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The chemotaxis network in Escherichia coli is remarkable for its
sensitivity to small relative changes in the concentrations of
multiple chemical signals. We present a model for signal integra-
tion by mixed clusters of interacting two-state chemoreceptors.
Our model results compare favorably to the results obtained by
Sourjik and Berg with in vivo fluorescence resonance energy
transfer. Importantly, we identify two distinct regimes of behavior,
depending on the relative energies of the two states of the
receptors. In regime I, coupling of receptors leads to high sensi-
tivity, while in regime II, coupling of receptors leads to high
cooperativity, i.e., high Hill coefficient. For homogeneous recep-
tors, we predict an observable transition between regime I and
regime II with increasing receptor methylation or amidation.

chemotaxis � Monod, Wyman, and Changeux model � receptor clustering

The chemotaxis network in Escherichia coli is the best studied
signal-transduction network of any living organism. The

function of the network is to allow E. coli to swim toward
attractants, such as amino acids or sugars, and away from
repellents. The cells perform chemotaxis by detecting temporal
changes in their chemical environment and transducing this
information into a decision to swim straight or change direction
(tumble). The chemotaxis system is remarkable for its high
sensitivity to small relative changes in chemical concentrations
and for the ability of cells to retain sensitivity over a wide range
of ambient chemoeffector levels (1). The latter property relies on
an adaptation system in which receptors are methylated�
demethylated by CheR�CheB at four specific residues (modifi-
cation sites) (2, 3). Adaptation in chemotaxis is precise, i.e., cells
return precisely to the same rate of tumbles if chemoeffector
levels stop changing. The adaptation system is also robust in that
precise adaptation occurs for a range of levels of chemotaxis
proteins (4). Another remarkable property of the system is its
ability to integrate signals from different chemical cues, allowing
chemotaxis toward any of multiple attractants (5).

In E. coli, there are five chemotaxis receptors: two high-
abundance receptors, Tar and Tsr, and three low-abundance
receptors Tap, Trg, and Aer. These receptors are highly similar
in their cytoplasmic signaling domains, with differences primar-
ily in the periplasmic ligand-binding domains. All five chemo-
receptors associate as homodimers. In living cells, these ho-
modimers are observed to cluster near one or both poles of the
cell (6). In vitro crystallographic studies of cytoplasmic domains
of the receptors reveal a complex of three homodimers (a
‘‘trimer of dimers’’) (7). In vivo crosslinking studies demonstrate
that trimers of dimers can be composed of mixtures of ho-
modimers of different types (8, 9). Clustering of trimers of
dimers is mediated by the linker protein CheW and by the kinase
CheA (6, 8), both of which are essential for phosphorylation of
the response regulator CheY (10). In its phosphorylated form,
CheY interacts with the flagellar motors to induce tumbling (11).

Recently, Sourjik and Berg (12–14) introduced a new tool to
study signaling in chemotaxis: in vivo f luorescence resonance
energy transfer (FRET). They constructed fluorescent protein
fusions to CheY and to its phosphatase CheZ, thereby creating

a FRET pair that they used to monitor the stimulus-dependent
activity of the receptor–kinase complex (Fig. 1a). Receptors
were engineered with specific patterns of glutamates (E) and
glutamines (Q) at the modification sites. Higher numbers of
glutamines favor increased CheA kinase activity. In the absence
of the adaptation system (cheRcheB strains), the glutamates and
glutamines are not modified. In the presence of the adaptation
system, glutamates are methylated and demethylated by CheR
and CheB, respectively, and glutamines are also deamidated to
glutamates by CheB. Adaptation compensates for the effects of
ligand binding on CheA kinase activity; for example, a net
increase in methylation (CheA kinase enhancement) follows
addition of attractant (CheA kinase inhibition). Sourjik and Berg
observed that the inhibition constant Ki of the response to the
attractant �-methylaspartate (MeAsp) varied over almost five
orders of magnitude depending on the modification states of the
Tar and Tsr receptors (12). Moreover, in strains expressing both
Tar and Tsr receptors, the higher the fraction of a given receptor,
the lower was the Ki and the higher the cooperativity of the
response to its ligand (see Fig. 3a). Cells expressing only Tsr
receptors showed an extremely cooperative (i.e., steep) response
to serine, with a Hill coefficient of �10.

The signaling properties of the chemotaxis network have been
the subject of numerous modeling studies. Notably, Barkai and
Leibler (15) were able to account for the adaptation properties
of the network by using a two-activity-state model for receptor
complexes (16). In one state, a receptor is both active as a kinase
and susceptible to demethylation by CheB; in the other state, the
receptor is inactive and not susceptible to demethylation. This
direct coupling between kinase activity and rate of demethyl-
ation provides a mechanism for integral feedback (17) and leads
to precise and robust adaptation. However, this elegant model
for adaptation does not directly account for the sensitivity or
signal-integration properties of the network. To account for
enhanced sensitivity, several studies have invoked interactions
among receptors (18–24). In particular, Bray et al. (18) proposed
a model of ‘‘conformational spread’’ among receptors. Along
these lines, and in light of the in vivo FRET results, Shimizu et
al. (22) reported an Ising-type lattice model for receptors, and
Sourjik and Berg (14) studied the related allosteric model of
Monod, Wyman, and Changeux (MWC) (25). However, these
studies were limited to receptors of a single type. To study a
mixed array of receptors, Mello and Tu (21) used a mean-field
version of an Ising-type model, later generalized by Mello et al.
(24) to include stochastic simulations. They achieved excellent
agreement with the FRET data but at the cost of a very large
number of parameters. Moreover, different parameter sets had
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to be used for wild-type and nonadapting cells (21). The model
of Albert et al. (23) also produced excellent agreement with the
FRET data but relied on dynamic receptor-complex formation,
which is not supported by experiment (26).

FRET Studies Suggest Two Regimes of Receptor Response
In Fig. 1a, we reproduce kinase-activity dose–response curves to
steps of MeAsp measured by using in vivo FRET by Sourjik and
Berg (12). The two curves at the lower left have approximately
the same inhibition constant Ki � 3 �M for half-maximal
activity. However, what is not seen in Fig. 1a because the
response curves are normalized is that the initial activity in the
absence of attractant is �16 times higher for wild-type cells than
for cheR mutant cells. In cheR mutant cells, the receptors are
presumably mostly demethylated. The remaining curves, for
engineered cheRcheB mutant cells, show two distinct declines in
kinase activity. For the first decline, the value of Ki1 increases
(and the amplitude decreases) with increasing glutamine content
of the Tar receptors, whereas for the second decline, the value
of Ki2 remains approximately constant. Also, for these four
cheRcheB curves, the initial activity, in the absence of attractant,
is higher than for wild-type, and changes by a factor of �1.5
among the four.

Overall, the six dose–response curves suggest two regimes of
receptor response. Encompassed in the first regime are the
wild-type and cheR cells, which have low initial activity and a
single low Ki. The second regime includes the four cheRcheB
cells, which have high initial activity, a high and variable Ki1, and
a distinct and even higher Ki2. One should note that, for the
cheRcheB cells, the receptors do not undergo methylation�
demethylation, so that the Tar receptors remain as engineered
(e.g., EEEE and QEEE), whereas the other receptors, mainly
Tsr receptors, remain ‘‘wild type,’’ i.e., QEQE.

In what follows, we show that a model of coupled two-state
receptors (25) can account for the full range of FRET data
(12–14), including receptors of multiple types both with and
without a functioning adaptation system. An essential observa-
tion is that there are two regimes of behavior of two-state
receptors and that both regimes are present in the FRET data.
Interestingly, in one regime, receptor coupling leads to enhanced
sensitivity to ligand (lower apparent Ki), whereas, in the other
regime, receptor coupling leads to an increased Hill coefficient.
Homogeneous receptors are predicted to display a transition
between these two regimes as a function of increasing receptor
methylation or glutamine content, which favors the active state
of receptors.

Model
Two Regimes of a Single Two-State Receptor. To explain precise
adaptation in chemotaxis, Barkai and Leibler (15) used a
two-activity-state model for receptor complexes (16). Presum-
ably, the two activity states correspond to two distinct configu-
rations of each receptor homodimer, one leading to high kinase
activity (on) and one leading to low or zero kinase activity (off).

We consider a model receptor with two activity states implying
a total of four free-energy states (Fig. 2b Inset): (i) on without
ligand bound Eon, (ii) on with ligand bound Eon –log([L]�Kd

on),
(iii) off without ligand bound Eoff, and (iv) off with ligand bound
Eoff –log([L]�Kd

off), where [L] is the ligand concentration and Kd
on

and Kd
off are the dissociation constants in the on and off states

(27) (all energies are in units of the thermal energy kBT). The

Fig. 1. Response of receptor activity to step of attractant. (a) Response measured by FRET by Sourjik and Berg (12) to quantified steps of the attractant MeAsp.
(b) Response of the mixed-cluster MWC model with equal contributions from 14, 15, and 16 receptor clusters, with binomial distributions of receptors at a Tar:Tsr
ratio of 1:2, to steps of MeAsp. In all cases, we set Ka

off � 0.02 mM, Ka
on � 0.5 mM, Ks

off � 100 mM. All energies in thermal energy units kBT. The experimental strains,
and our corresponding choices of offset energies �a, �s, are as follows: F, wild-type, 0,0; �, cheR mutant, 0.2,0.2; ‚, cheRcheB mutants–Tar{EEEE}, 1.0,–1.5; {,
Tar{QEEE}, 0.0,–1.5; �, Tar{QEQE}, �0.6,�1.5; ƒ, Tar{QEQQ}, �1.1,�1.5. All lines are to guide the eye.

Fig. 2. Two regimes of a two-state receptor. Representative energy-level
diagrams for a single two-state receptor as a function of ligand concentration.
The four possible states of the receptor are shown in Inset. Red curves (on) and
blue curves (off) correspond to active and inactive configurations of the
receptor, and the superscripts refer to no ligand bound (0) and ligand bound
(L). Dotted lines, energy levels of the unbound receptor; solid curves, ligand-
bound receptor; arrows, ligand concentrations when lowest free-energy
states cross. (a) Regime I : In the absence of a ligand, the on-state free energy
is above the off-state free energy; crossing occurs at [L] � Kd

off. (b) Regime II:
In the absence of a ligand, the on-state free energy is below the off-state free
energy; crossing occurs at [L] � Kd

off exp(Eoff � Eon).
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terms proportional to log([L]) represent the loss of ligand
volume entropy upon binding to the receptor. Within this model,
the probability for a receptor to be on at equilibrium is the sum
of Boltzmann factors for the two on states, with and without
ligand, divided by the sum of the Boltzmann factors for all four
states

pon �
e�Eon � e��Eon�log([L��Kd

on)]

e�Eon � e��Eon�log([L��Kd
on)] � e�Eoff � e�Eoff�log([L]�Kd

off)]

�

e�Eon� 1 �
�L�

Kd
on�

e�Eon� 1 �
�L�

Kd
on� � e�Eoff� 1 �

�L�

Kd
off� . [1]

For attractants, we assume that the binding of ligand favors the
off state, i.e., Kd

off �� Kd
on.

Eq. 1 predicts two regimes of behavior depending on the
relative energies Eon and Eoff. As shown schematically in Fig. 2,
regime I occurs when Eon � Eoff, and regime II occurs when
Eon � Eoff (a crossover regime occurs when Eon � Eoff). In
regime I, in the absence of ligand, the off state predominates, so
most receptors are already off (pon �� 1). Adding a ligand causes
pon to decrease further. Specifically, pon is reduced to approxi-
mately half-maximum when the denominator of Eq. 1 doubles,
i.e., when 1 � [L]�Kd

off � 2, or, equivalently, when the off state
with a ligand becomes copredominant with the off state without
a ligand. Thus the Ki for half-maximal activity in regime I is
constant and is set by the dissociation constant in the off state,
[L] � Ki � Kd

off.
In contrast, in regime II in the absence of a ligand, the on state

predominates, so most receptors are on (pon � 1). In this case, to
reduce pon to half-maximum requires that the off state with ligand
becomes copredominant with the on state without a ligand. Half-
maximum pon corresponds to setting exp(�Eoff) [L]�Kd

off equal to
exp(�Eon) in the denominator of Eq. 1. Compared to regime I, the
result is a larger ligand concentration [L] for half-maximal activity,
Ki � Kd

off exp(Eoff –Eon), which increases as Eon decreases.
This simple two-activity-state model accounts qualitatively for

a number of features of the response curves in Fig. 1a. The very
low activity of the cheR mutant is natural if the receptors in this
strain are in regime I. Similarly, the approximately constant
value of Ki for the cheR and wild-type cells is expected if both are
in regime I. For the engineered cheRcheB cells, the high and
nearly constant initial kinase activities correspond to regime II.
Moreover, the increase of the Ki1 values follows automatically
from Fig. 2 (or Eq. 1) if the replacement of glutamates (E) by

glutamines (Q) lowers the on-state energy of the Tar receptors
(3, 28).

However, the two-state model for a single receptor does not
account for many other features of the data, including the high
sensitivity to ligand (28), the integration of multiple chemical
signals, or the increase of cooperativity with receptor homoge-
neity (Fig. 3a; ref. 14). To account for these features, we must
consider interactions among receptors.

Two Regimes of Coupled Two-State Receptors. We first consider the
MWC model (25), in which n identical two-state receptors are so
strongly coupled that all n receptors are either off or on together.
The probability for the cluster of n receptors to be on at
equilibrium is

pon �

e�nEon� 1 �
�L�

Kd
on� n

e�nEon� 1 �
�L�

Kd
on� n

� e�nEoff� 1 �
�L�

Kd
off� n . [2]

If the individual receptors are in regime I (Eon � Eoff), the Ki for
half-maximal activity is given by the concentration at which (1 �
[L]�Kd

off)n � 2, which means Ki � (log 2�n)Kd
off. In other words,

the apparent Ki of a cluster of n receptors is smaller than the
dissociation constant Kd

off of a single receptor by a factor �n.
Therefore, the larger the cluster, the smaller is the apparent Ki.
In contrast, if the individual receptors are in regime II (Eon �
Eoff), the Ki for half-maximal activity is Kd

off exp[(Eoff –Eon)], the
same as for a single receptor, but now the cooperativity of the
transition, i.e., the Hill coefficient, is equal to n because

pon �
1

1�� �L�

Kd
offe 	Eoff � Eon
� n . [3]

Thus, the coupling of n identical receptors leads to qualitatively
different effects in the two regimes: In regime I, the sensitivity
to ligand is increased by a factor of n, with the Hill coefficient
remaining equal to 1, whereas in regime II, the sensitivity to
ligand is unchanged, but the Hill coefficient (cooperativity)
increases to n. (In the next section, we will show how these results
are modified if the receptors are not identical.)

Thus, the model for identical receptors helps explain both the
observed high sensitivity to ligand (cheR and wild-type cells in
Fig. 1a) and the observed high cooperativity for homogeneous
receptors (Fig. 2a) as consequences of receptor-receptor cou-
pling in regimes I and II, respectively. The model further
indicates how the wild-type strain can achieve simultaneous low

Fig. 3. Effect of receptor homogeneity on response to attractant. (a) Response measured by FRET to steps of MeAsp in ref. 14. Nonadapting cheRcheB mutant
strains were constructed with Tar receptor expression at zero ({), one (F), two (■ ), and six (Œ) times wild-type levels. (b) Dose–response curves for the
mixed-cluster MWC model to steps of MeAsp. Response curves are shown for Tar:Tsr ratios 0:1 ({), 1:2 (F), 1:1 (■ ), and 3:1 (Œ) with all parameters the same as
in Fig. 1b. All lines are to guide the eye.
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Ki and high kinase activity. If adaptation tunes the receptors in
wild-type cells to the crossover regime, Eon � Eoff, then Ki � Kd

off

(high sensitivity) and pon � 1⁄2 (high activity), consistent with the
wild-type dose–response curve shown in Fig. 1a.

Mixed Clusters of Two-State Receptors. To compare theory to
experiment in detail, we must take into account the presence of
receptors of different types. We study a variant of the MWC
model in which clusters are composed of random mixtures of
receptors of two types, Tar and Tsr (details in supporting
information, which is published on the PNAS web site). Re-
ceptors of each type are characterized by an offset energy �r �
Er,on � Er,off and by dissociation constants Kr

on and Kr
off for

MeAsp, where r � a, s for Tar, Tsr receptors (Ks
on is taken to be

arbitrarily large). In terms of the offset energies, �r � 0 corre-
sponds to regime I, and �r � 0 corresponds to regime II.
Methylation of glutamates, or replacement of glutamates by
glutamines, affects receptors only by decreasing �r, i.e., favoring
the on state. As in the usual MWC model, all receptors in a
cluster are assumed to be off or on together.

Results
Response of Mixed Clusters of Two-State Receptors. In Fig. 1b, we
show dose–response curves to MeAsp for equally weighted 14,
15, and 16 receptor clusters with an average Tar:Tsr ratio of 1:2,
which is nominally the in vivo ratio, for different values of �a and
�s, but no other changes of parameters. The curves reproduce
well a number of features of the experimental data. The ‘‘cheR’’
curve is in regime I and has low initial activity (0.05) and high
sensitivity (Ki1 � 3.5 �M). The wild-type curve is in the crossover
regime and achieves both high initial activity (0.5) and high
sensitivity (Ki1 � 5.4 �M). For the cheR curve, the value of Ki1
is �5 times smaller than Ka

off � 0.02 mM; this 5-fold increase of
sensitivity to MeAsp corresponds to the average number of Tar
receptors in the clusters. The remaining ‘‘cheRcheB’’ curves,
which have high initial activity (�1), are generated for a series
of offset energies �a for the engineered Tar receptors, with a
single offset energy �s for the Tsr{QEQE} receptors. For these
cheRcheB curves, the effect of mixed clusters becomes apparent.
First, there are two comparable declines in activity, at Ki1 and Ki2,
corresponding to MeAsp saturation of the Tar and Tsr receptors,
respectively. Second, the value of Ki1 is always larger than Ka

off

and increases with Tar glutamine content (decreasing �a). The
large initial activity and large and increasing value of Ki1 are
characteristic of receptors in regime II but occur even for
Tar{EEEE} receptors that have offset energies in regime I
(�a � 1.0). The explanation is that, in a cluster, the Tar{EEEE}
receptors (�1�3) are likely outnumbered by the Tsr{QEQE}
receptors (�2�3) that are biased to be on (�s � �1.5), resulting
in the cluster as a whole being strongly in regime II. Third, the
plateaus in activity between Ki1 and Ki2 reflect a competition
between Tar receptors, which are saturated with MeAsp and
individually favor being off, and Tsr receptors, which have little
MeAsp bound (Ks

off � 100 mM) and which individually favor
being on. The heights of plateaus increase with the number of
Tar glutamines because the associated decrease of Tar offset
energies �a translates directly into higher cluster activities.

Neither the data in Fig. 1a nor the mixed-cluster-model results
in Fig. 1b show enhanced Hill coefficients, even for the cheRcheB
curves. In the theoretical model, a single cluster in regime II has
a Hill coefficient determined by the number of receptors that
bind a ligand, i.e., for MeAsp, the Hill coefficient is given by the
number of Tar receptors. However, clusters of different sizes and
different numbers of Tar and Tsr receptors are inhibited at
different ligand concentrations. The resulting spread in Ki values
results in an ensemble Hill coefficient close to 1. According to
this analysis, the Hill coefficient should increase with increasing
receptor homogeneity. Such an increase is observed in Fig. 3b,

where theoretical dose–response curves are shown for increas-
ingly homogeneous clusters of Tar receptors. Indeed, an iden-
tical effect was observed experimentally by Sourjik and Berg
(14), who found the Hill coefficient to increase to �4 with
increasing homogeneity of Tar{QEQE} receptors (Fig. 3a).

One prediction of our model is that for homogeneous recep-
tors, there will be a transition between regime I and regime II
behavior with increasing receptor methylation or glutamine
content. In Fig. 4, we show theoretical results for homogeneous
clusters of Tar receptors. Note in regime I the enhanced
sensitivity, Ki�Ka

off � 0.05 for the Tar{EEEE} curve, and in
regime II, the high Hill coefficient is �9 for the Tar{QEQQ}
curve. The Hill coefficient for the Tar{QEQQ} receptors re-
mains high despite our use of three different cluster sizes (14, 15,
and 16) because Ki is the same for all cluster sizes of homoge-
neous receptors in regime II (see Eq. 2). In Fig. 4, we also show
the fraction of receptors with bound MeAsp. In regime I, binding
of a ligand to a small fraction of receptors results in a large
decline in activity. In contrast, in regime II, ligand binding and
loss of activity are exactly correlated, and both are highly
cooperative.

Free-Energy Model for Scaling of Wild-Type Response Data. Sourjik
and Berg made the striking observation that the dose–response
curves for wild-type cells, adapted at different ambient concen-
trations of MeAsp, could be collapsed onto a single curve (figure
3c in ref. 12). They proposed that the response to the addition
of MeAsp might be solely a function of change in receptor
occupancy, and they inferred occupancy versus total MeAsp
from a particular nonadapting mutant. Our model suggests an
alternative interpretation, namely that the response to MeAsp is
solely a function of change in receptor free energy. Specifically,
in our model, the only effect of adding MeAsp is to lower the free
energy of receptor off states relative to on states. Assuming that
adaptation always returns this free-energy difference to some
fixed value, then the response to the addition of MeAsp should
depend solely on the induced change in free-energy difference.
In Fig. 5, we show a collapse of Sourjik and Berg’s data by using
this free-energy difference as a scaling variable (details in
supporting information). The data collapse is roughly as good as
the collapse found initially by Sourjik and Berg and, importantly,
includes the response for adaptation at zero ambient MeAsp,
which their approach could not.

Precision of Adaptation and Assistance Neighborhoods. In Fig. 4
Inset, we show adaptation results for model Tar receptors
(details in Table 1, which is published as supporting information
on the PNAS web site). Similar to the model of Barkai and
Leibler (15), we assume that the demethylation rate is propor-
tional to receptor activity and that the methylation rate is
proportional to receptor ‘‘inactivity.’’ An important difference
from previous adaptation models is that we assume that CheB
and CheR act on groups of receptors (assistance neighbor-
hoods). Our use of assistance neighborhoods follows the recent
observation by Li and Hazelbauer (29) that single CheR and
CheB proteins have a range of, respectively, seven and five
receptors in their immediate vicinity. Methylation�demethyl-
ation is assumed to be equally likely for each available modifi-
cation site within the assistance neighborhood. This model for
methylation�demethylation is consistent with the assumption,
essential for precise adaptation, that CheB and CheR function
at saturation, i.e., at rates independent of the number of methyl
groups. The use of assistance neighborhoods increases the
precision of adaptation compared to single-receptor models by
effectively increasing the ladder of methylation levels from 8, for
a single receptor homodimer, to 48 for an assistance neighbor-
hood of 6 receptors. This increase of methylation levels allows
CheB and CheR to function at saturation without encountering
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fully demethylated or fully methylated conditions. Indeed, the
‘‘assistance neighborhood’’ model does lead to precise adapta-
tion (Fig. 4 Inset). For homogeneous Tar clusters, the range of
adaptation is limited by Ka

on � 0.5 mM, because above this
concentration, the Tar receptors become saturated and stop
responding. However, the range of adaptation increases for
mixed clusters because the Tsr receptors with Ks

off � 100 mM
continue to respond to MeAsp.

Discussion
The chemosensing system of E. coli is notable for its exquisite
sensitivity, over a wide range of concentrations, to small relative

changes in multiple attractants and repellents. Quantification of
these properties has been greatly enhanced recently by the in vivo
FRET studies of Sourjik and Berg (Figs. 1a and 3a; refs. 12–14).
These studies suggested to us two regimes of receptor behavior:
one regime characterized by low to moderate kinase activity and
a low, constant Ki (high sensitivity) and the other regime
characterized by high kinase activity and a high Ki, which
increased with receptor glutamine content (nominally equivalent
to increased receptor methylation). We showed that similar
regimes occur automatically in the model for two-state receptors
(16) used by Barkai and Leibler (15) to account for precise

Fig. 4. TransitionfromregimeItoregimeII forhomogeneousreceptors.ResponseofhomogeneousclustersofTarreceptors tostepsofMeAspwithintheMWCmodel.
Dose–response curves (solid) and receptor-occupancy curves (dashed) are shown for Tar receptor methylation states EEEE, QEEE, QEQE, and QEQQ (left to right), where
the Tar-receptor parameters and cluster sizes are those used in Fig. 1b. (Inset Upper) Adaptation of averaged activity is shown of a cluster Tar receptors exposed to two
steps of MeAsp from 0 mM up to 1 mM at t � 30 s and then down to 0.01 mM at t � 90 s. (Inset Lower) Average methylation level of receptors. Averages are taken
over 100 independent clusters of six Tar receptors. Details of the Barkai-Leibler-type adaptation model (15) are given in supporting information.

Fig. 5. Free-energy scaling of wild-type response. Response measured by FRET to steps of MeAsp in ref. 12 for wild-type adapted cells. (Left) Data are shown
for addition (Lower) and subsequent removal (Upper) of MeAsp (with curves to guide the eye) for cells adapted at various ambient MeAsp concentrations (see
Inset, units are in mM). (Right) Response curves are rescaled according to a free-energy model as described in supporting information. The parameters are the
same as in Fig. 1b, Ka

off � 0.02 mM, Ka
on � 0.5 mM, Ks

off � 100 mM.
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adaptation. The first regime occurs when the receptor’s kinase-
active state is higher in energy than the inactive state in the
absence of ligand (Eon � Eoff), and the second regime occurs in
the opposite case (Fig. 2). Interestingly, the effects of receptor-
receptor coupling (20) differ markedly between these two re-
gimes (Fig. 4). In regime I, coupling leads to enhanced sensi-
tivity, whereas in regime II, coupling leads to high cooperativity
(i.e., high Hill coefficient).

Most of the in vivo FRET studies used cells expressing
multiple types of receptors, and there is strong evidence from
crosslinking studies (8) that homodimers of receptors form well
mixed arrays. We therefore studied a variant of the MWC model
in which clusters are composed of random mixtures of two-state
receptors of two types, Tar and Tsr. This mixed-cluster MWC
model reproduced the central features of the experimental
dose–response curves (Fig. 1), including the variable activity and
low, constant Ki in regime I, and the high activity and high,
glutamine-dependent Ki1, variable plateau heights, and constant
Ki2 in regime II. Within our model, the sole effect of receptor
modification is to shift the receptor offset energy, � � Eon � Eoff.
For example, the series of cheRcheB-mutant curves in Fig. 1b
depends only on shifts of �a for the Tar receptors. Our model also
reproduced the increase of cooperativity (Hill coefficient) with
receptor homogeneity (Fig. 3). Importantly, the MWC model
predicts that homogeneous receptor clusters will display a
transition from regime I to regime II behavior with increasing
receptor methylation or glutamine content (Fig. 4). This tran-
sition has been observed experimentally in vitro by Li and Weis
(30) for engineered Tsr receptors, and in vivo by Sourjik and Berg
(unpublished results) in cells expressing engineered Tar recep-
tors without Tsr receptors.

Similar models for coupled two-state receptors have been
described in refs. 15, 19–21, 23–25, and Sourjik and Berg (14)
used the MWC model to model homogeneous receptors. What
is previously undescribed in our approach is that we used the two
regimes of receptor activity to explain the FRET data for
mixtures of receptors without recourse to a large number of
parameters. Specifically, we used fixed Kds for each type of
receptor, with methylation affecting only receptor offset ener-
gies. In this regard, our work follows the elegant Ising-model
study of Shimizu et al. (22). However, their choice of Ka

on and
offset energies precluded consideration of regime II, which is
essential to understanding the behavior of cheRcheB mutants
(Figs. 1 and 3).

Finally, we generalized our mixed-cluster MWC model to
include adaptation within the framework proposed by Barkai
and Leibler (15). Namely, methylation and demethylation rates
respond to receptor activity to return receptors to a fixed
free-energy difference between on and off configurations. Fol-
lowing the logic of this model, we showed that wild-type dose–
response curves can be scaled according to free-energy changes
induced by addition or removal of attractant (Fig. 5). We suggest
that, in wild-type cells, adaptation tunes all receptor clusters to
a total free-energy difference near zero. In this crossover range
between regimes I and II, receptor clustering leads to increased
sensitivity to ligand while maintaining a high signaling activity of
receptors.

Signaling by receptors that modulates their kinase and�or
phosphatase activities is ubiquitous in bacteria (31). As in
chemotaxis, the responses of these receptors to a ligand will
depend on the relative on- and off-state free energies. Moreover,
there is no such thing as ‘‘the affinity’’ of a two-state receptor for
a particular ligand, because each of the two states has its own
ligand-binding affinity, Kd

on and Kd
off, and the total response

involves an interplay of the two. Our estimated ratio Ka
on�Ka

off �
25 for MeAsp binding to Tar is larger than found by biochemical
assays for L-aspartate binding to Tar, including approximate
ratios 2 (32), 7 (3), and 10 (33). Although the origin of this
variability is not clear, Kd values may depend on the presence and
stoichiometry of the receptor-binding proteins CheW and CheA
and on physiological conditions (34). Our estimated in vivo
values for Ka

on and Ka
off compare favorably with in vivo values

obtained from fits to the adaptation-time data of Berg and
Tedesco (35) (see supporting information). The best way to
measure in vivo Kd values may be to combine systematic activity
studies of cells expressing a single receptor type with scaling
analysis as in Fig. 5.

Coupling of receptors may also prove to be a general mechanism
for enhancing sensitivity to weak signals. Although our results
highlight the importance of receptor-receptor coupling in the
chemotaxis system and suggest an effective cluster size of �15
receptors, little is known about possible domains or structures
larger than trimers of dimers formed by chemotaxis receptors.
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