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Nature of the superconductor–insulator transition in
disordered superconductors
Yonatan Dubi1, Yigal Meir1,2 & Yshai Avishai1,2

The interplay of superconductivity and disorder has intrigued
scientists for several decades. Disorder is expected to enhance
the electrical resistance of a system, whereas superconductivity
is associated with a zero-resistance state. Although superconduct-
ivity has been predicted to persist even in the presence of disorder1,
experiments performed on thin films have demonstrated a trans-
ition from a superconducting to an insulating state with increasing
disorder or magnetic field2. The nature of this transition is still
under debate, and the subject has become even more relevant with
the realization that high-transition-temperature (high-Tc) super-
conductors are intrinsically disordered3–5. Here we present numer-
ical simulations of the superconductor–insulator transition in
two-dimensional disordered superconductors, starting from a
microscopic description that includes thermal phase fluctuations.
We demonstrate explicitly that disorder leads to the formation of
islands where the superconducting order is high. For weak dis-
order, or high electron density, increasing the magnetic field
results in the eventual vanishing of the amplitude of the super-
conducting order parameter, thereby forming an insulating state.
On the other hand, at lower electron densities or higher disorder,
increasing the magnetic field suppresses the correlations between
the phases of the superconducting order parameter in different
islands, giving rise to a different type of superconductor–insulator
transition. One of the important predictions of this work is that in
the regime of high disorder, there are still superconducting islands
in the sample, even on the insulating side of the transition. This
result, which is consistent with experiments6,7, explains the
recently observed huge magneto-resistance peak in disordered
thin films8–10 and may be relevant to the observation of ‘the pseudo-
gap phenomenon’ in underdoped high-Tc superconductors11,12.

Superconductivity—the occurrence of zero-resistance state—has
been a central issue in solid-state physics for nearly a century. About
fifty years after its discovery Bardeen, Cooper and Schreiffer13 (BCS)
explained its microscopic foundation. BCS theory attributes super-
conductivity to pairing of electrons (Cooper pairs), thus creating a
many-body coherent macroscopic wavefunction. Electron pairing
defines a global order parameter D, characterized by its amplitude
and phase. According to BCS theory, the suppression of D to zero by
increasing temperature T or magnetic field B destroys the supercon-
ducting state.

Soon after the emergence of BCS theory, Anderson1 showed that
weak disorder cannot lead to the destruction of pair correlations.
Later, Lee and Ma14 argued that strong disorder gives rise to spatial
fluctuations of D along with its suppression in comparison with
its value for the clean system, leading eventually to the destruction
of the superconducting state. Such a superconductor–insulator
transition (SIT) has indeed been observed in disordered thin super-
conducting films2. A similar, magnetic-field-driven SIT has also
been observed. This transition has provoked vast interest, and

phenomenological theories, valid near the transition, have been
put forward15,16.

Here, on the basis of the first numerical investigation of the SIT
starting from a purely microscopic model, the following physical
scenario has emerged. In the presence of disorder, the local super-
conducting order parameter D(r) develops strong spatial fluctua-
tions14,17,18, such that regions of space where the amplitude of D is
large (called ‘superconducting islands’) are surrounded by regions
with relatively small D. The system behaves as a bulk superconductor
as long as D is different from zero, and the phases of D(r) on two sides
of the sample are correlated. Such correlations are established by
coherent tunnelling of Cooper pairs between the islands. For weak
disorder, increasing T or B suppresses D in the entire sample, before
the system loses phase rigidity, and thus superconductivity is
destroyed in a way similar to BCS theory. On the other hand, for
stronger disorder, increasing T or B leads to the breakdown of phase-
coherent paths between the edges of the sample, thereby driving a
transition to an insulating state, even when the superconducting
order parameter is still finite. The persistence of superconducting
correlations in the insulating phase should have far-reaching observ-
able physical consequences.

Our starting point is the microscopic two-dimensional disordered
negative-U Hubbard model (see Methods). This model describes
electrons propagating on a two-dimensional disordered square lat-
tice, subject to mutual attraction when two electrons, with opposite
spin projections, occupy the same site. The model is known to gen-
erate a superconducting ground state when no disorder is present.
We first demonstrate the formation and evolution of supercon-
ducting islands by solving the Bogoliubov–de Gennes19 equations
(described in the Methods) in the presence of both disorder and
magnetic field. A topographic colour plot of the spatial distribution
of jD(r)j, the amplitude of D, for a given disorder realization and a
finite B is shown in Fig. 1a. The fluctuations in jDj are clearly visible,
and one can resolve regions of high jDj surrounded by regions of
low jDj. However, the Bogoliubov–de Gennes mean-field approach
neglects phase fluctuations altogether, and all regions with non-
vanishing D are thus phase-correlated. Consequently, within this
approximation, as long as ÆjDjæ—the spatially averaged jDj—fails
to vanish, the system behaves as a bulk superconductor. With
increasing magnetic field, disorder or temperature, there will be a
critical point where ÆjDjæ vanishes, and the system loses its super-
conducting nature. Although such a BCS transition is indeed applic-
able for weakly disordered systems, we show below that this
description breaks down for higher disorder, where phase fluctua-
tions play a crucial role.

To take into account phase fluctuations, here we use a newly deve-
loped method12,20 (see Methods). While neglecting quantum fluctua-
tions, the method allows calculation of thermal averages of phase
correlations, thus going beyond the lowest-energy, saddle-point
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Bogoliubov–de Gennes solution. In Fig. 1b we plot the magnetic-
field dependence of the thermally averaged phase correlations

cos (dhi{dhj)
� �

, where dhi is the change of phase of D(ri) from its
mean-field value, and ri and rj are different points in the sample,
indicated by arrows in Fig. 1a. For the points connected by the green
arrow in Fig. 1a, the phase correlations hardly change with B (green
curve in Fig. 1b), indicating that these points belong to a coherent
superconducting island. However, the points connected by blue and
red arrows in Fig. 1a lose their phase coherence with increasing B.
Thus, at this field the coherent macroscopic superconducting system
separates into phase-uncorrelated superconducting islands.

Using the same method we demonstrate the emergence of a mag-
netic-field-driven SIT. In Fig. 2 we plot the spatial average of jD(r)j
(blue triangles) and the phase correlations (red squares) between the
two edges of a superconducting film as a function of B. For weak
disorder near half filling (Fig. 2a), the superconducting order para-
meter vanishes at a critical field. Phase correlations between the two
sides of the sample persist until that field is reached. On the other
hand, at higher disorder (Fig. 2b) or at lower electron density (which
corresponds to effective high disorder, inset of Fig. 2a), the critical
field Bc is determined by the loss of phase correlations. The amplitude
of the order parameter exhibits no particular feature at the transition,
and vanishes at a much higher field. Hence, the nature of this trans-
ition is entirely distinct from that at low (or no) disorder (and is
probably related to the disordered X–Y model15). Above Bc the
system displays insulating behaviour, but nevertheless supports
superconducting correlations, as long as B is lower than the BCS
critical field.

Suppression of phase coherence between the superconducting
islands with increasing B is displayed in Fig. 3a–c, where on top of
the spatial distribution of jD(r)j we depict the phase correlation of
each point on the lattice with the three points of highest jDj—the
same points as in Fig. 1a. Each colour—red, green, blue—indicates
correlation with a different point, so that black (mixture of red, green
and blue) corresponds to correlation with all points, and white
indicates correlations with none. For zero B, most points are
phase-correlated, but as B increases the islands begin to disconnect,
eventually becoming well separated. At such fields the system behaves
as an insulator, but both unpaired electrons and Cooper pairs coexist
and contribute to the transport process. The persistence of pair cor-
relations beyond the SIT accounts for additional experimental find-
ings, such as local superconducting behaviour on the insulating part
of the transition4–7, and the huge magneto-resistance peak observed
in these systems7–9, which was explained by the competition between
contributions of Cooper pairs and unpaired electrons21.

Local measurements of phase correlations are highly daunting, so
we propose that the position of the islands and their extent may be
experimentally detected by inspecting the dependence of the ampli-
tude of D(r) on a parallel magnetic field hjj that couples only to

the electron spin. For clean systems, it is well-known22,23 that such
a field leads to an abrupt vanishing of D and the destruction of
the superconducting state into a spin-polarized state, when the
gain in Zeeman energy overcomes the superconducting gap. By
solving the Bogoliubov–de Gennes equations in the presence of such
parallel field, we verify that in the absence of a perpendicular field
(when all phases are correlated), the superconducting gap is indeed
destroyed abruptly (purple curve in Fig. 3d). However, for higher
perpendicular field (thus decreasing correlations between the phases
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Figure 1 | Spatial fluctuations of the order parameter amplitude and
corresponding phase correlations. a, Spatial distribution of | D | for
perpendicular field w=w0~2:6 and temperature T 5 0.008t. The system is of
size 12 3 12 and has an average electron density Ænæ 5 0.92, with disorder
strength W/t 5 1. Arrows indicate pairs of points in the sample between

which the phase correlations were calculated, shown in b. With increasing
magnetic field the system separates into islands, the phase correlations
between them are suppressed (red and blue arrows and stars and triangles),
while for points on the same island (green arrow and diamonds) the phases
remain correlated.
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Figure 2 | The superconductor–insulator phase transition with amplitude
vanishing and loss of phase coherence. a, Superconducting order
parameter amplitude | D | (blue triangles) and phase correlations between
the edges (hL(or R) stands for order-parameter phases on sites which lie on the
left (or right) edge of the sample) of a sample of size 15 3 5 (red squares), as a
function of magnetic field for a weakly disordered sample (W/t 5 0.1) at
electron density Ænæ 5 0.92 and temperature T/t 5 0.04. Both | D | and the
phase correlations vanish at the same B. b, The same for a system with
stronger disorder (W/t 5 1), or lower density, Ænæ 5 0.42 (inset of a). Here
the phase correlations vanish long before the amplitude. The insets in b show
the density of states (DOS) at zero field (brown) and on the insulating side of
the transition (green), displaying a pseudo-gap feature similar to that
observed in high-Tc superconductors.
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of the superconducting islands) we find that jDj vanishes in a step-
like manner with hjj (blue curve in Fig. 3d), and each step corre-
sponds to the destruction of a different superconducting island.
This is depicted in Fig. 3e–h, where the spatial distribution of jDj is
plotted for different values of hjj. The arrows indicate spatial regions
where the superconducting gap vanishes at that field. In Fig. 3i we
re-plot the amplitude map, in which each point is now coloured
according to the field hjj at which the local jD(r)j has changed.
Comparison with Fig. 3c shows that these regions indeed correspond
to the superconducting islands as defined by phase correlations and
thus they are directly amenable to local experimental probes.

In our model, we have considered only thermal phase fluctuations
(owing to computational constraints). That SIT may be explained
in terms of thermal fluctuations accounts for many experimental
observations in which the universality of a quantum phase transition
is not observed, such as the lack of a universal resistance at the
transition24, temperature dependence of the crossing point25 and
the observed classical X–Y critical exponent26, and even for the per-
colation-like behaviour found in some experiments27–29. However,
it may well be that a similar loss of phase correlations will be driven
by quantum fluctuations at low enough temperatures. In fact,
recent experiments7,25 that have explored the competition between
thermal and quantum fluctuations (for example, by looking at the
dependence on temperature of the crossing point in the resistance–
magnetic field plane) demonstrate a continuous crossover from a
thermal-fluctuations-driven transition at high temperatures to a

quantum-fluctuations-driven transition at low temperatures, the
phenomenology of the transition in the two regimes being almost
indistinguishable. The non-universality of the critical resistance at
the transition may be due to the fact that the dirty boson model for
the quantum phase transition does not include the contribution of
the unpaired fermions, rather than indicating the irrelevance of the
quantum phase-transition scenario.

Finally, while the calculations described above were performed for
s-wave superconductors, phase fluctuations have been suggested to
be relevant also for high-Tc superconductors30. A similar method was
recently used12 to study the phase diagram of a phenomenological
model for high-Tc superconductors. The authors12 found that phase
fluctuations can account for several features of the high-Tc super-
conductors, among them the existence of a disorder-driven pseudo-
gap state11. To demonstrate the possible relevance of our work, in the
inset of Fig. 2b we plot the density of states of the system below
(brown) and well above (green) the SIT. Below the SIT the density
of states exhibits regular BCS-like superconducting behaviour, while
above the transition the density of states exhibits a pseudo-gap fea-
ture due to the contribution of the superconducting correlations on
the insulating side. For weaker disorder, this feature is only observed
at lower density, which might correspond to the fact that the pseudo-
gap is solely a feature of underdoped systems. We believe that incor-
porating phase fluctuations into a microscopic model for the high-Tc

superconductors will prove useful in explaining many of the experi-
mental features of these systems.
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Figure 3 | Superconducting islands observed by phase correlations and by
application of a parallel field. a–c, A spatial map of the phase-correlations:
the red, green and blue components of the colour of each point in the sample
is proportional to the magnitude of its phase correlations with the three
peaks of maximal amplitude (Fig. 1), for different perpendicular magnetic
fields, displayed on top of the spatial distribution of the | D | . At zero field,
phase correlations are long-ranged, but as the magnetic field is increased the
system separates into islands with no inter-island correlations. d, Æ | D | æ as a
function of parallel field, for two different values of the perpendicular
magnetic field. At zero perpendicular field the superconducting amplitude

vanishes abruptly, while at a finite perpendicular field, Æ | D | æ decreases in a
series of steps, each island at a time. This is demonstrated in e–h, depicting
spatial distribution of | D | for different values of the parallel field. Arrows
indicate the position of the superconducting islands, whose | D | vanished at
that particular field. i, The same distribution of | D | , where now each point is
coloured by the value of the field at which the amplitude of D at that point
was suppressed (see e–h). Comparing with c demonstrates that the islands
defined this way are identical to those defined by the loss of phase
correlations.
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METHODS SUMMARY
The model. The negative-U Hubbard model is described by the hamiltonian:

H ~
X

i,s

(eizhjj s) Cz
is Cis{ t

X
vijw,s

eiwij Cz
is Cjsze{iwij Cz

js Cis

� �
{U

X
i

Cz
i: Ci:Cz

i; Ci; ð1Þ

where Cis and Cz
is destroy and create an electron with spin s at site i, respectively.

The first term describes the random potential on the two-dimensional lattice,

with a possible Zeeman field hjj, while the second one describes the hopping

between nearest-neighbour sites. The phases wij account for the orbital effects of

the magnetic field. The last term describes the attractive interaction between

electrons on the same site and is responsible for the emergence of superconduct-

ivity. All energies are expressed in units of t, the hopping matrix element. The

system is characterized by the relative strength of the attractive interaction U

(taken to be U 5 2 throughout the calculation), the disorder parameter W, the

parallel magnetic field hjj, the average electron density n and the perpendicular

magnetic field B. W is the range of fluctuations in the on-site energies ei whereas

B is characterized by the magnetic flux penetrating the sample in units of the

quantum flux w0~hc=e, where h is Planck’s constant, c is the speed of light and e

is the charge of the electron).

The partition function for this model is given by:
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where b51/kBT, with kB the Boltzman constant. c.c. denotes complex conjugate

and Tr denotes a trace over all possible states. Applying a Hubbard–Stratonovic

transformation, with Di the local Hubbard–Stratonovic field, with amplitude

Dij j and phase hi , the partition function becomes:
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The Bogoliubov–de Gennes approximation. The partition function can be eval-

uated in the saddle-point approximation. Then the effective hamiltonian

becomes:

HBdG~
X
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where Di are now constants that obey the self-consistent relations

Di~{UvCi:Ci;w.

HBdG is diagonalized via a Bogoliubov transformation

cns~
X

i

un(ri)C
z
is zsvn(ri)Ci�ss

� �
. This yields an equation for the local order

parameter Di in terms of the Bogoliubov amplitudes un(i) and vn(i):

Di~ Uj j
P

n

un(i)v�n(i) ð5Þ

un(i) and vn(i) are determined from the Bogoliubov–de Gennes equations19:

ĵj Di

D�i {ĵj

 !
un(i)
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~En
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vn(i)

� �
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where ĵj is the single-particle part of the hamiltonian (4). Equations (5) and (6)

are solved self-consistently to determine Di.

Including phase fluctuations. The Bogoliubov–de Gennes approximation com-

pletely neglects phase fluctuations of the order parameter, due to its mean-field

nature. To account for thermal phase fluctuations, we ignore quantum fluctua-

tions, that is, the time dependence of D in the partition function (3). The

resulting partition function is:

Z~
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P
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 !
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where HBdG is the Bogoliubov–de Gennes (BdG) hamiltonian (4), and so the

partition function reads:
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where En are the eigenvalues of HBdG.

The evaluation of expectation values and correlation functions for this par-

tition function is carried out numerically using a Monte Carlo scheme19,20: at

each step, a set of values fjDi j,higN
i ~ 1 is chosen, inserted into HBdG, which is then

diagonalized. The integrand of equation (8) is then evaluated and weighted with

temperature. However, for low enough temperatures such that the Monte Carlo

averages of jDi j hardly differ from those obtained from their mean-field values,

one may take jDi j in equation (7) to be their mean-field values, and the integral

runs over the phases only. The phase correlations cos (dhi{dhj )
� �

are then

evaluated by:
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where at each Monte Carlo step only the phases hi are changed and each phase

configuration is given its thermal weight according to equation (9).
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