Physical Review B (Condensed Matter and Materials Physics) -- June 15, 2000 -- Volume 61, Issue 24, pp. 16470-16476


Two-species percolation and scaling theory of the metal-insulator transition in two dimensions

Yigal Meir
Department of Physics, Ben-Gurion University, Beer Sheva 84105, Israel

(Received 27 December 1999)

Recently, a simple noninteracting-electron model, combining local quantum tunneling via quantum point contacts and global classical percolation, has been introduced in order to describe the observed "metal-insulator transition" in two dimensions [Y. Meir, Phys. Rev. Lett. 83, 3506 (1999)]. Here, based upon that model, a two-species percolation scaling theory is introduced and compared to the experimental data. The two species in this model are, on one hand, the "metallic" point contacts, whose critical energy lies below the Fermi energy, and on the other hand, the insulating quantum point contacts. It is shown that many features of the experiments, such as the exponential dependence of the resistance on temperature on the metallic side, the linear dependence of the exponent on density, the e2/h scale of the critical resistance, the quenching of the metallic phase by a parallel magnetic field and the nonmonotonic dependence of the critical density on a perpendicular magnetic field, can be naturally explained by the model. Moreover, details such as the nonmonotonic dependence of the resistance on temperature or the inflection point of the resistance vs the parallel magnetic field are also a natural consequence of the theory. The calculated parallel field dependence of the critical density agrees excellently with experiments, and is used to deduce an experimental value of the confining energy in the vertical direction. It is also shown that the resistance on the metallic side can decrease with decreasing temperature by an arbitrary factor in the nondegenerate regime (T<~EF). ©2000 The American Physical Society

PACS: 71.30.+h, 73.40.Qv, 73.50.Jt


  Full Text: 


References

Citation links [e.g., Phys. Rev. D 40, 2172 (1989)] go to online journal abstracts. Other links (see Reference Information) are available with your current login. Navigation of links may be more efficient using a second browser window.

  1. S.V. Kravchenko et al., Phys. Rev. B 50, 8039 (1994);
    51, 7038 (1995);
    Phys. Rev. Lett. 77, 4938 (1996);
    V.M. Pudalov et al., Pis'ma Zh. Éksp. Teor. Fiz. 65, 887 (1997) [JETP Lett. 65, 932 (1997)];
    D. Popovi[c-acute] et al., Phys. Rev. Lett. 79, 1543 (1997);
    K. Ismail et al., cond-mat/9707061 (unpublished);  [LANL]
    J. Lam et al., Phys. Rev. B 56, R12741 (1997).
  2. P.T. Coleridge et al., Phys. Rev. B 56, R12764 (1997);
    M.Y. Simmons et al., Phys. Rev. Lett. 80, 1292 (1998).
  3. Y. Hanein et al., Phys. Rev. Lett. 80, 1288 (1998);
    Phys. Rev. B 58, R7520 (1998).
  4. Y. Hanein et al., Phys. Rev. B 58, R13338 (1998).
  5. Y. Yaish, cond-mat/9904324 (unpublished);  [LANL]
    and (unpublished).
  6. E. Abrahams et al., Phys. Rev. Lett. 42, 673 (1979).  [SPIN]
  7. B.L. Altshuler and D.L. Maslov, Phys. Rev. Lett. 82, 145 (1999);
    See also B.L. Altshuler, D.L. Maslov, V.M. Pudalov, cond-mat/9909353 (unpublished).  [LANL]
    See also S.V. Kravchenko, M.P. Sarachik, and D. Simonian, Phys. Rev. Lett. 83, 2091 (1999);
    B.L. Altshuler and D.L. Maslov, 83, 2092 (1999).
  8. G. Benenti, X. Waintal, and J.-L. Pichard, Phys. Rev. Lett. 83, 1826 (1999).
  9. A. M. Finkelstein, Zh. Éksp. Teor. Fiz. 84, 168 (1983) [Sov. Phys. JETP 57, 97 (1983)];  [SPIN]
    Z. Phys. 56, 189(1984);
    C. Castellani et al., Phys. Rev. 30, 527 (1984);  [SPIN]
    30, 1596 (1984).  [SPIN]
  10. V. Dobroslavljevi[c-acute] et al., Phys. Rev. Lett. 79, 455 (1997);
    C. Castellani, C. Di Castro, and P.A. Lee, Phys. Rev. B 57, R9381 (1998);
    D. Belitz and T.R. Kirkpatrick, 58, 8214 (1998);
    P. Phillips et al., Nature (London) 395, 253 (1998);  [INSPEC]
    F.-C. Zhang and T.M. Rice, cond-mat/9708050 (unpublished);  [LANL]
    S. Chakravarty et al., Philos. Mag. B 79, 859 (1999).  [INSPEC]
  11. V.M. Pudalov, Pis'ma Zh. Éksp. Teor. Fiz. 66, 160 (1997) [JETP Lett. 66, 175 (1997)].
  12. Song He and X.C. Xie, Phys. Rev. Lett. 80, 3324 (1998);
    J. Shi, Song He, and X.C. Xie, Phys. Rev. B 60, R13950 (1999).
  13. Y. Meir, Phys. Rev. Lett. 83, 3506 (1999).
  14. E. Ribeiro et al., Phys. Rev. Lett. 82, 996 (1999).
  15. S. Ilani et al., Phys. Rev. Lett. 84, 3133 (2000); and unpublished.
  16. M.Y. Simmons et al., cond-mat/9910368 (unpublished);  [LANL]
    G. Brunthaler et al., Ann. Phys. (Leipzig) 8, 579 (1999).  [INSPEC]
  17. V. Senz et al., Phys. Rev. B 61, R5082 (2000).
  18. G. Eytan et al., Phys. Rev. Lett. 81, 1666 (1998).
  19. D.P. Pivin et al., Phys. Rev. Lett. 82, 4687 (1999);
    A.G. Huibers et al., 83, 5090 (1999).
  20. E. Shimshoni and A. Auerbach, Phys. Rev. B 55, 9817 (1997);
    E. Shimshoni, A. Auerbach, and A. Kapitulnik, Phys. Rev. Lett. 80, 3352 (1998).
  21. At lower temperatures variable-range hopping [see, e.g., B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer-Verlag, Berlin, 1984)] will become relevant, but is ignored here, again to avoid additional parameters, except in Sec. V.
  22. A.L. Efros and B.I. Shklovskii, Phys. Status Solidi B 76, 475 (1976);  [INSPEC]
    A. Bunde et al., J. Phys. A 18, L137 (1985).  [INSPEC]
  23. For a review of percolation theory and for values of the critical exponents, see, for example, D. Stauffer and A. Aharaony, Introduction to Percolation Theory (Taylor & Francis, London, 1992).
  24. T.P. Smith et al. Phys. Rev. Lett. 61, 585 (1988);
    K.J. Thomas et al. 77, 135 (1996);
    Phys. Rev. B 58, 4846 (1998).
  25. J. Yoon et al., Phys. Rev. Lett. 84, 4421 (2000).
  26. M. Mertes et al., Phys. Rev. B 50, R5093 (1999).
  27. See, e.g., A. Vaknin et al., Phys. Rev. B 54, 13 604 (1996).
  28. A. Kurobe and H. Kamimura, J. Phys. Soc. Jpn. 51, 1904 (1982);  [INSPEC]
    H. Kamimura, Prog. Theor. Phys. 72, 206 (1982);
    see also Y. Meir, Europhys. Lett. 33, 471 (1996).  [INSPEC]
  29. V.I. Kozub et al., cond-mat/9911450 (unpublished).  [LANL]
  30. S. Das Sarma and H. Hwang, cond-mat/9909452 (unpublished).  [LANL]
  31. V.M. Pudalov et al., Pis'ma Zh. Éksp. Teor. Fiz. 70, 48 (1999) [JETP Lett. 70, 48 (1999)].
  32. B.I. Shklovskii, Zh. Éksp. Teor. Fiz. 72, 288 (1997) [Sov. Phys. JETP 45, 152 (1977)];  [SPIN]
    J.P. Straley, J. Phys. C 10, 3009 (1977).  [INSPEC]
  33. See, e.g., A. Palevski et al., J. Phys. (France) Lett. 45, L367 (1984).  [INSPEC]
  34. See e.g., B.J. van Wees, Phys. Rev. B 43, 12 431 (1991).
  35. S. Kirkpatrick, Phys. Rev. Lett. 25, 807 (1970).  [INSPEC]
  36. Y. Meir (unpublished).
  37. To simplify the numerics, I chose random potentials with azimuthal symmetry.
  38. H.A. Fertig and B.I. Haleprin Phys. Rev. B 36, 7969 (1987).
  39. Y. Hanein et al., Nature (London) 400, 735 (1999).
  40. V.M. Pudalov et al., Phys. Rev. B 60, R1254 (1999).
  41. P. McEuen (private communication).
  42. A.A. Shashkin et al., Phys. Rev. Lett. 73, 3141 (1994);
    V.T. Dolgapolov et al., Pis'ma Zh. Éksp. Teor. Fiz. [JETP Lett. 62, 162 (1995)];  [SPIN]
    I.V. Kukuskin et al., Phys. Rev. B 53, R13260 (1996).
  43. For recent reviews on quantum dots see, e.g., M.A. Kastner, Comments Condens. Matter Phys. 17, 349 (1996);
    R. Ashoori, Nature (London) 379, 413 (1996).  [INSPEC]
  44. See, e.g., S.H. Tessmer et al., Nature (London) 392, 6671 (1998);
    H.F. Hess et al., Solid State Commun. 107, 657 (1998).  [INSPEC]
  45. C. Pasquier et al., Phys. Rev. Lett. 70, 69 (1993).
  46. P.L. McEuen et al., Phys. Rev. Lett. 66, 1926 (1991).