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We consider a mesoscopic region coupled to two leads under the influence of external time-
dependent voltages. The time dependence is coupled to source and drain contacts, the gates con-
trolling the tunnel-barrier heights, or to the gates that define the mesoscopic region. We derive,
with the Keldysh nonequilibrium-Green-function technique, a formal expression for the fully non-
linear, time-dependent current through the system. The analysis admits arbifrary interactions in
the mesoscopic region, but the leads are treated as noninteracting. For proportionate coupling to
the leads, the time-averaged current is simply the integral between the chemical potentials of the
time-averaged density of states, weighted by the coupling to the leads, in close analogy to the time-
independent result of Meir and Wingreen [Phys. Rev. Lett. 68, 2512 (1992)]. Analytical and
numerical results for the exactly solvable noninteracting resonant-tunneling system are presented.
Due to the coherence between the leads and the resonant site, the current does not follow the driving
signal adiabatically: a “ringing” current is found as a response to a voltage pulse, and a complex
time dependence results in the case of harmonic driving voltages. We also establish a connection
to recent linear-response calculations, and to earlier studies of electron-phonon scattering effects in
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resonant tunneling.

I INTRODUCTION

The hallmark of mesoscopic phenomena is the phase
coherence of the charge carriers, which is maintained
over a significant part of the transport process. The
interference effects resulting from this phase coherence
are reflected in a number of experimentally measurable
properties. For example, phase coherence is central
to the Aharonov-Bohm effect,® universal conductance
fluctuations,! and weak localization,? and can be affected
by external controls such as temperature or magnetic
field. The study of stationary mesoscopic physics is now
a mature field, and in this work we focus on an alterna-
tive way of affecting the phase coherence: external time-
dependent perturbations. The interplay of external time
dependence and phase coherence can be phenomenolog-
ically understood as follows. If the single-particle ener-
gies acquire a time dependence, then the wave functions
have an extra phase factor, ¥ ~ exp[—i [ ¢t e(t')]. For
a uniform system such an overall phase factor is of no
consequence. However, if the external time dependence
is different in different parts of the system, and the parti-
cles can move between these regions (without being “de-
phased” by inelastic collisions), the phase difference be-
comes important.

The interest in time-dependent mesoscopic phenom-
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ena stems from recent progress in several experimental
techniques.? Time dependence is a central ingredient in
many different experiments, of which we mention the fol-
lowing:

(i) Single-electron pumps and turnstiles. Here time-
modified gate signals move electrons one by one through
a quantum dot, leading to a current which is proportional
to the frequency of the external signal. These structures
have considerable importance as current standards. The
Coulombic repulsion of the carriers in the central region
is crucial to the operational principle of these devices,
and underlines the fact that extra care must be paid to
interactions when considering time-dependent transport
in mesoscopic systems.

(ii) ac response and transients in resonant-tunneling
devices. Resonant-tunneling devices have a number of
applications as high-frequency amplifiers or detectors.
For the device engineer a natural approach would be
to model these circuit elements with resistors, capaci-
tances, and inductors. The question then arises as to
what, if any, are the appropriate “quantum” capacitances
and inductances one should ascribe to these devices. An-
swering this question requires the use of time-dependent
quantum-transport theory.

(iii) Interaction with laser fields. Ultrashort laser
pulses allow the study of short-time dynamics of charge
carriers. Here again, coherence and time dependence
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combine with the necessity of treating interactions.

A rigorous discussion of transport in an interacting
mesoscopic system requires a formalism that is capable of
including explicitly the interactions. Obvious candidates
for such a theoretical tool are various techniques based
on Green functions. Since many problems of interest in-
volve systems far from equilibrium, we cannot use linear-
response methods, such as those based on the Kubo for-
mula, but must use an approach capable of addressing the
full nonequilibrium sjtuation. The nonequilibrum-Green-
function techniques, as developed about thirty years ago
by Kadanoff and Baym,* and by Keldysh,® have during
the recent years gained increasing attention in the anal-
ysis of transport phenomena in mesoscopic semiconduc-

tors systems.® In particular, the steady-state situation has -

been addressed by a large number of papers.” 12 Among
the central results obtained in these papers is that under
certain conditions (to be discussed below) a Landauer-
type conductance formula'® can be derived. This is quite
appealing in view of the wide spread success of conduc-
tance formulas in the analysis of transport in mesoscopic
systems. :

Counsiderably fewer studies have been reported where
an explicit time dependence is an essential feature.
We are aware of an early paper in surface physics, 14
but only in the recent past have groups working in
mesoscopic physics addressed this problem.15—20:38 The
work reported in this paper continues along these lines:
we give the full details and expand on our short
communication.?

Our main formal result from the nonequilibrium-
Green-function approach is a general expression for
the time-dependent current flowing from noninteracting
leads to an interacting region. As we will discuss in Sec.
I1, the time dependence enters through the self-consistent
parameters defining the model. We show that under
certain restrictions, to be specified below, a Landauer-
like formula can be obtained for the time-averaged cur-
rent. To illustrate the utility of our approach we give
results for an exactly solvable noninteracting case, which
displays an interesting, and experimentally measurable,
nonadiabatic behavior. We also establish a link between
the present formulation and recently published results
for linear-response and electron-phonon interactions, ob-
tained by other techniques. '

The paper is organized as follows. We examine in Sec.
IT the range of experimental parameters in which we ex-
pect our theoretical formulation to be valid. In Sec. III
we briefly review the physics behind the nonequilibrium-
Green-function technique of Keldysh, and Baym and
Kadanoff, which is our main theoretical tool, and then
introduce the specific model Hamiltonians used in this
work. We derive the central formal results for the time-
dependent current in Sec. IV. We also derive, under spe-
cial restrictions, a Landauer-like formula for the average
current. In Sec. V, we apply the general formulas to an
explicitly solvable resonant-tunneling model. Both ana-
Iytical and numerical results are presented. We also show
that the linear ac-response results of Fu and Dudley?!
are contained as a special case of the exact results of this

section. In Sec. VI, we illustrate the utility of our for-
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mulation by presenting a much simplified derivation of
Wingreen et al.?? results on resonant tunneling in the
presence of electron-phonon interactions. Appendix A
summarizes some of the central technical properties of
the Keldysh technique: we state the definitions, give
the basic equations, and provide the analytic continu-
ation rules employed below. In Appendices B and C, we
present proofs for certain statements made in the main
text, and, finally, in Appendix D we describe some trans-
formations which facilitate numerical evaluation of the
time-dependent current.

II. APPLICABILITY TO EXPERIMENTS

A central question one must address is: under which
conditions- are the nonequilibrium techniques, applied
successfully to the steady-state problem, transferrable to
time-dependent situations, such as the experiments men-
tioned above?. S

The time-dependent problem has to be formulated
carefully, particularly with respect to the leads. It is es-
sential to a Landauer type of approach, that the electrons
in the leads be noninteracting. In practice, however, the
electrons in the leads near the mesoscopic region con-
tribute to the self-consistent potential. We approach this
problem by dividing the transport physics in two steps:23
(i) the self-consistent determination of charge pileup and -
depletion in the contacts, the resulting barrier heights,
and single-particle energies in the interacting region, and
(ii) transport in a system defined by these self-consistent
parameters. Step (i) requires a capacitance calculation
for éach specific geometry,?® and we do not address it in
this paper. Instead, we assume the results of (1) as time-
dependent input parametérs and give a full treatment
of the transport through the mesoscopic region (i)). In
practice, the interactions in the leads are absorbed into
a time-dependent potential and from then on the elec-

~ trons in the leads are treated as noninteracting. This

means that when relating our results to actual experi-
ments some care must be exercised. Specifically, we cal-
culate only the current flowing into the mesoscopic re-
gion, while the total time-dependent current measured
in the contacts includes contributions from charge flow-
ing in and out of accumulation and depletion regions in
the leads. In the time-averaged (dc) current, however,
these capacitive contributions vanish and the correspond-
ing time-averaged theoretical formulas, such as Eq. (27),
are directly relevant to experiment. It should be noted,
though, that these capacitive currents may influence the
effective time-dependent parameters in step (i) above.
Let us next estimate the frequency limits that restrict
the validity of our approach. Two criteria must ‘be sat-
isfied. First, the driving frequency must be sufficiently
slow that the applied bias is dropped entirely across the
tunneling structure. When a bias is applied to a sam-

k ple, the electric field in the leads can only be screened

if the driving frequency is smaller than the plasma fre-
quency, which is tens of THz in typical doped semicon-
ductor samples. For signals slower than this, the bias
is established entirely across the tunneling structure by
accumulation and depletion of charge near the barriers.

The unscreened Coulomb interaction between net excess
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FIG. 1. Sketch of charge distribution in a three
dimensijonal resonant-tunneling device wunder dc bias

Vbias = pr — pr with a time modulation of amplitude Ap, /R
superposed on the leads. As argued in the text, only a tiny
fraction of charge carriers participates in setting up the volt-
age drop across the structure.

charge is quite strong, and hence the bias across a tun-
neling structure is caused by a relatively small excess of
charge in accumulation and depletion layers. The forma-
tion of these layers then causes a rigid shift [see Eq. (2)
below] of the bottom of the conduction band deeper in
the leads, which is the origin of the rigid shift of energy
levels in our treatment of a time-dependent bias.

The second frequency limit on our approach is that
the buildup of electrons required for the formation of the
accumulation and depletion layers must not significantly
disrupt the coherent transport of electrons incident from
the leads. One way to quantify this is to ask—what is
the probability that an electron incident from the leads
participates in the buildup of charge associated with a
time-dependent bias? This probability will be the ratio
of the net current density flowing into the accumulation
region to the total incident flux of electrons. For a three-
dimensional double-barrier resonant-tunneling structure
(see Fig. 1) the ac charging the accumulation layer is
I = 2rvCV™s /A, where v is the driving frequency,
C is the capacitance, V™™* is the applied bias, and A
is the area. In comparison, the total incident flux is
Iine = 3/8envp. Using the parameters appropriate for
a typical experiment (we use that of Brown et al.?4), we
find that up to 10 THz the probability of an electron par-
ticipating in the charge buildup is only 1%. Summariz-
ing, these estimates indicate that our approach should be
accurate up to frequencies of tens of THz, which are large
by present experimental standards, and consequently the
analysis presented in what follows should be valid for
most experimental situations.

II1. THEORETICAL TOOLS AND THE MODEL

A. Baym-Kadanoff-Keldysh nonequilibrium
techniques

Here we wish to outline the physical background be-
hind the Keldysh formulation, and in particular its con-
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nection to tunneling physics. Readers interested in tech-
nical details should consult any of the many available
review articles, such as Refs. 25-27. The basic difference
between construction of equilibrium and nonequilibrium
perturbation schemes is that in nonequilibrium one can-
not assume that the system returns to its ground state
(or a thermodynamic equilibrium state at finite tempera-
tures) as ¢ — +oo. Irreversible effects break the symme-
try between t = —oo and t = +o0, and this symmetry is
heavily exploited in the derivation of the equilibrium per-
turbation expansion. In nonequilibrium situations one
can circumvent this problem by allowing the system to
evolve from —co to the moment of interest (for definite-
ness, let us call this instant ¢5), and then continue the
time evolvement from t = to back to ¢t = —c0.28 (When
dealing with quantities that depend on two time vari-
ables, such as Green functions, the time evolution must
be continued to the later time.) The advantage of this
procedure is that all expectation values are defined with
respect to a well defined state, i.e., the state in which
the system was prepared in the remote past. The price
is that one must treat the two time branches on an equal
footing (See Fig. 2).

A typical object of interest would be a two time Green
function (see Appendix A); the two times can be located
on either of the two branches of the complex time path
(e.g., 7 and 7’ in Fig. 2). One is thus led to consider
2 x 2 Green-function matrices, and the various terms in
the perturbation theory can be evaluated by matrix mul-
tiplication. Since the internal time integrations run over
the complex time path, a method of bookkeeping for the
time labels is required, and there are various ways of do-
ing this. In the present work we employ a version of the
Keldysh technique.

In the context of tunneling problems the time-
independent Keldysh formalism works as follows. In the
remote past the contacts (i.e., the left and right lead)
and the central region are decoupled, and each region
is in thermal equilibrium. The equilibrium distribution
functions for the three regions are characterized by their
respective chemical potentials; these do not have to coin-
cide nor are the differences between the chemical poten-
tials necessarily small. The couplings between the differ-
ent regions are then established and treated as perturba-
tions via the standard techniques of perturbation theory,
albeit on the two-branch time contour. It is important
to notice that the couplings do not have to be small, e.g.,
with respect level spacings or kgT', and typically must be
treated to all orders.

-—
‘t

FIG. 2. The complex-time contour on which nonequilib-
rium-Green-function theory is constructed. In the contour
sense, the time 71 is earlier than 7 even though its real-time
projection appears larger.



The time-dependent case can be treated similarly.
Before the couplings between the various regions are
turned on, the single-particle energies acquire rigid time-
dependent shifts, which, in the case of the noninteracting
contacts, translate into extra phase factors for the prop-
agators (but not in changes in occupations). The per-
turbation theory with respect to the couplings has the
same diagrammatic structure as in the-stationary case.
The calculations, of course, become more complicated
because of the broken time-translational invariance.

B. Model Hamiltonian

We split the total Hamiltonian in three pieces: H =
H. + Hp + Hcen, where H. describes the contacts, Hy
is the tunneling coupling between contacts and the in-
teracting region, and H.., models the interacting cen-
tral region, respectively. Below we discuss each of these
terms.

1. Contacts, H,

Guided by the typical experimental geometry in which
the leads rapidly broaden into metallic contacts, we view
electrons in the leads as noninteracting except for an
overall self-consistent potential. Physically, applying a
time-dependent bias between the source and drain con-
tacts corresponds to accumulating or depleting charge
to form a dipole around the central region. The 're-
sulting electrostatic-potential difference means that the
single-particle energies become time dependent: €, —
€ra(t) = €3, + Aq(t) [here a labels the channel in the
left (L) or right (R) lead]. The occupation of each state
ka, however, remains unchanged. The occupation, for
each contact, is determined by an equilibrium distribu-
tion function established in the distant past, before the

time-dependence or tunneling matrix elements are turned

on. Thus, the contact Hamiltonian is

Hc = Z Eka(t)ckacka ) (1)
k,ael,R o S

"and the exact time-dependent Green functions in the
leads for the uncoupled system are

I (t:)= (e () era(t))
= if(ed,) exp [—i / dti€pa (tl)]

It (b t') FiO(Et F ¢')({eralt), cfa()])

= Fif(£t Ft')exp [—i /t' dt16ka(t1)] . (2)

One should note that our model for ¢g< differs from the
choice made in the recent study of Chen and Ting.'® The
difference does not affect calculations carried out to lin-
ear response in the ac drive, but is significant in nonlinear
response. Specifically, Chen and Ting allow the electro-

chemical potential in the distribution function f to vary

with time: pur, — pp = e[V 4+ U(t)], where U(t) is the ac
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signal. - This assumption implies that the total number
of electrons in the contacts varies with time. This be-

- havior is inconsistent with what happens in real devices:

it is only the relatively small number of electrons in the
accumulation-depletion layers that is time dependent. In
addition to the unphysical charge pileup in the contacts,
the model of Chen and Ting leads to an instantaneous
loss of phase coherence in the contacts, and hence does
not display any of the interesting interference phenomena
predicted by our phase-conserving model. -

2. Coupling between leeds and central region, Hy

The coupling between the leads and the central (inter-
acting) region can be modified with time dependent gate
voltages, as is the case in single-electron pumps. The
precise functional form of the time dependence is deter-
mined by the detailed geometry and by the self-consistent
response of charge in the contacts to external driving.
We assume that these parameters are known, and 51mp1y
write

Hr= Y [Vean(t)eladn + H.‘c.] ) (3)
_ k,a€L,R - R
Here {d}} and {d,.} form a complete orthonormal set of
single-electron creation and annihilation operators in the
interacting region.

3. The central-regibn ‘Hamiltonia'r‘z Heen

The form chosen for Heep in the central interacting re-
gien depends on geometry and on the physical behavior
being investigated. Our results relating the current to
local properties, such as densities of states and Green
functions, are valid generally. To make the results more
concrete, we will discuss two particular examples in de-
tail. In the first, the central region is taken to consist of
noninteracting, but time-dependent levels,

Heen = emv(t')d:‘ndm. | (4)

Here df, (dm,) creates (destroys) an electron in state
m. The choice (4) represents a simple model for 'time-
dependent resonant tunneling.. Below we shall present
general results for an arbitrary number of levels, and an-
alyze the case of a single level in detail. The latter is
interesting both as an exactly solvable example, and for
predlctlons of coherence eﬁ'ects in time- dependent exper-
iments. :

The second example we will discuss is resonant tunnel-
1ng with electron-phonon 1nteract1on, :

HEPR = eod'd + d'd Y Mylal+ag]. = (5)
q .

In the above, the first term represents a single site,
while the second term represents the interaction of an
electron on the site with phonons: af, (aq) creates (de-
stroys) a phonon in mode q, and Mq is the interaction:
matrix element. The full Hamiltonian of the system
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must also include the free-phonon contribution Hp, =
3 a ﬁwqaflaq. This example, while not exactly solvable,
is helpful to show how interactions influence the current.
Furthermore, we can directly compare to previous time-
independent results?? using (5) to demonstrate the power
of the present formalism.

IV. TIME-DEPENDENT CURRENT AND
KELDYSH GREEN FUNCTIONS

A. General expression for the current

The current from the left contact through the left bar-
rier to the central region can be calculated from the time
evolution of the occupation number operator of the left
contact:

. ie
To(8) = ~e(Nz) = —S([H, Ny]) ©)
where N = >, o7 ¢l Cha and H = H, + Hy + Heen.
Since H, and Hge, commute with Ny, one readily finds
ie

=% 3 Mam(chadn) — Vi nldhead] . (7)

k,x€L
n

Now define two Green functions

Ckalt,t)= i(elo()dn(t)), (®)
Crramn(t:t)= i(d] (H)era(t)) - (9)
Using G, .(t,t) = — [G:’ka(t, t)]*, and inserting the

time labels, the current can be expressed as

Jo(t) = %Re{ > Vka,n(t)G;ka(t,t)}. (10)

k,acL
n

One next needs an expression for G5, (t,¢'). For the
present case, with noninteracting leads, a general rela-
tion for the contour-ordered Green function G, ko (7, 7')
can be derived rather easily (either with the equation-
of-motion technique, or by a direct expansion of the §
matrix; the details are given in Appendix B), and the
result is

Gn,ka(Ta T,) = Z/dTlGnm(Ta Tl)

X Vicar,m (T1)gkeee (71, 7) - (11)

Here Gppm(7,71) is the contour-ordered Green function
for the central region, and the T variables are now defined
on the contour of Fig. 2. Note that the time dependence
of the tunneling matrix elements and single-particle en-
ergies has broken the time-translational invariance. The
analytic continuation rules (A3) of Appendix A can now
be applied, and we find

Craltt) = % [ daViaimlts)

X [G:Lm (t, tl)gk<a (tl ’ t,)
+G:m (t, t1) Gk (tl, t,)] ) (12)

where the Green functions g<¢ for the leads are defined
in (2) above. Combining (2), (10), and (12), yields

JL(t) = —2—;1111{ > Vian(?) /_ :o dty

k,x€L
n,m
i [} dizgera(ta)y
xet o dackalalye (1))

X[Grm (& t1) FL(eke) + G (2, tl)]} - (13)

The discrete sum over kin )", , can be expressed in terms
of densities of states in the leads: [depy(€). Then it is
useful to define

[TE(e,t4, t)] = 27 Z Pa(€)Van (e, 1)V 1 (€, 1)
acL

x exp [z / tdtzAa(e,tz)} . (14)

i1

where Vian = Van(er). In terms of this generalized
linewidth function (14), the general expression for the
current is

2e [* .
Jr(t) = _§ / dt; / :—;Im'ﬁ{e—““l—t)rf:(e,tl,t)

X[G<(t,t;) + f1(€)G™ (2, tl)]} . (15)

Here the boldface notation indicates that the level-width
function I' and the central-region Green functions G<™
are matrices in the central-region indeces m,n. An anal-
ogous formula applies for Jr(t), the current flowing into
the central region through the right barrier.

This is the central formal result of this work, and the
remainder of this paper is devoted to the analysis and
evaluation of Eq. (15). The current is expressed in terms
of local quantities: Green functions of the central region.
The first term in Eq. (15), which is proportional to the
lesser function G<, suggests an interpretation as the out-
tunneling rate [recalling Im G<(¢,t) = N(t)]. Likewise,
the second term, which is proportional to the occupation
in the leads and to the density of states in the central
region, can be associated to the in-tunneling rate. How-
ever, one should bear in mind that all Green functions in
Eq. (15) are to be calculated in the presence of tunnel-
ing. Thus, G< will depend on the occupation in the leads.
Furthermore, in the presence of interactions G* will de-
pend on the central-region occupation. Consequently, the
current can be a nonlinear function of the occupation fac-
tors. This issue has recently been discussed also by other
authors.?®
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B. Time-independent case

1. General expression

In the time-independent limit the linewidth function”

simplifies: I'(e,t1,t) — L'(e), and the ¢; mtegrals in Eq.
(15) can be performed: .

de ety
we —ie(ty —t)L <(t __
[_ dtlfzwImTr{e THUTH ()G (¢ tl)}

= 2 [SmrE9e<@}, ()
and

f_ t dty / j—;xmﬁ{e—“(h—?)ﬂ(e) fL(e)G’(t—tl)}

i dE L . r a
- _Ef%rrr{r (9f2(9[6" () - 6]} (1)
When these expressions are substituted to Eq. (15), the

current from the left (right) contact to.the central region
becomes

ie [ de
=75 [ ;ﬁ{r’“’ GICC

@GO -G*)}. (19
In steady state, the current will be uniform, so that J =
Jr, = —Jr , and one can symmetrize the current: J =

(Jo+Jo)/2= (JL — Jr)/2. Using Eq. (18) leads to the _

general expression for the dc current:

J= Tr{ [T (e)

- - TR9IE<(

+FL(TE(e) — fr()TH()G™(€) = G*(e)]} -

(19)

This result was reported in Ref. 7, and applied to the
out-of-equilibrium Anderson impurity problem.

2. Proportionate coﬁplihg

If the left and r1ght linewidth functions are propor-
tional to each other, i.e., TZ () = AT'E(¢), further sim-
plification can be achieved. We observe that the current
can be written as J = zJ — (1 —z)Jg, which gives, using

Eq. (18)3

== de’I‘r{I‘R(e) [(Ae — (1 —m))G<( S
+(afr — (1—2)fR)(G () - G)@]} . (20)
The arbitrary parameter z is now fixed so that the first
term vanishes, i.e., z = 1/(1 + A), which results in
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7= [0 - Fal9)]
L R € .
Tr{ I‘];( ()el:_[‘rl(z) ) [GT (e)— Ga(e)] } . (21)

The ratlo is well deﬁned because the I‘ matnces are pro-
portional: The difference between the retarded and ad-
vanced Green functions is essentially the density of states.
Despite the apparent similarity of (21) to the Landauer
formula, it is important to bear in mind that in general
there is no immediate connection between the quantity

e (T2 (OTR(0)/ [T4{e) + TH(E)]) [67() - 6]},

and the transmission coefficient. In particular, when in-
elastic scattering is présent, we do not believe that such
a connection exists. In Sec. V, where we analyze a non-
interacting central region, a connection with the trans-
mission coefficient can be established. Further, in the
next section we shall see how an analogous result can be
derived for the average of the time-dependent current.

C. Average current

. In' analogy with the previous subsection; where we
found a compact expression for the current for the case
of proportionate coupling, the time-dependent case al-
lows further simplification, if assumptions are made on
the linewidth functions. In this case, we assume a gener-
alized proportionality condition "~ " -

rt (e,t1, ) = ,\rR(e t1,t) . (22)

One shou.ld note that in general this condition can be
satisfied only if AL(t) = AE(t) = A(t). However, in
the wide-band limit (WBL), to be considered in detail
below, the time variations of the energies in the leads do
not have to be equal.

" We next consider the occupation of the central region
N(t) =Y .(d}, (t)dm (t)) and apply the continuity equa~
tion : A : '

dN(t)
dt

= Jr(t) + Jz(t), (28)
Which’a‘lllowis one to Write for arbitrary = | |

dN(t)

JL(t)_mJL(t)+(1—m)[ = JR(t)]. (24)

Choosmg now z =1 /(14 X) leads to

JL(t)=(1i)\)[ I T”{/ dtl/_

—ze(t1—t)I‘R(e t1, )Gr(t tl), .
[fL(e) fR(f)]}] : | (25)

The time average of a tlme—dependent ob_]ect F(t) is de-,
fined by
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(F@®) = lim = / B . (26)

Tooo T —~T/2

If F(t) is a periodic function of time, it is sufficient to
average over the period. Upon time averaging, the first
term in Eq. (25) vanishes, (dN /dt) — 0, because the oc-
cupation N(¢) is finite for all T. The expression for the
time-averaged current further simplifies if one can fac-
torize the energy and time dependence of the tunneling
coupling, Via,n(t) = u(t)Va,n(ex). We then obtain

()= =% [ 521506 - fa()

L (IR (e) ; (u(t)A(e,t»} ,» (27)

xImTr{ TL(e) + TR (e

where
Ae,t) = / dtyu(t)G" (¢, 1)

X exp [ie(t —t1) +1 t dtzA(tz)] . (28)

iy

Due to Eq. (22) we do not have to distinguish between
L/R in the definition of A(e,t); below we shall encounter
situations where this distinction is necessary.

The expression (27) is of the Landauer type: it ex-
presses the current as an integral over a weighted density

J
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of states times the difference of the two contact occu-
pation factors. It is valid for arbitrary interactions in
the central region, but it was derived with the somewhat
restrictive assumption of proportional couplings to the
leads.

V. NONINTERACTING RESONANT-LEVEL
MODEL

A. General formulation

In the noninteracting case the Hamiltonian is H =
H; + Hr + Hcen, where Heen = ), endld,. Follow-
ing standard analysis (an analogous calculation is also
carried out in Appendix B), one can derive the Dyson
equation for the retarded Green function,

G"(t,t) =g"(tt) + f dt; / diag”(t,t1)
XX (t1,12)G" (¢2, 1), (29)
where

E:r.n’ (t17 tZ) = Z Vv]:a,n (tl)g£a (tlr tz)
kacL,R
XVka,n’ (tZ) 3 (30)

and g7, is given by Eq. (2). From (A4) the Keldysh
equation for G< is30

G<(t,t")= /dt1/dtzGT(t,t1)2<(t1,t2)G°(t2,t’)

. de _,
= Z/dtlfdtzGr(t, tl)[ E / ie_“(tl"t2)fL/R(€)rL/R(E,tl,tz)] Ga(tz,t’) . (31)
L,R

Provided that the Dyson equation for the retarded Green
function can be solved, Eq. (31) together with the current
expression Eq. (15) provides the complete solution to the
noninteracting resonant-level model. Below we examine
special cases where analytic progress can be made.

B. Time-independent case

In the time-independent case the time-translational in-
variance is restored, and it is advantageous to go over to
energy variables

G™(e) =[(g") 7' = E"(e)] "
G<(c) = G (e)Z<(e)G%(e) - (32)

In general, the Dyson equation for the retarded Green
function requires matrix inversion. In the case of a single
level, the scalar equations can be readily solved. The
retarded (advanced) self-energy is

lealz

e Ein Ale) F 5T(e),  (33)

U GERDY

ka€L,R

where the real and imaginary parts contain “left” and
“right” contributions: A(€) = A%(€) + AE(e) and T'(e) =
T'L(€) + I'F(€). The lesser self-energy is

Z@ = D [Veal’gma(e)

ka€L,R
= i[[(e) fr(€) + TF(e) fr(e)] - (34)

Using the identities G"G* = (G" - G?*)/(1/G*—1/G") =
a(e)/T'(e) {here a(e) = ¢{[G"(c) — G°(¢)] is the spectral
function}, one can write G< in a “pseudoequilibrium”
form

G<(e) =ia(e)f(e) , (35)

where



TZ(e) fr(e) + I‘R(e)fR(e)
I'(e)
a(e)= L)
[e —eo — A(€)]2 + [I'(e)/2]2

fleo)=

(36)

With these expressions the evaluation of the current (19)

is straightforward

-5 [ Zao{Ir=o -T2l
~[f2(T(9) - fr(T®)]}

T2 (e)0E(e)
h 27r [e — €0 — A(€)]% + [F(€)/2]?
X[f2(€) — Fa(e)] - (37)

Note that this derivation made no assumptions about
proportionate coupling to the leads. The factor multi-
plying the difference of the Fermi functions is the elas-
tic transmission coefficient. It is important to under-
stand the difference between this result and the result
obtaired in Sec. IIIB2 (despite the similarity of ap-
pearance): There Eq. (21) gives the current for a fully
interacting system, and the evaluation of the retarded
and advanced Green functions requires a consideration
of interactions (e.g., electron-electron, electron-phonon,
and spin-flip) in addition to tunneling back and forth
to the contacts. Suppose now that the Green func-
tion for the interacting central region can be solved,
G™%(€) = [e— €0 — A(e) £iv(€)/2] 71, where A and /2 are
the real and imaginary parts of the self-energy (including
interactions and tunneling). Then the interacting result
for proportionate coupling (21) becomes

de TL(eTR(e)
== / [fr.(€) fR(G)]—(*)—m
9 v(€) .
[e — €0 — A(e)]% + [v(€) /2]
This result coincides with the noninteracting current
expression (37) if A(e) — A(e) and v(e) — T'(e) =
T'E(¢) + I'L(e). In a phenomenological model, where the

(38)

total level width is expressed as a sum of elastic and in-
elastic widths, v = 7e + <;, one recovers the results of

Jonson and Grincwajg, and Weil and Vinter.3!

C. Wide-band limit
1. Basic formulas

For simplicity, we continue to consider only a single
level in the central region. As in the previous section,
we assume that one can factorize the momentum and
time dependence of the tumneling coupling, but allow
for different time dependence for each barrier: Via(t) =
ur/r(t)Va,n(er). Referring to Eq. (33), the ‘wide-band
limit consists of (i) neglecting the level shift A(e), (ii) as-
suming that the linewidths are energy independent con-
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stants, > cr, pla = = TL/E and (iii) allowing a single
time dependence, Aryr(t), for the energies in each lead.

Let us comment on the relevance of the WBL. This
approximation captures the main physics in a range of
applications, and has the great advantage of yielding
explicit analytic results. In particular, transport is of-
ten dominated by states close to the Fermi level, and
since ['(¢) and A(e) are generally slowly varying func-
tions of energy, the WBL for this case is an excellent
approximation. The WBL also allows asymmetric barri-
ers (I', # I'r). Consequently, it is possible to describe
resonant-tunneling systems under high bias by using a
suitable model for the bias dependence of the level widths
and/or shifts. Finally, while the simplest WBL leads
to an unphysical monotonic I-V curve for a resonant-
tunneling diode (because the model lacks band edges),
it is relatively simple to generalize the WBL so- that it
does yield negative differential resistance, see Sec. IVC4
below.

The retarded self-energy in Eq. (29) thus becomes

B (tr,t2) = Z u;(tl)ua(tz)veniﬁ; dtzAq(ts)
a€Ll,R

x / de icttr=t)g(t, — t;)[~iT]
= S P%() + TR0 — 1) - (39)

(Here we have introduced the notation I'L/ R(t) =
TE/R(1y,t) = I‘L/R|uL/R(t1)|2) With this self-energy,
the retarded (advanced) Green function becomes'®??

t
1
GM® (t, t’) = ‘g'r,a‘(t, tl) exp{:F/ dt1§ [FL (tl)
: . N

+TR(t1)] } (40)
with
Fif(Lt Ft')

X exp [—z/ dtleo(tl)jl . (41)

’ % :
This solution can now be used to evaluate the lesser func-
tion Eq. (31), and further in Eq. (15), to obtain the time-
dependent current. In the WBL the ¢ and ¢, integrals in
the term involving G< are readily evaluated, and we write
the current as [using Im{G<(t,t)} = N(t), where N () is
the occupation of the resonant level] .

gre (t7 tl) =

LB =—% [FL@)N(t) + [ Z1a(9
X/t dtlI‘L(tl,t)

xIm{é—"é(tI—”Gr (t, tl)}} . (42)

‘For a compact notation we introduce
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AL/R(E,t) = /d‘tluL/R(tl)Gr(t,tl)
ty

X exp [Zé(t - tl) -1z dtZAL/R(tZ):I .
t

(43)

Obviously, in the time-independent case A(e) is just the
Fourier transform of the retarded Green function G™ (¢).32
In terms of A(e,t) the occupation N(t) [using Eq. (31)
for G<] is given by

N = SR [ fn@ldum(e ol . (49
L,R

We write the current as a sum of currents flowing out
from the central region into the left (right) contact (see
also Fig. 9), and currents flowing into the central re-
gion from the left (right) contact, Jy /r(t) = g‘/‘%(t) +

J}In/ ()

Tg(t) = S THREN () (45)
J},“/R(t) _ _%rL/RuL/R(t) / %fL/R(e)
xIm{Az/r(e,t)} . (46)

It is readily verified that these expressions coincide with
Eq. (37) if all time-dependent quantities are replaced by
constants.

Employing the same approach as in Sec. IV C, and pro-
vided that ur(t) = ur(t) = u(t), we find that the time-
averaged current in the WBL is given by

€ LR €
= - s [ eIl )

—Fr(e)(u(t)Ar(e 1))} - (47)

Unlike the general case of Eq. (27), there is no restriction
in the WBL that the time dependence be the same in the
two leads. Equation (47) can, therefore, be used for the
case of a time-dependent bias, where Ar(t) and Ag(t)
will be different. It is interesting to note that the func-
tion of energy appearing in the time-averaged current is
positive definite. In particular, as is shown in Appendix
C,

~ (Im{ur/r(t)AL/r(st)}) = g(lAL/R(G, %) . (48)

One consequence of (48) is that if only the level is time
dependent the average current cannot flow against the
bias.

In the next two sections we consider specific examples
for the time variation, which are relevant for experimen-
tal situations.

2. Response to harmonic modulation

Harmonic time modulation is probably the most com-
monly encountered example of time dependence. Here
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we treat the case when the contact and site energy levels
vary as

AL/R,O(t) = AL/R,O cos(wt). (49)

It is easy to generalize the treatment to situations where
the modulation frequencies and /or phases are different in
different parts of the device. Assuming that the barrier
heights do not depend on time (uz /g = 1), and substi-
tuting (49) in the expression (43) for A(e,t), one finds®*

Apg— A
Agp/r(€,t) = exp [—iU‘U—Lm sin(wt)]
>, Ao — A
o Z Jk( 0 L/R)
k=—cc -\
eikwt

xe—eo—kw-!—iF/Z ’ (50)
where J_g(z) = (—1)*J(z). Figures 3(a) and (b) show
|A(e, t)|? and ImA(e, t) as a function of time, respectively.
We recall from Egs. (44)—(45) that the current at a given
time is determined by integrating |A(e,t)|? and ImA(e, t)

FIG. 3. (a) |A(e, t)|* as a function of time for harmonic

modulation for a symmetric structure, Tz = Tr = TI'/2.
The unit for the time axis is #/T", and all energies are mea-
sured in units of I', with the values p; = 10, pr = 0,

€ = 5,A = 5,A; = 10, and Ar = 0. The modulation
frequency is w = 2T'/k. (b) The time dependence of ImA(e, t)
for the case shown in (a).



over energy, and thus an examination of Fig. 3 helps .

to understand to complicated time dependence discussed
below. (We show only Ay; similar results hold for Ag. )

The physmal parameters used to generate these plots are

given in the figure caption. The three-dimensional plot

(top part of ﬁgure) is projected down on a plane to yield

a contour plot in order to help to visualize the time de-
pendence. As expected, the time variation is periodic
with period T = 27/w. The time dependence is strik-
ingly complex. The most easily recognized features are
the maxima in the plot for |4|2; these are related to pho-
ton sidebands occuring at € = €o + kw [see also Eaq. ( 1)
below}.3®

The current is computed using the methods described
in Appendix B, and is shown in Fig. 4. We also display
the drive voltage as a broken line. Bearing in mind the
complex time dependence of |AJ]> and ImA, which de-
termine the out and in currents, respectively, it is not
surprising that the current displays a nonadiabatic time
dependence. The basic phys1ca.1 mechanism underlying
the secondary maxima and minima in the current is the
lineup of a photon-assisted resonant-tunneling peak with
the contact chemical potentials. The rapid time varia-
tions are due to J* (or, equivalently, due to ImA): the
out-current J° is determined by the occupation N(t),
and hence varies only on a time scale I'//, which is the
time scale for charge density changes.

We next consider the time average of the current. For
the case of harmonic time dependence, we find3*
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AL/R)

(ImAL/R(et =-—— Z Jk(

k——oo
1
x (e — €0 — kw)? + (]f‘/2)2 - 1)

~ Figure 5 shows the resulting time-averaged current Jgc.

A consequence of the complex harmonic structure of the
time-dependent current is that for temperatures kT’ <
hw the average current oscillates as a function of period
27 Jw. The oscillation can be understood by examining
the general expression for average current Eq. (27) to-
gether with (51): whenever a photon-assisted peak in
the effective density of states, occuring at € = € + kw
in the tlme-averaged density of states (ImAj, /R)» MOVES
in or out of the allowed energy range, determined by the
difference of the contact occupation factors, a maximum
(or minimum) in the average current results.

3. Response to steplike modulation '

We give results for the case when the central site level
changes abruptly at ¢ = to: € — €0 + A. If the con-
tacts also change at the same time, the corresponding
results are obtained by letting A —+ A — Ap/p. Thus,
simultaneous and equal shifts in the central region and
the contacts have no effect. Assuming that the barrier
heights do not depend on time (ur g = 1), one finds for
t >ty from Eq. (43)

1
Ale,t) = m{l—i—A

This result is easily generalized [see Eq. (14) in Ref. 17] to
a pulse of duration s, and numerical results are discussed
below. '

It is instructive to study analytically the long- and
short-time behavior of A(e,t). It easily verified that
A(e,t) has the expected limiting behavior '

0.4

0.2¢

Current

0.0

0123 45€6
Time
‘FIG. 4. The time-dependent current J(t) for harmonic
modulation corresponding to the parameters of Fig. 3. The
dc bias is defined via pr = 10 and pp = 0, respectively. The
dotted line shows (not drawn to scale) the time dependence
of the drive signal. The temperature is kpT = 0.1T".

1—explife— (eo + A) +iT/2}E—t)] |~ A
€ — (€0 + A) +1i['/2 } (52)

Ale,t — 00) = [e — (0 + A) + ir/2)t. (53)
Thus, when the transients have died away, A(e,t) settles
to its new steady-state value.

Consider next the change in current at short times af-
ter the pulse, t — to = 6t < A/T,k/e. Note that the
second inequality provides an effective cutoff for the en-
ergy integration required for the current. In this limit we
may write

©0.24
0.22+

% 0.20}

0.187¢
0.16

01 2 3 4 5 6
.Period
FIG. 5. Time-averaged current Ja. as function of the ac

oscillation period 27/w. The dc amphtudes are the same as
those in Fig. 4.
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1— 1At

Ale, t) P 2

- (54)

Since §J°(t) o< |A(e,t)|?  (8t)2, the leading contribu-
tion comes from Ji*(¢). For low temperatures we find

8Jz/r(t)

1

L/R HL/R
e / delmd Ae, t)

wh —h/8t
eI\L/R
7h

AbtIndt . (55)

We next discuss the numerical results for a steplike
modulation. Just like in the case of harmonic modula-
tion, it is instructive to study the time dependence of |A|2
and ImA; these are shown in Figs. 6(a) and (b), respec-
tively. The observed time dependence is less complex
than in the harmonic case. Nevertheless, the resulting
current, which we have computed for a pulse of duration
s, and display in Fig. 7, shows an interesting ringing be-
havior. The ringing is again due to the movement of the
sidebands of Im Ay, /g through the contact Fermi energies.

Due to the experimental caveats discussed in Sec. II,
the ringing shown in Fig. 7 may be masked by capacitive
effects not included in the present work. However, the
ringing should be observable in the time-averaged cur-

\o'.‘\\\
X
N \ Y

N TR
A A

FIG. 6. (a) |Ale, t)|? as a function of time for steplike mod-
ulation. At t = 0 the resonant-level energy ¢o suddenly de-
creases by 5I". (b) The time dependence of ImA(e,t) for the
case shown in Fig. 6(a).

0.50
0.40¢
0.30¢
0.20¢

0.10¢
0.00

Current

Time

FIG. 7. Time-dependent current J(¢) through a symmetric
double-barrier tunneling structure in response to a rectangu-
lar bias pulse. Initially, the chemical potentials uz and pr
and the resonant-level energy €p are all zero. At ¢ = 0, a bias
pulse (dashed curve) suddenly increases energies in the left
lead by Ay = 10 and increases the resonant-level energy by
A = 5. At t = 3, before the current has settled to a new
steady value, the pulse ends and the current decays back to
zero. The temperature is kgT = 0.1T".

rent by applying a series of pulses such as that of Fig.
7, and then varying the pulse duration.3® In Fig. 8 the
derivative of the dc current with respect to pulse length is
plotted, normalized by the repeat time 7 between pulses.
For pulse lengths s of the order of the resonance life-
time A/T, the derivative of the dc current mimics closely
the time-dependent current following the pulse, and, like-
wise, asymptotes to the steady-state current at the new
voltage.

4. Linear response

For circuit modeling purposes it would often be desir-
able to replace the mesoscopic device with a conventional
circuit element, with an associated complex impedance
Z{w), or admittance Y(w). Our results for the nonlin-
ear time-dependent current form a very practical starting
point for such a calculation. For the noninteracting case,
the current is determined by A(e,t) [see Eqgs. (44) and
(45)], and all one has to do is to linearize A [Eq. (43)]
with respect to the amplitude of the drive signal, i.e.,

1.5

1.0

0.5¢

(dJ /ds)T

0.0¢
-0.5

012 3 45 6
- Pulse length s

FIG. 8. Derivative of the integrated dc current Jy with re-
spect to pulse duration s, normalized by the interval between
pulses 7. For pulse durations much longer than the resonance
lifetime %/T', the derivative is just the steady-state current at
the bias voltage, but for shorter pulses the ringing response
of the current is evident.
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A — Ap/p. It is important to notice that we do not lin-

earize with respect to the chemical potential difference:

the results given below apply to an arbitrary static bias

voltage. - ‘
Performing the lmearlza,tlon, one finds

A—-A 1
A(l) t 2= L/R
Hz/z(5?)] o e—eray
e—'iwt
X[e—eo—w—iI‘/Z
. eiwt . .‘ ) ‘ »
_‘e—eo+w—iI‘/2} }’ (56)
and
A AL R zwt
AN (et /Etm
wAy/r(6t) = {e—eo—w+zF/2
B ' e—zwt + e—zwt_ezwt } o
e—e+w+il/2  e—e+il/2]"
(57)

(1),0ut
s JL/Ru
. . LR

. r . . .
. -——mn(wt) [WGL/R( ) + w2 1 rzFL/R(w)]}

where we defined

I#L/R €0 'Hl-'/zl2 " 1
G =In 61
/() v (uz/r — €0 +1L'/2)% — w2 (61)
and
o, —1HL/R— €W
FL/R((U) =tan™- /2
R, tan_l M R (62)

T/2

These expressions glve the linear ac current for an arbl—

trarily biased double barrier structure, where both con-

tacts and the central-region energles are allowed to vary
harmonically. As a check, it is instructive to verify that
the finite temperature results of Appendix B2 contain
Egs. (59) and (60) as a spec1a1 case; this is a rather
straightforward calculation using the hm.ltmg behavior
of the Digamma function.

Considerable simplification occurs, if one considers a
symmetric structure at zero bias: I'l = I'E =T/2, and
B = BR = U, Tespectively. Followmg Fig. 9 the net
current from left to right is o
.j‘g.),in].

J(l) — 1/2[J£1)’in + Jg_),out _ JI(:].).’Ol_lt —

Using Eqgs. (59) and (60), one finds that the “out” con-

Using
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At finite temperature the energy integration must be
done numerically, as explained in Appendix B, while at’
T = 0 they can be done analytically. In the latter case,
all the integrals can be cast 1nto the form

£ de S .
_/'_oo (e — €1 + iF1/2)(e‘—— ez i /2)

= — ——1 - . (58
61—62-*-7:(]:‘2 ~—I‘1)/2 nﬂf,ﬁz +ZI‘2/2 : ( )

In(z + iy) = 1/2In(z? + y?) + itan_l‘(y/:z:)v |

yields
1),in € A _‘AL/R
JE /)R - ﬁpL/RW [cos(wt)FL/R(w)
+ sin(wt)G L/ R(w)} (59)

) aﬁd

L/R L/R L/R d
hF / ZI‘ / 27l_—w{cos(wt) [ 5T I‘Z:GL’/R(w) - wz—mFL/R(w)

- (60)

tr1but1ons cancel and that’ the “in” currénts combme to
give the net current

el"AL

Jv(rli(t) 1 T—[cos(wt)F(w) + sin(wt) G(w)] -

- (63)

Here the functions F(w) and G(w) are given by Egs. (62)
and (61) but using g and I'/2 as parameters. This re-
sult exactly coincides with the recent calculation of Fu
and Dudley,?* which employed the ac Landauer-Buttuker
linear-résponse theory

We now wish to apply the formal results derived in
this section to an experimentally relevant system. The

JI:mt ) J lin
I Al
Ao
L A 0 ¢ A R

o
4\.

-

FIG. 9. Linear-response configuration. "
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archetypal mesoscopic device with potential for applica-
tions is the resonant-tunneling diode. The key feature of
a resonant-tunneling diode is its ability to show negative
differential resistance (NDR). The WBL model studied
in this section does not have this feature: its I-V char-
acteristic, which is readily evaluated with Eq. (37), is a
monotonically increasing function. A much more inter-
esting model can be constructed by considering a model
where the contacts have a finite occupied bandwidth; this
can be achieved by introducing a low energy cutoff Dy,
(in addition to the upper cutoff provided by the electro-
chemical potential). The zero-temperature I-V charac-
teristic is now

Jac(V) =

e2l' TR [tan‘l ur — (V)
T T/2
—1 p5 —Dp —e(V)
T/2
—1 br(V) — eo(V)
T/2

—1 #r(V)—Dr - eo(V)}

r/2 )

— tan

— tan

+tan (64)

Here we assume that the right chemical potential is field
dependent: pp(V) = pr — eV, and that the field de-
pendence of the central-region level is given by eg(V) =
egp — V/2. The resulting current-voltage characteristic is
depicted in Fig. 10. We note that the strong increase
in current, which is observed in experimental systems at
very high voltages, is not present in our model: this is
because we have ignored the bias dependence of the bar-
rier heights as well as any higher lying resonances. The
only generalization required for Egs. (59) and (60) is to
modify the F' and G functions: F, — F= F,—F, p,
and analogously for G,,. We show in Fig. 11 the resulting
linear-response admittance Y (w) for a symmetric struc-
ture (T'y, = T'p). Several points are worth noticing. For
dc bias eV = 5 (energies are given in units of I') the
calculated admittance resembles qualitatively the resuits
reported by Fu and Dudley for zero external bias, except
that the change in sign for the imaginary part of Y (w)
is not seen. For zero external bias (not shown in the fig-
ure) our finite bandwidth model leads to an admittance,

1.2
1.0 7

0.8
0.6
0.4

0.2

0.0t . .

0 5 10 15 20
Voltage

Current

FIG. 10. I-V characteristic for a model resonant-tunneling
device (quantum dot). The system is defined by parameters
€«(V=0)=2,ur =pr(V =0)=0, and Dy, = Dg = 2, and
the current is given in units of eI'/hA.
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—-0.2

—-0.4
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FIG. 11. In-phase and out-of-phase components of the
linear-response current (in units of eI'/h and normalized
with the amplitude of the drive signal A to yield admit-
tance) for two bias points, eV = 5 (continuous line) and
eV = 10 (dashed line). Other parameters are as in Fig.
10. The out-of-phase components (or, equivalently, imagi-
nary parts) always tend to zero for vanishing frequency, while
the in-phase component can have either a positive or negative
zero-frequency limit depending on the dc bias.

whose imaginary part changes sign, and thus the behav-
ior found by Fu and Dudley cannot be ascribed to an
artefact of their infinite bandwidth model. More inter-
estingly, for dc bias in the NDR regime, the real part is
negative for small frequencies. This simply reflects the
fact that the device is operating under NDR bias condi-
tions. At higher frequencies the real part becomes posi-
tive, thus indicating that further modeling along the lines
sketched here may lead to important implications on the
high-frequency response of resonant-tunneling structures.

In concluding this section, we wish to emphasize that
the linear-response analysis presented above is only a spe-
cial case of the general results of Sec. IV, which seem to
have the potential for many applications.

VI. RESONANT TUNNELING WITH
ELECTRON-PHONON INTERACTIONS

As a final application, we establish a connection to
previous calculations on the effect of phonons on resonant
tunneling.?? For simplicity, we consider a single resonant
level with energy-independent level widths 'y, and I'p
(i-e., the WBL). The expression for the current Eq. (21)
becomes now

e LR " =5} X
J= ﬁL—sz" / g;[fL(f) — fr(e)] /_ _ die*a(t),
(65)

where a(t) = i[G"(t) —G°(t)] is the interacting spectral
density. In general, an exact evaluation of a(t) is not
possible, however, if one ignores the Fermi sea, G"(t)
[and hence a(t)] can be calculated exactly®”

G (t) = —i0(t) exp[—it(eo — A) — B(t) —T't/2], (66)

where
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A=Z£3’ - "‘(t67)
. q Wq .
and
@(t) = Z %}[-?q[Nq(l — eiwqt) + (Nq +1)(1 — e—iwqt)] ,
- (68)

and the electron-phonon interaction is given by Eq. (5). -

When substituted in the expression for current, one re-
covers the result of Ref. 22, which originally was derived
by analyzing the much more complex two—partlcle Green
function

G(r,s,t) = 0(s)0(t)(d('r - s)d‘f(T)d(t)d’f( )).

The advantage of the method presented here is that one
only needs the single-particle Green fupcmon to use the
interacting current formula (21). Othet systematic ap-
proaches to the single-particle Green function can, there-
fore, be directly applied to the current (e. g pertmbatmn
theory in the tunneling Harmltoman)

VIL. CONCLUSIONS -

Here, we summarize the main results of this study. We
have derived a general formula for the time-dependent
current through an interacting mesoscopic region, Eq.
(15). The current is written in terms of local Green
functions. This general expression is then examined in
several special cases: (i) It is shown how earlier results
for time-independent current are contained in-it [Egs.

(19) and (21)].. (ii) An exact solution, for arbitrary time-

dependence, for a single noninteracting, level coupled to
two leads is given [Egs. (44) and (45)]. This calculation
leads to a prediction of “ringing” of current in response
to abrupt change of bias, or in response to an ac bias.
We believe that this prediction should be experimentally
verifiable. (iii) We derive a Landauer-like formula for the
average current, Eq. (27). Finally, as applications, we
discuss (iv) ac linear-response at arbitrary dc bias and
finite temperature, and (v) find a connection to earlier
results on resonant tunnelmg in the presence of optical
phonons.

We hope that time dependence will provide a new win-
dow on coherent quantum transport, and will lead to sig-
nificant new insights in the future.
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APPENDIX A NONEQUILIBRIUM GREEN
FUNCTIONS ' ,

The most important result (see, 'e.’g., Refs. 25, 26, and
27) of the formal theory of nonequilibrium Green func-
tions is that the perturbation expansion has precisely the

'same structure as the T = 0 equilibrium expansion. In-

stead of a tlme-ordered Green function, one works with
the contour-ordered Green functlon,

G(r,') = ~iTefp(m ()},

where ‘the contour C is shown in Fig. 2. The contour-
ordering operator T orders the operators following it in
the contour sense: operators with time labels later on -
the contour are moved left of operators of earlier time -
labels. Thus, once the self-energy functional, ¥ = Z[G],
has-been specified, the contour-ordered Green function
obeys formally the same Dyson equation as in T = 0
theory,

~ (AD)

G=Go+Go2q, (A2)

Wlth the modification tha.t internal time 1ntegrat10ns run
along the (complex) path discussed in Sec. IT A. It follows
from this structural equivalence that one can derive equa-
tions of motion just as in the T' = 0 case, and that the
passage to nonequilibrium takes place by replacing the
time-ordered Gréen functions by contour-ordered Green
functions, and by replacing the real-time integration by
an integration along the time contour. In practical cal-
culations, however, the contour-ordered Green functions
are inconvenient, and it is expedient to perform an an-
alytic continuation to the real axis: The first step in
this procediire consists of expressing the contour-ordered
Green ' functions in terms of 2X 2 matrices, whose ele-
ments are ‘determined by ‘which branches of the contour
the two time labels are located on. The four elements of
the matrix Green function are not linearly independent,
and it is useful to perform a rotation of this matrix. A
particularly convenient set of operational rules has been
given by Langreth:?5 If one has an expression 4 =. [ BC
on the contour (this is the generic type of term encoun-
tered in the perturbation expansion), then the retarded
and lesser components are given by -

AT (8, ) = / d}tlB"(t, tl)c*"(tl,t’),

A%(,t) = / 1B () O (s )

+B<(t,t1)C%(t1,t)]. - (A3)
These results are readily generalized to products involv-
ing three (or more) Green functions or self-energies.

The equation of motion for G< can be derived by
applying the rules (A3) to the Dyson equation for the
contour-ordered Green function. The Dyson equation

can be written either in a differential form, or in an inte-
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gral form, as in Eq. (A2). The former leads to the Baym-
Kadanoff transport equation, while the latter (which is
employed in the present work) yields the Keldysh equa-
tion for the lesser function

<= (1+G TG+ 3°G%) + G"I<G*, (A4)

where the retarded and advanced Green functions satisfy

G™* = Gy* + GpeEheG™e . (A5)
The physical modeling goes in the choice of the self-
energy functional ¥, which contains the interactions
(carrier-impurity scattering, phonon scattering, carrier-
carrier scattering, etc.). Once X is given, for example
in terms of diagrams, the retarded, or “lesser” compo-
nents of the self-energy can be worked out according to
the rules (A3), and one can proceed to solve the coupled
Egs. (A4) and (A5).

APPENDIX B: DYSON EQUATION FOR G¢

N,Kax

1. Equation-of-motion method

According to Appendix A it is sufficient to consider
the T' = 0 equation of motion for the time-ordered Green

function G’n P

- i%Gz,ka(t - t’) = ekG:z,ka(t - t,)

+ Z Vk,:x,metm (t - t/) H] (Bl)

where we defined the central-region time-ordered Green
function Gt (t —t') = —i(T{d},(t)d.(t)}). Note that
it is crucial that the leads be noninteracting: had we
allowed interactions in the leads the equation-of-motion
technique would have generated higher order Green func-
tions in Eq. (B1), and we would not have a closed set of
equations.

We can interpret the factors multiplying G% ,m(t
t') as the inverse of the contact Green-function opera-
tor, and introduce a short-hand notation: G% kagka =
Yo GomVin,m- BY operating with gk, from rlght we
arrive at

Ghialt=t) =3 [ daGhn(e— 1)
xvvk*a,mg;'ca(tl - t/) . (B2)

According to the rules of the nonequilibrium theory, this
equation has in nonequilibrium precisely the same form,
except that the intermediate time integration runs on the
complex contour:

Grpalri ™) = 3 / iy G (7,72)
XVI:a,m(Tl)gka (7'17 TI) . (B3)

This is Eq. (11) of the main text. The analytic continu-
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ation rules (A3) can be applied, and the desired Dyson
equation is obtained.

2. S-matrix expansion

We write the Green function G, ix(%,t) in terms of
interaction-picture operators (denoted by a tilde) by in-
voking the S matrix:

G ka7, ') = —i{Tc{Sdn(T)e} ()},

where
S = Tc{exp [—zL dTlﬂT(T;[):l }

is the contour-ordered $ matrix, and Hr is the tunneling
Hamiltonian of Sec. IIB2. We expand the exponential
function in (B5); the zeroth order term does not con-
tribute, and we find

Gn,ka(TaT ) = _7'<T0{d (T cka(T Z

[ / drs 3 [Viarm(ma)

kol,m

(B4)

(B5)

,L)n+1
(rn+1)!

X &Ly (T2) o (T2) + Vi 1 (72)

n+1
XJL(Tg)Ek/a' (’I‘z)}] }> .

Since, by assumption, the leads are noninteracting, result
will only be nonzero if & «(7') is contracted with & (7;)
from one of the n+1 interaction terms. The n+1 possible
choices cancels a factor of n 4 1 in the factorial in the
denominator, leaving

(B6)

Crselr7) = X [ dral=i){To{Eralra)elar))
X I/.lc,'::z,m (72) (—'L)
(TS, (12)dn(r)}) -

Equation (B7) is completely equivalent to the result (B3)
obtained in the previous subsection.

(B7)

APPENDIX C: PROOF OF EQ. (48)

In this Appendix, we prove that for a single level in
the WBL (see Sec. V C) there is a definite relation,

r
—(ur/r(t)Im{AL/r(¢,1)}) = g(iAL/R(G,th), (C1)
between the time averages of the quantities that, respec-
tively, determine the current and the occupation. For
the case of the occupation, one can explicitly write out

(|Az/r(e,t)|?) and then use the identity



G (t, )G (t1,t) = i0(t — t1)0(t — £7)

x [e‘r(t—ti)G’ (t,,t1)

—e TG, )] (C2)
to obtain
i T2 T/2 '
2y = — dt dt} t
(A% Tl-l-{%o IT J_7/2 1/—1'/2 /R ()
xur/r(ty)[G" (t1,81) — GA(t1,81)]
iy .
X exp [ie(t'l —t)+ dtzA(tz)] . (C3)
1 ’

Writing out (ur,r(t)Im{Ar, r(e, t)}) exphc1tly then
yields Eq. (C1).

APPENDIX D: NUMERICAL INTEGRA’I‘ION

In this Appendix, we describe methods to facilitate
numerical calculations in the wide-band limit (Sec. V C).
While the numerical integrations required for the occu-
pation and for the current can be.done directly, it is of-
ten difficult to obtain sufficient accuracy. We have found
that it is useful to do the integrations analytically by
contour integration, and then sum the resulting residues.
‘We have also checked for a few selected parameter values
that the two methods give identical results.

1. Steplike modulation

We illustrate the somewhat cimbersome but straight-
forward formulas by giving the expressions for the devi-
ation of the occupation from its asymptotic value follow-
ing a steplike modulation of the level energy (Sec. V C 3):
SN(t) = N(t) —
(52)

SN(t) = %Aze_r(t*t°)[FLD(uL) +TED(ug)]
— - AeTT ) DL R B (ur) }
+T22Re{E(ur)}], (d1) .
where
_ f(e) 1
D) = [ @ A AR R T

_ 7@
mm‘/*k—%—wkuww

gile—co—A)(t—to) ]

i —h (®2)

where f (e) is the Fermi function with chemical potentié,l

1. The poles of the integrands are at € = ¢ £ iI'/2,

€ =¢co+ A+£il'/2, and € = p +427(n + 1/2)/0, respec-
tively. Upon closing the contour in the upper-half plane,
one obtains three different contributions; the terms aris-
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N(t = o0). We find from Egs. (44) and
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ing from € = €y +3['/2 and € = € + A + iy/2 obvi-
ously lead to no problems, while the sum over n con-
verges either as n=* [the term originating from D(y)], or
as n~3exp[—2nn(t —to)/F] [the term due to E(u)], and
hence also converges rapldly

2. Harmonic modulation

In principle, the calculation proceeds as in ’c.he previous
section. However, the sum over the residues, which re-
sults from the contour integration, converges very slowly.
A typical term in the resulting lengthy expressions con-
verges only as n~2. Significantly improved convergence
can be obtained by making use of the relation

S e = T~ ),

nO

- (D9)

whiere ¥ is the digamma function. In what follows,
we give the results for linear response. The occupation .
[whlch also glves the current flowing out from the central
region via (44)] is

{sm(wt) [21"7=L/ R

Ao — Ar/rTL/R
N(t) 2 ZR w+T? W

+ cos(wt) [—Zer/ I w(RL/ R + RR/ 5

ST(I/R - 12/ } . (D4)
Here Lo -
IE/R— Im \Il<1/2 — 2—€r—i(uL/R — € Fw— zl"/2))jl ,
RL/®=Re \11(1/2 - 2—’5-,;‘-(@/1% — € Fw- il“ﬂ))] )
L
Tg'/R___ Re LG (1/2 + %(ML/R — €9 + iI‘/Z))V . (D5)
L ' : _ :

The current flowing into the central region can also be
expressed in terms of similar functions:

A

—A
€ L/R L/R JL/R _ L/R
T5r(t) = STHRE R R [cos(wt) i )

L/R

YE B, (D6)

+sin(wt)(2ry’ " — Y

with

ii/R= m[\p (1/2+ 2—%(;@/3 —eFw+ z‘l‘/%)},

ri/B= Re l:\Il (1/2 + %(N’L/R —eFw+ zl"/2))} .

(D7)
By recalling lim, oo \If(z) — In(2), it is straightforward
to check that these results reduce to the T' = 0 case

discussed in the main text.
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