
channels is two. For a greater number of channels, it is nec-
essary to add terms that account for the QD being occupied
by two, three, and more electrons. However, we neglect such
a possibility and consider only single electron entering or
leaving dot. In mathematical terms, this is equivalent to per-
forming SW transformation on a restricted basis, which in-
cludes only the states with zero, one, and two electrons in the
dot.

Now, it is straightforward to show that the coefficients A
and B should have forms

AR�k =
tR��k�1�

�� − �k − VR
, AL�k =

tL��k�− 1�
�� − �k − VL

,

BR�k,� = tR��k�1�
 1

�� + U − �k − VR
−

1

�� − �k − VR
� ,

PHASE SWITCHING IN A VOLTAGE-BIASED AHARONOV-… PHYSICAL REVIEW B 77, 165421 �2008�

165421-7



BL�k,� = tL��k�− 1�
 1

�� + U − �k − VL
−

1

�� − �k − VL
� .

�A11�

The transformed Hamiltonian is

H̄ = HL + HR + HD + �
j=1

6

Wj , �A12�

where

W1 =
1

2�
�
�

0

�

dk�AR�ktR�
* �k�1� + AL�ktL�

* �k�− 1�

+ A
R�k
* tR��k�1� + A

L�k
* tL��k�− 1��n� = �

�

���n�

�A13�

describes the correction to the dot energies due to coupling to
the leads. In the following, we will neglect this term—the
appropriate corrections can be included in energies �� of the
Hamiltonian HD.

W2 = − �
�

�vrr
� c�,1

+ c�,1 + vlr
�c�,−1

+ c�,1 + vrl
�c�,1

+ c�,−1

+ vll
�c�,−1

+ c�,−1� ,

vrr
� �

�tR��2

�� − �F − VR
, vll

� �
�tL��2

�� − �F − VL
,

vlr
� =

1

2
tR�t

L�
* 
 1

�� − �F − VR
+

1

�� − �F − VL
�, vrl

� = �vlr
��*.

�A14�

W2 describes elastic cotunneling through the QD without ac-
count for interactions. Following SW, we replaced in the
denominators electron kinetic energy, �k, by the Fermi en-
ergy. It is essential to keep in mind that, since the leads are
kept at different biases, their chemical potentials are differ-
ent: 
L=�F+VL, 
R=�F+VR.

W3 =
1

2 �
�,���

�
0

�

dk�
0

�

dk��BR�k,�tR��k��1�d�
+d�

+cR�kcR�k�

+ BR�k,�tL��k��− 1�d�
+d�

+cR�kcL�k�

+ BL�k,�tR��k��1�d�
+d�

+cL�kcR�k�

+ BL�k,�tL��k��1�d�
+d�

+cL�kcL�k� + H.c.� . �A15�

W3 describes simultaneous tunneling of two electrons into or
out of the dot. In the following, we neglect this term, since
the corresponding processes are energetically unavailable.

W4 = �
�,���

�vrr
��c�,1

+ d�
+d�c�,1 + vlr

��c�,−1
+ d�

+d�c�,1

+ vrl
��c�,1

+ d�
+d�c�,−1 + vll

��c�,−1
+ d�

+d�c�,−1� ,

vrr
�� =

1

2
tR�t

R�
* 
 1

�� + U − �F − VR
−

1

�� − �F − VR

+
1

�� + U − �F − VR
−

1

�� − �F − VR
� ,

vll
�� =

1

2
tL�t

L�
* 
 1

�� + U − �F − VL
−

1

�� − �F − VL

+
1

�� + U − �F − VL
−

1

�� − �F − VL
� ,

vrl
�� =

1

2
tL�t

R�
* 
 1

�� + U − �F − VL
−

1

�� − �F − VL

+
1

�� + U − �F − VR
−

1

�� − �F − VR
� ,

vlr
�� = �vrl

���*. �A16�

W4 describes inelastic cotunneling through the quantum dot,
i.e., the tunneling events when the dot changes its state,
while the incident electron is transferred from one lead to the
other or reflected back.

W5 =
1

2 �
�,���

�
0

�

dk�BR�k,�t
R�
* �k�1�

+ BL�k,�t
L�
* �k�− 1� + c.c.�

�n�n� =
1

2 �
�,���

�U��n�n�. �A17�

W5 describes correction to the Coulomb energy and is ex-
pected to be small; in the following, we neglect this term.
Finally, we also have

W6 = − �
�,���

�vrr
��n�c�,1

+ c�,1 + vlr
��n�c�,−1

+ c�,1 + vrl
��n�c�,1

+ c�,−1

+ vll
��n�c�,−1

+ c�,−1� ,

vrr
�� = �tR��2
 1

�� + U − �F − VR
−

1

�� − �F − VR
� ,

vll
�� = �tL��2
 1

�� + U − �F − VL
−

1

�� − �F − VL
� ,

vlr
�� =

1

2
tR�t

L�
* 
 1

�� + U − �F − VR
−

1

�� − �F − VR

+
1

�� + U − �F − VL
−

1

�� − �F − VL
� ,

vrl
�� = �vlr

���*, �A18�

which describes the correction to elastic cotunneling contri-
bution, W2, which arises when the dot is occupied by an
electron �W2 is elastic cotunneling through an empty dot:
“hole tunneling”�.
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For the reference arm, in which we neglect the Coulomb
interaction, the Schrieffer–Wolff transformation readily pro-
duces the only tunneling term

Wref = − �
�

��rrc�,1
+ c�,1 + �lrc�,−1

+ c�,1 + �rlc�,1
+ c�,−1

+ �llc�,−1
+ c�,−1� ,

�rr �
�tR,0�2

�0 − �F − VR
, �ll �

�tL,0�2

�0 − �F − VL
,

�lr =
1

2
tR,0t

L,0
* 
 1

�0 − �F − VR
+

1

�0 − �F − VL
�, �rl = ��lr�*,

�A19�

where �0 and tL,0, tR,0 are the level energy and the tunneling
amplitudes for this arm, which we assume to be independent
on the channel index.

We neglect W1,5 describing corrections to the coefficients
and W3 describing two-particle tunneling, but keep the terms
W2,4,6 which, together with HL, HR, HD, and Wref, form
Hamiltonian H, Eq. �1�, used in this paper. �Let us point out
that neither of these operators changes the occupation of the
QD. In the cotunneling regime, the QD is occupied by only
one electron, which allows us to neglect the Coulomb term in
Eq. �A2a�.�

APPENDIX B: SCATTERING MATRIX

Above Kondo temperature Hamiltonian, Eqs. �1� and �2�
can be treated as a one-particle Hamiltonian, if we consider
the state of the QD as an additional channel index. Thus, the
scattering matrix can be determined by directly solving
Schrödinger equation �see, e.g., Ref. 4�

H��� = E��� , �B1�

for one-electron scattering states defined as

��� = �
�,�
� �

n=−�

−1

�AL
��eiq�n + BL

��e−iq�n�d�
+c�,n

+ + �
n=1

+�

�AR
��eik�n

+ BR
��e−ik�n�d�

+c�,n
+ 	�0� , �B2�

where �0� is the state with no particles. In Eq. �B2�, AL
���BR

���
and BL

���AR
��� are the amplitudes of the waves, respectively,

incident and outgoing from left�right�; indices � and � label,
respectively, the state of the QD and the lead channel.

The wave vectors q� and k� are defined as solutions of
equations

E = �� + VL − 2t cos q�,

E = �� + VR − 2t cos k�, �B3�

where E is the total energy of the electron and the QD, VL
and VR are the changes in the potential energy of electrons in
the leads, whereas �k=−2t cos k is the kinetic energy of the
electron.

Upon substitution of the wave function, Eq. �B2�, into the
Schrödinger equation, Eq. �B1�, we readily obtain the fol-
lowing equation, which relates the scattering amplitudes and
simultaneously defines the amplitude scattering matrix


BL

AR
� = Ŝ
AL

BR
� . �B4�

The matrix Ŝ in this equations is given by

Ŝ = − M̂−1N̂ , �B5�

where the nonzero elements of matrices M̂ and N̂ are given
by

M̂ = 
M̂LL M̂LR

M̂RL M̂RR

�, N̂ = 
N̂LL N̂LR

N̂RL N̂RR

� , �B6a�

MLL
��;�� = t − �vll

� + �1 − �,��vll
���eiq�,

MLL
��;�� = �1 − �,��vll

��eiq�,

MLR
��;�� = − �vlr

� + �1 − �,��vll
���eik�,

MLR
��;�� = �1 − �,��vlr

��eik�,

MRL
��;�� = − �vrl

� + �1 − �,��vrl
���eiq�,

MRL
��;�� = �1 − �,��vrl

��eiq�,

MRR
��;�� = t − �vrr

� + �1 − �,��vrr
���eik�,

MRR
��;�� = �1 − �,��vrr

��eik�, �B6b�

and

NLL
��;�� = t − �vll

� + �1 − �,��vll
���e−iq�,

NLL
��;�� = �1 − �,��vll

��e−iq�,

NLR
��;�� = − �vlr

� + �1 − �,��vll
���e−ik�,

NLR
��;�� = �1 − �,��vlr

��e−ik�,

NRL
��;�� = − �vrl

� + �1 − �,��vrl
���e−iq�,

NRL
��;�� = �1 − �,��vrl

��e−iq�,

NRR
��;�� = t − �vrr

� + �1 − �,��vrr
���e−ik�,

NRR
��;�� = �1 − �,��vrr

��e−ik�. �B6c�

Given that the number of the lead channels �and QD
states� is M, we have total M2 different channels in our scat-
tering problem, which means that S is 2M2�2M2 matrix.

Finally, in order to normalize the wave function and the

scattering matrix to unit incident flux, we multiply Ŝ by ve-
locity matrices
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Ŝ = û1/2Ŝû−1/2, û = 
ûL 0

0 ûR
� , �B7�

where

uL
�,�;���� = �,���,��2t sin q�,

uR
�,�;���� = �,���,��2t sin k�. �B8�

APPENDIX C: PARAMETERS USED IN THE RESULTS
SECTION

The level energies were taken to be �1=−0.4 meV, �2
=−0.35 meV, and �3=−0.25 meV; the tunneling amplitudes
are tL,1=50 
eV, tL,2=88.9 
eV, tL,3=150 
eV, tL,1
=50 
eV, tL,2=−88.9 
eV, and tL,3=150 
eV, which corre-
spond to the level widths �L,1=�R,1=0.25 
eV, �L,2=�R,2
=0.79 
eV, and �L,3=�R,3=2.25 
eV �in tight-bonding pic-
ture, level width is defined as �= �t
,��2 / t�. The Coulomb
interaction is U=5 meV. The parameters of the reference
arm are �0=−1 meV, tL,0= tR,0=200 
eV, and �L,0=�L,0
=4 
eV. The temperature is taken to be T=60 mK.
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