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Microbial populations in nature generally inhabit extended environments with substantial spatial variation in
ecological factors: light intensity in the ocean, temperature in geothermal hot springs, or a variety of chemical
concentrations including salt and pH. In such continuously varying environments, it remains unclear why a finite
number of subpopulations form and how this number is set. Here we show that a model of asexual evolution in
a gradient maps onto a no-gradient neutral model, and by mapping this model to a gas of kinks and antikinks,
we derive the full distribution of the number of coexisting lineages, and their correlation functions. Testing these
predictions in controlled laboratory experiments would provide valuable insights into many real-world microbial
communities.
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A main tenet of evolution is that each species adapts
to local conditions in order to maximize its chances of
survival and growth. Even a single bacterial species may
evolve into different ecologically distinct lineages [1–4] de-
pending on environmental conditions. For instance, in the
“evolution canyons” of Israel multiple lineages that would
conventionally be classified as a single species have been
confirmed to be ecologically distinct, specializing to distinct
canyon slopes receiving different levels of solar exposure
[5,6]. Similarly—though in a continuous environment—
Synechococcus subclades in hot spring cyanobacterial mats
[Fig. 1(a)] were found to be uniquely adapted to specific
temperatures [3,7]. Other spatially graded environments in-
clude, for example, light intensity in the ocean [8] or estuarine
salinity gradients [9].

The latter examples raise an interesting question: if each
subclade occupies a distinct temperature interval, competi-
tively excluding all other subpopulations, what will happen in
graded environments—which provide a continuum of ecologi-
cal niches? Do we expect to see continuous adaptation, or will
we observe a finite number of distinct lineages? In the latter
case, what will then determine the typical extent of a lineage
as well as the distribution of lineage sizes? Here, starting from
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a model that incorporates real-space diffusion, mutations, and
selection in a linearly spatially varying time-stable environ-
ment, we show, both analytically and numerically, that such a
model maps onto a simpler model in a neutral environment.
By mapping the neutral model onto a gas of kinks and an-
tikinks, we calculate exactly the distribution of lineage sizes
and their pair correlation function, which agree with numer-
ical results from the full model. Our results can prove useful
for future studies of evolution in both natural environments
and in experimentally produced spatial gradients.

Gradient model. We consider a one-dimensional (1D) pop-
ulation, confined to a region of size L. All lengths will be
scaled by L, so the position of each individual is x ∈ [0, 1].
We assume that a single ecological factor, which we term
“temperature,” dominates, exhibiting the strongest gradient,
T (x) = αx. Individuals are characterized by a temperature
phenotype φT , which corresponds to their preferred growth
temperature [Fig. 1(b)], such that an individual at position
x with temperature phenotype φT has fitness w(x, φT ) =
exp[−(x − φT /α)2/(2σ 2

s )] and growth rate w(x, φT )ln2/τg,
where τg is the generation time (see Sec. S1 in Ref. [10]
for a list and description of parameters used in this Letter).
Migration is characterized by a spatial diffusion coefficient
Dx = σ 2

x /τg, where σx is the typical displacement due to mi-
gration in one generation’s time.

We initially examine a model with only locally adaptive
mutations which we denote as the “gradient model.” Lo-
cal mutations stochastically change the optimal phenotype
φT upon some cell divisions, without changing the maximal
fitness. These mutations are characterized by a phenotype
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FIG. 1. (a) Temperature gradient in a hot spring within the El
Tatio Geyser Field, Chile, revealed through the use of thermal in-
frared imaging. The black scale bar represents 0.5 meters [11].
(b) Schematic of model for cells evolving in temperature gradient.
The color of each cell represents its temperature phenotype (i.e.,
preferred growth temperature) while the color bar shows environ-
mental temperature (and spatial location). The better the color match
between a given cell’s preferred growth temperature and the local
environmental temperature, the higher the fitness of that cell. Top:
the allowed processes within the model

diffusion rate Dφ . Mutation and migration, together with
selection, induce phenotypic and spatial variances of the pop-
ulation around the optimal line φT = α x. We refer to the
spatial scale of this distribution around the optimum as the
“phenotype width” σp.

In the continuum limit of our model, the change in the
density c(x, φT ) of phenotype φT located at x satisfies

∂c(x, φT )

∂t
= c(x, φT )

τg/ln2

[
w(x, φT )−

∫
dφ′

T w(x, φ′
T )c(x, φ′

T )

]

+ Dx
∂2c(x, φT )

∂x2
+ Dφ

∂2c(x, φT )

∂φ2
T

, (1)

where the terms on the right-hand side represent, respectively,
net growth (composed of the growth term w(x, φT ) and a death
term which keeps the total density fixed at a given location
x), migration, and mutation. Without loss of generality, we
normalize the density such that

∫
dφT c(x, φT ) = 1.

Mapping to no-gradient model. At steady state, the relative
difference between the growth rate of a specific phenotype
and the average growth rate of all phenotypes in that loca-
tion [the first term on the right in Eq. (1)] is compensated
by diffusion in both real and phenotype spaces (the addi-
tional terms). Consider a phenotype at its optimal location,
such that w = 1. Given that the population of any phe-
notype is confined to a typical distance of σp around its
optimal position, the average fitness of all phenotypes at any
specific location is typically exp(−βσ 2

p /σ 2
s ), with β some

FIG. 2. Model with locally adaptive mutations: The average time
from simulation at which a lineage reaches its maximum size as
a function of that maximum size, for the gradient model with lo-
cal mutations (red diamonds), and the rescaled no-gradient model
(green triangles). Dashed lines of slope 1 and 2 serve as indicators
of linear-in-time and diffusive growth regimes, respectively. Pa-
rameters: Dx = 2.1 × 10−5, Dφ/α2 = 2.3 × 10−6, σs = 0.01 for the
gradient model; D = 2.3 × 10−6 for the no-gradient model; popula-
tion size N = 50 000 and deme size n = 10, throughout. Top inset:
Illustration of the mapping from evolution with locally adaptive
mutations in a gradient to one-dimensional neutral evolution (not to
scale): since the resulting phenotype width σp (red strip) is much
smaller than the selection length σs (black strip), at steady state
all cells are approximately equally fit, meaning the population is
effectively neutral. The gray ellipse represents the typical spreading
in one generation’s time τg due to migration and mutations. Bottom
insets: Schematics of typical spatial profiles of lineages in the linear
(left) and diffusive (right) growth regimes.

numerical constant. For phenotype width σp, the diffusion
terms are typically equal to ≈ (Dx + Dφ/α2)/σ 2

p , so that in
steady state 1 − exp(−βσ 2

p /σ 2
s ) ≈ D�τg/(ln2 σ 2

p ), with D� =
Dx + Dφ/α2. Since we expect that the typical distance cov-
ered in one generation, either in real space or in phenotype
space, will be much smaller than σs (otherwise all progeny

would immediately die), we find σp ∼
√

σs
√

D�τg, where all
numerical constants have been dropped. In the reasonable
limit where diffusion in phenotype space (scaled by α) is
much slower than diffusion in real space, this equation re-
duces to the result found by Felsenstein [12] for the typical
phenotype width in the absence of any environmental gradi-
ent: σp ∼ √

σsσx. A more rigorous derivation of this result is
provided in Sec. S2 in Ref. [10], where we also confirm this
scaling by simulations (Fig. S1).

The resulting separation of length scales,
√

D�τg � σp �
σs is illustrated in Fig. 2 (inset). Notably, if selection is strong
on intermediate timescales, the population is effectively con-
fined to a ridge along the diagonal that is narrow relative to
the selection scale. Accordingly, all cells are approximately
equally fit such that the population sees an effectively neu-
tral environment—i.e., in this parameter regime, the gradient
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model maps to an effective no-gradient model. Individuals
that venture outside the region of neutrality are eventually
removed from the population by selection, in a process akin
to the purifying/background selection phenomenon [13,14].
The narrow phenotype width σp also implies that meaningful
spreading takes place only along the optimal adaptation line
φT = αx (black dashed line) and the effective rate D satisfies
1/D = 1/Dx + α2/Dφ . Thus, for Dφ/α2 � Dx, we get D ≈
Dφ/α2, i.e., the effective diffusion rate is set by the slower
diffusion mode.

As a strong test of this correspondence, we have simulated
our model and compared, in Fig. 2, the average time 〈tmax〉
at which a lineage reaches its maximum size Nlin,max, as a
function of that maximum size, for the full model with a tem-
perature gradient (red diamonds), and the rescaled no-gradient
model with uniform environment and effective spatial diffu-
sion D = Dφ/α2 (green triangles). In our simulations, space
is discretized into a finite number of demes, typically with
deme size of ten cells. (Results are not sensitive to deme size
as long as demes are sufficiently large to render genetic drift
negligible at the scale of the typical fitness differential within
a deme—see Sec. S7 in Ref. [10].) For the no-gradient model
one expects that growth will initially be linear in time (black
dashed line of slope 1) until a critical size is reached (see
Sec. S3 in Ref. [10]). This point marks a crossover to diffusive
growth (black dashed line of slope 2), wherein net lineage
growth can only occur at the boundaries of the domain, which
spreads diffusively (insets). Indeed the rescaled model and
the full model both exhibit this behavior and agree with each
other, which supports the validity of the mapping.

Gradient model (+G). We have seen that the model with
locally adaptive mutations reaches a steady state in which
each phenotype has a small spatial spread around its op-
timal location along the gradient. Thus, in this model, all
possible phenotypes are allowed to coexist. However, some
mutations may improve fitness more generally [15,16]. We
therefore allow for the occurrence (at rate μ) of globally
adaptive mutations which do not change a cell’s optimal tem-
perature but rather increase its growth rate by a factor 1 + s.
Since the individuals with globally adaptive mutations have
higher maximal growth rate than the background population,
they are capable, once established, of expanding over a wider
spatial range, outcompeting neighboring phenotypes, and
spreading. Consequently, global fitness mutations broaden the
spatial extent of some lineages while bringing about the ex-
tinction of the remaining ones.

Is the mapping of the full model with a temperature gradi-
ent to a no-gradient model with rescaled diffusion still valid
in the presence of globally beneficial mutations? In that case,
the no-gradient model would comprise a population diffusing
in a spatially uniform 1D environment, receiving globally
beneficial mutations at some rate μ. The spread of a given
advantageous mutation in a neutral environment was studied
by Fisher and Kolmogorov [17–21] who showed that, after a
transient period, the boundary of the more fit domain reaches a
stationary shape and constant speed vx ∼ √

Dxs/τg. To answer
the question, we first consider the case when mutations are
rare, so a single global mutation has time to sweep the entire
environment. In this case for the no-gradient (+G) model,
we can make a simple prediction: since the two (left and

right) expanding fitness fronts propagate at constant speed,
the rate of lineage growth is also constant until it is suddenly
halved when one of the fronts reaches the boundary of the
environment, and finally drops to zero when the second front
hits the other boundary. Taking the average over all possible
initial lineage locations, we obtain

〈Nlin(t )〉
N

= 1

N

∫
Nlin(t |x)dx

L
= 2t̂ − t̂2, (2)

where nondimensionalized time t̂ = t/(L/vx ), and the lin-
eage size conditional on initial lineage location Nlin(t |x) is
a piecewise function that depends on when the left- and
right-traveling fronts reach the boundaries. This prediction
[Fig. 3(a), black dashed curve] agrees well with the curve
obtained from simulating the gradient model (+G) (red dia-
monds), confirming that the mapping to a no-gradient model
with no phenotype variable is still valid after introducing
global mutations.

In the general case, new globally beneficial mutations can
occur while previous ones have not yet taken over the en-
vironment, resulting in dynamics of lineage domains which
nucleate, spread, and collide [Fig. 3(b)]. Such a no-gradient
model has been examined in a different biological context
by Ralph and Coop [20], who employed a crystal growth
mapping in their analysis. Here we use a different mapping,
which will lead to equivalent results but will also enable
us to derive additional results regarding the distribution of
lineage sizes. Our mapping begins with the observation that
the boundaries of lineage domains move with constant speed,
and are thus equivalent to a 1D gas of particles or “kinks”
and antiparticles or “antikinks” which nucleate and annihilate
in pairs [22,23]. The dynamics of this gas can be mapped
onto a forced and overdamped sine-Gordon soliton gas [23]
allowing us to obtain P(	n), the full distribution of the spatial
extent of lineage domains, where 	n denotes the size of a given
domain. As we show below, this distribution agrees with the
distribution obtained from numerical simulations of the full
model.

To obtain the expected distribution of domain sizes, we
note that at any given time, all positions of kinks and antikinks
are totally random [23]. Thus finding the distribution of niche
sizes P(	n) reduces to finding the distribution of spacings
between uniformly distributed random points on a line, which
is a well known mathematical problem (for a review, see, e.g.,
[24]). The results are

P(	n) = Nn(1 − 	n)Nn−1, (3a)

P2(	n1, 	n2) = Nn(Nn − 1)(1 − 	n1 − 	n2)Nn−2, (3b)

where Nn = L/〈	n〉 is the average number of lineages, and
we also quote the probability P2(	n1, 	n2) of having simul-
taneously two lineage domains of sizes 	n1 and 	n2 (all
higher correlation functions can also be calculated). The func-
tional forms for both lineage size P(	n) [Eq. (3a)] and pair
correlation P2(	n1, 	n2) [Eq. (3b)] fit well the respective dis-
tributions estimated from simulation [Figs. 4(a) and 4(b),
respectively], with a single fitting parameter Nn. Thus, the
mapping of the full model, including growth and diffusion in
an environmental gradient, with both phenotype and globally
beneficial mutations, onto a model in a spatially uniform
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FIG. 3. (a) Comparison of the average growth dynamics of a more-fit lineage versus time, t̂ = t/(L/vx ), for the gradient model (+G)
(red diamonds) versus the prediction for the rescaled no-gradient model (+G) [Eq. (2), dashed black curve]. Parameters: N = 5000, s = 0.1,
Dx = 2 × 10−5, Dφ = 2 × 10−6. (b) Space-time evolution of interfering domains of globally beneficial mutations in the gradient model (left)
and the no-gradient model (right). Each bin that is occupied in absolute majority by a single lineage is assigned a random color associated
with that lineage. Parameters: N = 100 000, s = 0.25, μ = 3 × 10−7 throughout; gradient model (+G) Dx = 1 × 10−6, Dφ/α2 = 1 × 10−7;
no-gradient model (+G) D = 1 × 10−7.

environment, and the description of the boundaries of the
lineage domains in terms of kinks and antikinks arising in
a forced and overdamped sine-Gordon soliton gas, allowed
us to derive analytical expressions for the exact distribution
and all the correlation functions of lineage sizes in such an
environment. (Note that in the kink-antikink gas, a kink and an
antikink will annihilate each other when they collide, which in
our model corresponds to two lineages with the same number
of advantageous mutations merging when their boundaries
meet, rather than coexisting as distinct lineages. The agree-
ment between the distribution obtained from simulation and
the soliton gas prediction indicates that such processes are
sufficiently rare.)

Nn can be found a priori by equating the nucleation rate
μNs (where the factor of s accounts for the establishment
probability, i.e., the probability that a beneficial mutation will
escape genetic drift) and the annihilation rate. Since the typi-
cal time a given domain travels before it collides with another

FIG. 4. Comparison of the distribution (a) and correlation func-
tion (b) of the gradient model (+G) that includes both local and
global mutations (red diamonds) and the corresponding no-gradient
model (green triangles) to the predicted behavior from a forced,
damped soliton gas [Eq. (3)] with Nn = 11.2 (black dashed line).
Parameters are identical to those in Fig. 3(b).

one is L/(Nnvx ), the total annihilation rate scales as N2
n vx/L.

Therefore

Nn ∼
√√√√μNLα

√
s/τg

Dφ

(4)

Notably, the number of lineages Nn scales with the square root
of the gradient steepness α, scales weakly with the fitness
effect s of global mutations, and is independent of the rate
of spatial diffusion Dx. Since the number of lineages domains
cannot be smaller than 1, Eq. (4) implies a critical gradient
slope αcr ∼ (Dφτg/s)1/2/(μNL) such that above this value,
the average domain size 〈	n〉 is generally finite, independent of
system size, and scales inversely with the square root of pop-
ulation density N/L. Below this critical slope, a single lineage
can spread through the whole system and 〈	n〉 approaches the
system size L.

Naturally, one may ask whether it is the interference regime
or the rare mutation regime that is more relevant in prac-
tice. Under no-gradient conditions, there are many instances
in which clonal interference has been shown to be relevant
[25]—most famously in Lenski’s well-mixed experiments
[26], but also in spatially structured populations [19,27].
Quantitatively, the condition for clonal interference under no-

gradient conditions can be written as μNL
√

s/τ
Dx

� 1. In our

model, the equivalent condition reads μ′NL
√

s/τ
Dφ/α2 � 1, with

Dx replaced by Dφ/α2 and the mutation rate μ replaced by the
rate of globally adaptive mutations μ′. There is evidence sug-
gesting that the supply of hill-climbing mutations is abundant,
such that microbial populations continue to rapidly adapt over
long timescales even in simple constant environments without
typically reaching a fitness peak [25,28]. This further indicates
that the regime of multiple interfering lineages is likely to be
widespread.

Thus, the kink-antikink gas analogy allows us to make
additional statements concerning the time development of
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the population: (1) The rate at which the front expands
in phenotype (preferred growth temperature) space, i.e., the
“adaptation rate,” is vφ = αvx ∼ √

Dφs/τg. Interestingly, this
rate of adaptation is independent of the gradient steepness
α, in agreement with the result obtained by Hermsen in
the infinite population, steep gradient limit [29]. (2) The
average rate of fitness increase in the population 〈Ḟ 〉 de-
pends on density, not on population size per se: 〈Ḟ 〉 ∼
μNs2 〈	n〉 ∼ [μ2(N/L)2s7Dφ/α2]1/4. This generalizes to the
case of gradient environments the result obtained by Martens
and Hallatschek [19] for the rate of fitness increase in spatially
uniform conditions.

(3) While the distribution of lineage sizes is constant in
time, the precise identity of surviving lineages continuously
turns over. The turnover timescale, defined as the time it takes
for average fitness to increase by s, is Tturnover = s/〈Ḟ 〉, which
is, again, independent of population size. Understanding the
timescale of lineages turnover is of practical importance as it
determines the degree to which distributions of microbial taxa
reflect the influence of past events as opposed to contemporary
environmental conditions [30].

To summarize, in this paper we have established a simple
correspondence between evolution in a linear environmental

gradient and evolution in a spatially uniform temporally stable
environment. We used this framework to not only match a
number of existing results but also to efficiently derive results,
proving the usefulness of the framework for studying evolu-
tion in a gradient. In particular, we hope our results can be
useful for laboratory studies, as controlled spatial gradients
can be produced in vitro using, for instance, microfluidic de-
vices that establish temperature or chemical gradients [31,32],
or benthic gradient chambers capable of mimicking the oxy-
gen, sulfide, and light gradients present in microbial mats
[33,34]. Studying evolution in spatial gradients under sim-
plified, carefully controlled laboratory settings may prove
essential to understanding—and ultimately predicting—the
emergence of drug resistance in bacteria experiencing an-
tibiotic concentration gradients [29,35,36], or the patterns of
biodiversity in microbial communities [37–41].
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