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A quantum point contact (QPC) is a narrow constriction between
two wider electron reservoirs, and is the standard building block
of sub-micrometre devices such as quantum dots and qubits
(the proposed basic elements of quantum computers). The con-
ductance through a QPC changes as a function of its width in
integer steps of G0 5 2e2/h (where e is the charge on an electron,
and h is Planck’s constant), signalling the quantization of its
transverse modes1,2. But measurements of these conductance
steps also reveal an additional shoulder at a value around 0.7G0

(refs 1–4), an observation that has remained a puzzle for more
than a decade. It has recently been suggested5,6 that this phenom-
enon can be explained by the existence of a magnetic ‘impurity’ in
the QPC at low electron densities. Here we present extensive
numerical density-functional calculations that reveal the for-
mation of an electronic state with a spin-1/2 magnetic moment
in the channel under very general conditions. In addition, we show
that such an impurity will also form at large magnetic fields, for a
specific value of the field, and sometimes even at the opening of the
second transverse mode in the QPC. Beyond explaining the source
of the ‘0.7 anomaly’, these results may have far-reaching impli-
cations for spin-filling of electronic states in quantum dots and for
the dephasing of quantum information stored in semiconductor
qubits.
A QPC is usually formed by applying a negative voltage to a split

gate (Fig. 1a), depleting the electrons in the two-dimensional
electron gas (2DEG) under it to form a narrow and short constriction
connecting large, two-dimensional regions of 2DEG. The number of
occupied quantized transverse modes can be changed as a function of
the applied gate voltage. As each mode contributes G 0 to the
conductance (owing to spin degeneracy), the conductance rises in
steps quantized at integer multiplies ofG0 (refs 1, 2). Amagnetic field
lifts the spin degeneracy, leading to steps in multiples of e 2/h.
Surprisingly, many experiments observe, at zero magnetic field, an
additional shoulder near 0.7G0, a feature usually referred to as the 0.7
anomaly3,4, which merges smoothly with the 0.5G0 plateau in a large
magnetic field. Although less robust, an analogous anomaly was
observed in the transition to the second conductance plateau at about
1.7G0 (ref. 4). A similar conductance structure was also found at large
magnetic fields near crossings of spin-up and spin-down modes of
different sub-bands7.
There have been several attempts to explain the 0.7 anomaly in

terms of an antiferromagnetic Wigner crystal8, spontaneous sub-
band splitting9–11, or by assuming that the QPC supports a local
quasi-bound state6. In the last case, as one electron is transported
through this state, Coulomb interactions suppress the transport of an
electron with opposite spin, reducing the conductance to around
0.5G0. The Kondo effect—the screening of this local spin by the
conduction electrons—enhances the conductance at low tempera-
tures towards G0. Indeed, experiments5 reveal features characteristic
of the Kondo effect and the continuous evolution of the conductance

from 0.7G0 at higher temperatures to G0 at low temperatures. But
how can a QPC, being an open system, support a quasi-bound state?
Previous numerical investigations report conflicting results12–14.
Below we present detailed spin-density-functional theory15 (SDFT)
calculations showing that such a local moment can indeed form as
the conductance of a QPC rises towards the first plateau. Additionally
we present evidence that the formation of a quasi-bound state may
also lead to the observed 1.7 anomaly and the anomaly at the crossing
of sub-bands in large magnetic fields.
The set-up we used in our calculation is shown in Fig. 1b. In order

to make the calculation tractable, we modelled the reservoirs as semi-
infinite quantum wires. They are wide enough to carry many modes
and thus resemble well the two-dimensional reservoirs in experi-
mental set-ups. Using SDFT within the local spin-density approxi-
mation, we calculated the spin densities of the 2DEG and the charge
distribution on the electrodes self-consistently. The nonlinearity of
the equations may lead to several stable solutions that differ in their
energy (details of our numerical approach are given in the Methods
section). Here we present results for a specific QPC, as described in
Fig. 2. However, the results are generic: we studied QPCs of litho-
graphic length from 100 nm to 400 nm, of lithographic width from
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Figure 1 | Quantum point contact. a, Micrograph of a split gate forming a
QPC. (Image from ref. 5, with permission.) b, The set-up used in the
calculation. Voltage (Vg) applied to split gates (yellow) forms a QPC
between two quantum wires defined by negatively biased (V c) confining
electrodes (red). Also shown is the density of the 2DEG near pinch-off where
only one mode is occupied within the QPC, while the quantum wires carry
several modes. The colour scale extends from zero (black) to
0.85 £ 1011 cm22 (yellow). c, d, Typical potentials in the plane of the
electrodes (c) and in the 2DEG (d). Potentials on the electrodes are constant
and are the input to the calculation, determining the effective potential in
the plane of the 2DEG.
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150 nm to 250 nm, and with 2DEG electron densities from 1011 to
2 £ 1011 cm22, with very similar results.
We first consider a QPC in the absence of a magnetic field. For gate

voltages corresponding to conductance plateaus there is a unique
solution to our equations, which shows no spin polarization.
Although such a solution is also present in the regions between the
plateaus, additional solutions exhibiting spin polarization in the
QPC appear there. We classify these solutions according to their
spatial symmetry: in the ‘symmetric’ and ‘antisymmetric’ solutions
the polarization is respectively the same or opposite on the two sides
of the QPC. In Fig. 2a, the energies of the polarized solutions relative
to the energy of the unpolarized solution are plotted for gate voltages
from pinch-off to the second conductance plateau. The symmetric
solution, when present, is always the ground state of the system.
Figure 2b shows the evolution of spin densities of the two polarized

solutions from pinch-off to the point where a spin-1/2 magnetic
moment forms in the QPC. At point A the QPC is pinched-off: there

is an extended region about the centre of the QPC where the density
vanishes as the potential is much higher than the Fermi energy. The
potential decreases towards the reservoirs and at some point it crosses
the Fermi energy. Here are regions where the electron gas is polarized:
the density is very low and the gain in (negative) exchange energy
outweighs the additional kinetic energy incurred by polarization.
The two polarized regions on both sides of the QPC do not overlap in
this regime. The degeneracy of the ground state is thus fourfold: each
of the polarized regions is spin-degenerate. With increasing gate
voltage, the potential at the QPC gets lower and the electron density
drifts inwards, forming narrow fingers that eventually reach the
centre of the QPC (point B in Fig. 2). In the process, the polarized
regions become increasingly decoupled from the reservoirs: two
quasi-bound states, each corresponding to roughly one electron,
form on each side of the QPC. As the potential barrier at the centre of
the QPC gets weaker, the tunnelling probability through the barrier
becomes appreciable and the conductance increases from zero. On
increasing the gate voltage even further, a different configuration
becomes energetically favourable in the symmetric subspace: a single
electron forms a weakly coupled quasi-bound state at the centre of
the QPC, accompanied by two electrons of opposite spin in regions
further away towards the reservoirs (point C in Fig. 2). The
degeneracy of the ground state is now twofold: the QPC acts as a
spin-1/2 magnetic impurity. The spin-resolved local density of states
(LDOS), that is, the number of states per energy and length interval
(Fig. 3), provides additional insight into this state. The QPC
potential for one of the spin components assumes a double-barrier
form (due to Friedel oscillations), and a resonant state forms in its
minimum.

Figure 2 | States with spin polarization in a QPC. The QPC with a
lithographic width and length of 200 nm and 250 nm, respectively, forms a
constriction in a quantum wire with a lithographic width of 300 nm. The
confining electrodes are biased to V c ¼ 20.08V. The donor layer provides
an electron density of 1011 cm22, and is 20 nm below the surface. The 2DEG
forms 50 nm below the surface. a, Energies of the symmetric (red) and
antisymmetric (blue) spin-polarized solutions relative to the energy of the
unpolarized solution. Polarized solutions appear in the transition from
pinch-off to the first plateau and then on the rise to the second plateau. The
black line is a rough approximation to the conductance of the QPC, as
calculated from the Kohn-Sham wavefunctions of the unpolarized solution
(right-hand scale). Note, however, that for the lowest-energy, polarized
solution the first conductance plateau will start around Vg ¼ 20.122V, on
the right of point C. b, Spin densities of the symmetric and antisymmetric
solutions for spin-up electrons (left columns) and spin-down electrons
(right columns) at three values of gate voltage as indicated in a. The colour
scale extends from zero (black) to 0.35 £ 1011 cm22 (yellow). A 400-nm-long
and 100-nm-wide region about the centre of the QPC is shown. At A, the
QPC is pinched-off; there are two polarized regions on each side of the QPC.
At B, the two polarized regions begin to overlap. At C, in the symmetric
solution the electrons in the QPC rearrange in such a way that a spin-1/2
magnetic moment forms. The inset to a shows spin polarization in the
symmetric solution just below the second conductance plateau, at point D.

Figure 3 | Formation of a magnetic moment. a, Spin-up and b, spin-down
local densities of states (LDOS), integrated over the cross-section of the
QPC, for the QPC from Fig. 2 at Vg ¼ 20.125V. The Kohn-Sham potential
for electrons in the lowest transversemode is also shown (white dashed line).
The potential for spin-up electrons has a double-barrier formnear the centre
of the QPC, and supports a quasi-bound state about 0.5meV below the
Fermi energy (green dashed line). Spin-down electrons also form quasi-
bound states in the shoulders of the potential on both sides of the QPC. The
bright stripes on both sides of the QPC correspond to the quasi-one-
dimensional bands of the reservoirs.
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The length of the QPC affects the formation of the spin-1/2
magnetic moment. In very short contacts, the transition to a well
defined quasi-bound state does not take place at all: as the two
polarized regions merge at the centre of the QPC, the conductance
has already reached the first plateau. For longer contacts, the
transition to the magnetic moment state shifts towards the pinch-off.
In very long contacts, the configuration in Fig. 2b (symmetric solution
at point C) evolves into an antiferromagnetically ordered chain.
The situation is somewhat similar on the rise from the first to the

second conductance plateau: the density of electrons in the second
mode is low there, and exchange again stabilizes states with a
polarized QPC (Fig. 2a inset). This mechanism is not as efficient
here as it was in the first mode: polarization in the second mode also
induces (owing to exchange) partial polarization in the first mode. As
the density in the first mode is large, there is a high kinetic energy cost
involved. This is consistent with the experimental observation that
not all QPCs exhibit the 1.7 anomaly.
In an external in-plane magnetic field, the energies of transverse

modes for the two spin components split. The resulting polarized
non-degenerate solution does not generally support a quasi-bound
state. However, as shown in Fig. 4a, at a particular value of the field
the energy of spin-up electrons (those with spin parallel to the field)
in the first mode crosses that of spin-down electrons in the second
mode. By tuning the gate voltage, one can also make the energy of the
degeneracy point coincide with the Fermi energy. Figure 4b shows the
evolution of spin densities with magnetic field in the vicinity of this
crossing. At the degeneracy point a well-defined quasi-bound state
forms, but, unlike the zero-field solution, it has a definite spin,
determined by the field. This may be the source of the ‘0.7 analogues’
observed at high magnetic fields7.
The formation of a local spin-degenerate quasi-bound state

(supported by the extensive SDFT calculations presented here) is a
necessary condition for the Kondo effect, which is beyond the local
spin-density approximation used here. Interestingly, the calculations
indicate that near pinch-off, two such states form on the two sides of
the QPC. This may lead to the physics of the two-impurity Kondo
model. Depending on the ratio of the coupling between these
impurities, and their couplings to their respective reservoirs, one
would expect to observe a zero-bias anomaly, with a split zero-bias
peak, in this regime16,17. The splitting should increase with increasing
conductance. The formation of such polarized states at the QPCmay
also affect the spin-filling of quantum dots formed between two
QPCs. Additionally, as quantum dots have been proposed as qubits
(the building blocks of quantum computers), these degenerate quasi-
bound states must be considered seriously—the degeneracy allows
decoherence of quantum processes at very low temperatures. As
short decoherence times will degrade the performance of any
quantum computer, it will be necessary to ensure that the QPCs

forming the qubits are outside the quasi-bound-state formation
regime.

METHODS
Model. We treated the 2DEG, electrodes and the donor layer as a set of three
electrostatically coupled strictly two-dimensional systems. We assumed the
donor layer was uniform and fully ionized. Then, according to spin-density-
functional theory18, the properties of the system can be uniquely determined in
terms of spin densities n"ðrÞ and n#ðrÞ of the 2DEG and by the distribution of
charge on the electrodes nelðrÞ (r is the position in either the plane of the 2DEG
or the plane of the electrodes). In particular, the energy of the system is a
functional of the densities:
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Here Ees bn";n#;nel c is the electrostatic energy of the charge distribution. The
presence of the semiconductor was taken into account through the use of the
GaAs dielectric constant k ¼ 12.9 and a modified form of the Coulomb
interaction, reflecting the dielectric mismatch at the surface19. We treated the
2DEG quantum-mechanically by including its kinetic energy (Ts) and exchange-
correlation energy (Exc) in the energy functional, taking into account that the
effective mass of electrons in GaAs is 0.067 times the bare electronmass.We used
the local spin-density approximation for the exchange-correlation functional, as
parameterized in ref. 20. The fourth term in the energy functional is the Zeeman
energy due to an in-plane magnetic field, with g ¼ 1.9 for GaAs quantumwires7.
Finally, as we compared the energies of different solutions at fixed voltages
between electrodes and the 2DEG, we applied a Legendre transform to the
energy functional (the last term in the expression above), with Ni and Vi

being respectively the number of electrons and the voltage on ith electrode, and
the sum running over all the electrodes in the system. The correct densities
minimize the above functional subject to the applied voltages, and a constraint
that the total number of electrons should match the charge provided by the
donor layer.
Calculations. The minimization procedure yields Kohn-Sham equations15 for
the 2DEG, with a constant electrostatic potential on each of the electrodes. In
each iteration of the self-consistency loop, we first solved for the Kohn-Sham
scattering states and calculated the density of the 2DEG. Using an iterative
approach, we then redistributed the remaining electrons on electrodes in such a
way that the potential there assumed the required form. In this step we
performed the calculation on a large rectangular box, with periodic boundary
conditions, which enabled us to employ the fast Fourier transform method and
thus make the calculation efficient. We used the resulting charge distribution to
calculate an improved electrostatic potential in the 2DEG. To obtain spin-
polarized solutions at zero external magnetic field, we broke the symmetry by
applying a magnetic field of an appropriate form (spatially symmetric or
antisymmetric) in the initial iterations of the self-consistent procedure.
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