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Microbial communities are ubiquitous in nature and come in a multitude of forms, ranging from communities
dominated by a handful of species to communities containing a wide variety of metabolically distinct organisms.
This huge range in diversity is not a curiosity—microbial diversity has been linked to outcomes of substantial
ecological and medical importance. However, the mechanisms underlying microbial diversity are still under
debate, as simple mathematical models only permit as many species to coexist as there are resources. A plethora
of mechanisms have been proposed to explain the origins of microbial diversity, but many of these analyses
omit a key property of real microbial ecosystems: the propensity of the microbes themselves to change their
growth properties within and across generations. In order to explore the impact of this key property on microbial
diversity, we expand upon a recently developed model of microbial diversity in fluctuating environments.
We implement changes in growth strategy in two distinct ways. First, we consider the regulation of a cell’s
enzyme levels within short, ecological times, and second we consider evolutionary changes driven by mutations
across generations. Interestingly, we find that these two types of microbial responses to the environment can
have drastically different outcomes. Enzyme regulation may collapse diversity over long enough times while,
conversely, strategy-randomizing mutations can produce a “rich-get-poorer” effect that promotes diversity. This
paper makes explicit, using a simple serial-dilutions framework, the conflicting ways that microbial adaptation
and evolution can affect community diversity.
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I. INTRODUCTION

Microbial communities are a key component of nearly ev-
ery ecosystem, ranging from arctic sediments [1] to the human
digestive tract [2]. The composition of these communities
can vary dramatically, ranging from communities dominated
by a small number of metabolically similar organisms [3],
to communities composed of hundreds of metabolically di-
verse organisms [4–6]. Even within a given type of ecosystem
there can exist substantial variation in community form [3].
This huge variation in microbial diversity is not merely a
theoretical curiosity, having been linked to outcomes ranging
from ecosystem stability to the results of medical treatments
[7–10]. Thus, to better understand and engineer ecosystems,
a strong theoretical understanding of the drivers of microbial
diversity is required.

Early theoretical work on ecological diversity led to the
competitive exclusion principle, a prediction that the number
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of coexisting species in an ecosystem at steady state will not
exceed the number of nutrients [11,12]. However, it became
apparent that many communities sustain diversity far in ex-
cess of what is predicted by competitive exclusion, famously
exemplified by Hutchinson’s “paradox of the plankton” [13].
This apparent clash between theory and observations has led
to decades of study, attempting to bridge the gap and to de-
velop an understanding of what drives diversity. Of the many
important mechanisms for maintenance of diversity beyond
competitive exclusion, we mention a few: microbial interac-
tions [14,15], predation [16,17], spatial heterogeneity [18,19],
non-steady-state dynamics [13,20], and resource competition
with tradeoffs [21–25].

The majority of the theoretical work on microbial diver-
sity has relied on a chemostat framework in which nutrients
are continuously supplied [26]. Often, however, in both nat-
ural and experimental microbial ecosystems nutrients are
supplied at time intervals, instead of being constantly sup-
plied. In natural ecosystems, this reflects the passage of
seasons [2] or other environmental fluctuations. In experimen-
tal ecosystems, this reflects the commonly used serial-dilution
protocol in which microbes are periodically diluted and
supplied with a fresh bolus of nutrients [27,28]. Thus,
further theoretical work is needed to understand diversity
in systems where nutrients are supplied in a nonconstant
manner.
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Recently, we considered diversity in a serial-dilution
ecology consisting of microbes competing for multiple nu-
trients [23]. Each species was defined by a strategy vector
which quantifies its ability to uptake different nutrients. In
the framework we had proposed, each species had a fixed
and unchangeable “enzyme budget” it allocated. Strikingly,
we found that unlike steady-state ecosystems, diversity was
strongly dependent on the amount of nutrient supplied to the
community, and that the changes in diversity could be under-
stood as arising from an “early-bird effect.” In this early-bird
effect, a species the strategy of which allows it to consume
the most easily available nutrients gains an early population
advantage and is then able to outcompete competitors for
less-available nutrients, even if the early-bird species is a
less efficient consumer of the latter. This effect is generally
strengthened with increasing nutrient supply, though in certain
cases the effect can be eliminated by saturating concentrations
of nutrients. As a result, the long-term community compo-
sition depends on the amount of nutrients supplied to the
ecosystem. If the early-bird species is abundant at low nutrient
supply, this effect leads to a decreasing community diversity
with increasing nutrient supply, with the opposite occurring if
the early-bird species is low abundance at low nutrient levels.
In more complex scenarios this effect can lead to nonmono-
tonic relationships between diversity and nutrient supply.

In our previous investigations of serial-dilution models, the
metabolic strategy of each species was unchanging throughout
time. However, in reality, microbes can and do change their
nutrient uptake strategies over both ecological and evolution-
ary timescales. On ecological timescales, bacteria have the
ability to regulate their enzyme production, thus responding to
environmental changes by shifting their strategy [29,30]. On
evolutionary timescales, random mutations can lead to hard-
wired changes in the strategies of bacterial species [31–33].
How might such changes in metabolic strategies impact mi-
crobial diversity?

In this paper, we probe how both adaptation through
enzyme regulation and mutation influence diversity in a serial-
dilution ecosystem. We find that these two forms of response
to environmental pressures produce substantially different re-
sults. Mutations increase diversity relative to a model with
unchanging metabolic strategies, particularly so when there
is a large amount of growth between dilutions. In contrast,
we find that diversity in a stable community can be curtailed
by the addition of a species capable of sensing ambient nutri-
ent concentration and thereby regulating its enzyme strategy.
Interestingly, the destruction of diversity by such an adapter
species occurs on an emergent timescale, which can be much
longer than any intrinsic timescale directly appearing in the
dynamics.

II. RESULTS

The models that we explore in this paper are built on
a generalized serial-dilution framework in which m species
compete for p nutrients within a series of recurring batches.
An annotation glossary for this paper can be found in Table I
in the Appendix. Beginning each batch, a bolus of nutrients is
provided such that c0 = ∑p

i ci(0), where ci(0) is the concen-
tration of nutrient i at time zero, measured from the beginning

of the batch. At the same time zero, microbes are seeded into
the batch in an inoculum of species such that ρ0 = ∑m

σ ρσ (0),
where ρσ (t ) is the biomass concentration of species σ at
time t from the beginning of the batch. After all nutrients are
exhausted within a batch, a new batch is initialized with the
same nutrient bolus and an inoculum of total concentration
ρ0, the composition of which is proportional to the species
composition at the end of the previous batch. In short, we
inoculate each batch with microbes and nutrient, wait for the
microbes to consume the nutrient, and then dilute the resulting
species composition to use as the inoculum for the next batch,
and so forth.

A species, indexed by σ , is defined by its strategy vector
�ασ = (ασ,1, . . . , ασ,p), where ασ,i is the maximum uptake rate
of nutrient i for species σ . The uptake rates are defined by
Monod functions, jσ,i = ci

Ki+ci
ασ,i, where jσ,i is the uptake

rate of nutrient i by species σ and Ki is the half-saturation
constant of nutrient i. For simplicity, we assume that Ki ≡ K
(we explored unequal Ki in [23]). From the uptake rates,
we can define the nutrient and population dynamics within
a batch:

dci

dt
= −

∑
σ

ρσ jσ,i, (1)

dρσ

dt
= ρσ

∑
i

jσ,i. (2)

These dynamics are represented graphically in Fig. 1(a).
The “steady state” of this deterministic ordinary differen-
tial equation (ODE) system is not a single fixed point, but
instead an entire batch timecourse such that the relative
species abundance at the beginning and end of the batch are
identical. Explicitly, at steady state, whereas within a batch
d
dt �= 0, the inoculum, ρσ (t = 0), does not change from one
batch to the next.

Microorganisms typically operate near their biophysical
limits [34], capping their total protein-production capacity.
Since capacity must be allocated for a multitude of essen-
tial cellular processes, microbes have a limited capacity to
manufacture the enzymes used to consume nutrients. Roughly
speaking, one would expect that microbes which are found
to coexist would evolve similar metabolic enzyme produc-
tion capacities. We take this viewpoint, thereby constraining
our model to a fixed total amount of enzymes in the strat-
egy vector: E = ∑

i ασ,i = const for all species (relaxing this
constraint leads to extinction of species with lower enzyme
budgets and, depending on the other timescales in the system,
determines the long-term diversity [23]). The fixed sum means
that the strategies of different species can be represented on
a simplex, shown as circles in Figs. 1(b) and 1(c), with the
relative composition of the nutrient bolus represented as a
black diamond.

In our earlier work [23], we extensively characterized the
behavior of this model when the metabolic strategies of the
species are fixed over time. When the nutrient bolus is small
(c0/K � 1), we found that the serial-dilution ecosystem be-
haves in a chemostatlike manner. In this limit, the system can
support an unlimited number of coexisting species as long as
the convex hull of the strategies (visualized in two dimensions
as stretching a rubber band around the strategies) contains the
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FIG. 1. Adapted from [23] under the Creative Commons Attri-
bution. Illustration of the serial-dilution resource-competition model.
(a) Serial-dilution protocol. Each cycle of batch growth begins with
a cellular biomass density ρ0 and total nutrient concentration c0.
The system evolves according to Eqs. (1) and (2) until nutrients are
completely consumed. A fraction of the total cellular biomass is then
used to inoculate the next batch again at density ρ0. (b) Represen-
tation of particular enzyme-allocation strategies {ασ } (circles) and
nutrient supply composition ci/c0 (black diamond) on a two-nutrient
simplex, where the right end point corresponds to c1/c0 = 1. (c) Rep-
resentation of particular strategies (circles) and nutrient supply (black
diamond) on a three-nutrient simplex. Dashed blue, the convex hull
of the enzyme-allocation strategies. Here, the nutrient supply (black
diamond) is inside the convex hull, implying coexistence of all
species in the chemostat limit (see text).

nutrient composition. Examples of communities where this
condition is met are shown in Figs. 1(b) and 1(c). We found
that as more nutrient is provided to the system, i.e., the bolus
size c0 grows larger, this convex hull rule still applies but
with “remapped” convex hull nodes. These remapped nodes
generally differ from the original strategies and move as a
function of bolus and inoculum size. This remapping can lead
to large shifts in community diversity, with the direction of the
shift determined by ecosystem details.

A. Enzyme regulation

Bacteria are able to dynamically control the levels of their
enzymes in response to changes in the environment [29].
How would such regulation impact population dynamics in
our model? To address this question, we introduce into our
model an organism with the ability to reallocate its enzyme
budget, and we call it the adapter. The adapter’s enzyme pool
is continuously diluted by growth—typically in nature when a
bacterial cell divides, approximately half the enzyme content
goes to each daughter. We consider the enzymes as contin-
uously replenished with newly produced enzymes, and the
adapter is able to select which type(s) of enzyme to produce.
In general, for a given nutrient environment increasing one
type of enzyme will yield the greatest increase in growth rate,

FIG. 2. Serial-dilution model with enzyme regulation.
(a) Schematic of the adapter control scheme. The adapter
changes which enzyme it produces in response to changing nutrient
concentration. If the relative difference between the two nutrients
is greater than the sensing threshold �c, it switches production to
the enzyme corresponding to the more abundant nutrient. (b)–(e)
Representative long-term dynamics of serial-dilution communities
after the addition of an adapter. The adapter population is shown
by the dashed red curve. Communities containing 21 species
with equally spaced strategies [see Fig. 1(b)] were allowed to
reach steady state before the community was perturbed by an
invasion that replaced 35% of the community biomass with
an adapter. (b) Community growing with ρ0 = c0 = 1, and
nutrient 1 fraction = 0.7 invaded by an adapter with �c = 0.02.
(c) Community: ρ0 = 1, c0 = 102, and nutrient 1 fraction = 0.55;
adapter, �c = 0.25. (d) Community: ρ0 = 1, c0 = 102, and
nutrient 1 fraction = 0.55; adapter, �c = 0.02. (e) Community:
ρ0 = 1, c0 = 103, and nutrient 1 fraction = 0.55; adapter,
�c = 0.25. All communities are simulated with K = 1.

so we consider the adapter to produce one type of enzyme at
a time. As a result, the model equations are now generalized
to allow the adapter’s enzyme composition to have dynam-
ics, according to d

dt ασ ∗,i = (Pσ ∗,i − ασ ∗,i )
∑

i′ jσ ∗,i′ , where σ ∗
indexes the adapter species and Pσ ∗,i is an indicator function
that is unity when the adapter is producing enzyme i.

We consider a two-nutrient case (p = 2) in which the
adapter switches its enzyme production to match the most
abundant nutrient, as shown in Fig. 2(a). The adapter senses
a relative difference, �, between the two nutrients, defined
as � = | c1−c2

max (c1,c2 ) |. To model sensory uncertainty, the adapter
can only respond to relative differences above a certain mag-
nitude, �c. We assume that the time between batches is short
enough that the adapter maintains both its enzyme levels
and enzyme-production state between batches. This ability
to sense the environment and modify its enzyme production
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allows the adapter to better exploit any early-bird advan-
tages it gains. The adapter can modify its enzyme strategy
to efficiently consume initially abundant nutrients and then
further modify its strategy to consume the remaining nutrients.
As a result, the adapter will have a fitness advantage over
nonadapters if the changes in nutrient availability exceed its
sensing tolerance. Thus, adaptation in our model can lead to
diauxie—a widely observed phenomenon in which different
nutrient types are consumed in sequence rather than simulta-
neously (Fig. 4 of Appendix).

How does a community of nonadapters respond to sud-
den invasion by an adapter? To explore this, we allowed
communities of 21 nonadapter species to reach steady state
before replacing a fraction of the community biomass with
an adapter. We tested a wide range of initial community
and adapter parameters and show four different invasion
outcomes in Figs. 2(b)–2(e). Despite enzyme regulation oc-
curring on very short timescales (on the scale of the adapter’s
doubling time), we find that the adapter introduces an emer-
gent long timescale over which the community population
changes. In the examples, this new timescale is on the order
of 103 batches, substantially longer than the approximately ten
batches required for the initial communities to come to steady
state. Moreover, this new timescale can be made even longer
by starting with a smaller initial adapter biomass.

The postinvasion steady states of the communities can vary
based on initial community and adapter parameters. In many
cases, after being invaded the ecosystem gradually moves
towards extinction of most of the nonadapter species, as is
shown in Figs. 2(b), 2(d) and 2(e). However, in certain cases,
such as that in Fig. 2(c), the adapter can coexist with the
nonadapter community. This outcome occurs when the com-
munity becomes organized such that � < �c ∀t within a
batch. In other words, diversity is robust to adapter invasion
if the community self-organizes to a state where the relative
difference between the two nutrients never exceeds the adapter
threshold tolerance. Under these conditions, the adapter loses
the ability to switch its enzyme production and effectively be-
comes locked as a nonadapter specialist, i.e., consuming only
one type of nutrient. Therefore, the community of nonadapt-
ing species may lock the adapter into a fixed state, thereby
eliminating its inherent advantage over nonadapting species.
In addition to reaching various final steady states, the dynam-
ics of this system en route to steady state can also vary widely.
For example, in Fig. 2(b) there is a monotonic decrease in non-
adapter abundances. In contrast, the nonadapter dynamics in
Figs. 2(c)–2(e) are nonmonotonic, with the abundance profile
of the nonadapters being inverted multiple times in Figs. 2(d)
and 2(e).

The adapter’s slow takeover of communities indicates that
enzyme regulation confers a small fitness advantage. This
advantage may be offset by the cost of sensing and respond-
ing to environmental conditions—a cost which we do not
model here. Moreover, as in the case with unequal enzyme
budgets, the ecological relevance of the timescale introduced
by the adapter will depend on other timescales in the sys-
tem, such as that introduced by immigration. Furthermore,
the effect of an adapter may be mitigated by noisy population
dynamics: an invading adapter with a small population is
sensitive to random extinctions, as the adapter’s fitness is only

slightly greater than that of the residents. In summary, though
an adapter has a fitness advantage, it is not guaranteed that this
advantage will translate to the adapter taking over the system.

B. Mutation-selection balance

To bring in one of the main drivers of diversity in the
wild, we extend our model to include mutations and the
resulting mutation-selection balance. Specifically, we intro-
duce mutations as random changes in metabolic strategy [31].
Essentially, instead of allowing a single adapter species to
modify its strategy, we let the repertoire of fixed strategies
evolve and compete. Since a mutant is initially present as
a single cell, it becomes essential to stochastically model
the population dynamics, including both reproduction and
sampling for each inoculum. Within a batch, instead of the
deterministic ODEs of Eqs. (1) and (2), we simulate stochastic
dynamics using Gillespie’s method, summarized in Table II.
For large populations, the resulting steady state matches the
deterministic one. To account for mutations, we modify the
growth term to allow for mutation events, whereby when
species σ increases by one cell, instead of making another σ , it
sometimes makes a σ ′ cell, i.e., σ → σ + σ ′. Mutation occurs
at a rate νρσ

∑
i jσ,i, while normal growth, σ → 2σ , occurs

at a rate (1 − ν)ρσ

∑
i jσ,i. Figure 3(a) shows a schematic

of this process. Together, stochastic reproduction, intrabatch
mutations, and interbatch sampling lead to complex dynam-
ics whereby a species can appear, flourish for a number of
batches, then die out, with different species replacing it. This
results in fluctuations in the number of species present from
batch to batch (Fig. 8 of Appendix).

How does species diversity depend on nutrient bolus size c0

under conditions of mutation-selection balance? As one would
expect, the larger the nutrient bolus c0, the more mutations
within a batch, leading to more species at the end of the
batch [see Fig. 3(b)]. As c0/K increases, the number of ex-
tant species (species with nonzero abundance) increases since
more growth events, and therefore more mutation events,
occur within a batch in Fig. 5 of Appendix. We also find
that more evenly balanced nutrient supplies lead to a larger
number of species. However, many of these species are very
low abundance, and are recent mutations that will typically
not survive more than a few batches. We therefore need to
consider a metric which better reflects true diversity.

A useful summary statistic for quantifying diversity
[35,36] is the effective number of species me = eS with the
Shannon diversity S = −∑

σ Pσ ln Pσ and Pσ = ρ∗
σ (0)/ρ0,

with ρ∗
σ (0) being the steady-state species abundances at the

beginning of a batch. We show the effective number of
species, me, as a function of c0 in Fig. 3(c). As c0 increases,
the decrease in me due to the early-bird effect and single-
nutrient competition [23] is offset by mutations generating
new species. As a result, for these parameters, me is flat as
c0 ≈ K . As c0 increases further, me does increase, due to both
mutations and reduced remapping. This is evident in Fig. 3(d),
which shows more species and flatter rank-abundance curves
for higher c0 for a balanced nutrient supply (magenta, darker
gray). Even for an unbalanced nutrient supply (cyan, lighter
gray), diversity increases for large enough c0/K (lower values
of c0/K are shown in Figs. 6 and 7 of Appendix).
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FIG. 3. Diversity of species under mutation-selection balance.
Starting from an inoculum of 1000 cells, with K = 1000 and a
fraction ν = 0.01 of cell divisions, results in a mutation to a ran-
domly selected one of 201 evenly spaced strategies. Populations are
recorded at the start of each batch. (a) Schematic of mutation. Each
division either produces two daughter cells identical to the parent
(with probability 1 − ν) or one daughter cell identical to the parent
and one daughter cell of a random strategy (with probability ν).
(b) The median number of extant species under mutation-selection
balance vs c0/K for varying supply proportions, recorded at the
start of each batch. (c) Effective number of species me for different
nutrient compositions as a function of nutrient bolus size c0/K .
(d) Rank-abundance curves for nutrient 1 fractions 0.05 (cyan, lighter
gray) and 0.5 (magenta, darker gray); line thickness indicates the
value of c0/K . (e) Numerical simulation of the illustrative two-
species Fokker-Planck model for the effect of mutations within a
batch [see Eq. (3)]. We initialize the simulation with a narrow dis-
tribution of abundances centered around species 1 fraction x1 = 0.5
with ρ0 = 10 and ν = 0.5.

This increase in diversity with increasing c0 arises from a
competition between the diversity-increasing effect of muta-
tion and the diversity-reducing effect of demographic noise.
Consider the growth dynamics within an individual batch.
Mutations shift population to nondominant species, thus mak-
ing the end-of-batch abundances on average more “even” as
growth proceeds. However, this effect can be washed out
by high levels of demographic noise, which can make abun-
dances less equal. Demographic noise is high when the total
population is small, so that each birth has a relatively large
effect on the relative abundances. Thus, when c0 and ρ0 are
small, demographic noise counteracts the diversity-increasing
effects of mutation. As c0 or ρ0 increases, this demographic
noise is reduced and therefore diversity rises.

To better understand this competition between mutation
and demographic noise, we derived a Fokker-Planck equation

for the dynamics of the probability distribution of the relative
abundance of two species. For neutral growth with mutations,
the population dynamics during a batch is given by

∂P

∂ρ
= ∂

∂x1

(
D

∂P

∂x1

)
− ∂ (PV )

∂x1
, (3)

where P = P(x1, ρ) is the probability distribution of the rela-
tive abundance x1 of species 1 at total species abundance ρ,
D is the effective diffusion coefficient, and V is the effec-
tive drift velocity. From the microscopic dynamics, we find
that D = (1−ν)x1(1−x1 )

(ρ+1)2 and V = ν(1−2x1 )
ρ+1 (see the Appendix for

details).
The forms of D and V reveal the contributions of demo-

graphic noise and mutation to the population dynamics. D
captures the effect of random births: it scales with 1 − ν and
drives the probability distribution towards the edges, being
maximal at x1 = 0.5. V represents the effect of mutations: it
scales with ν and drives the probability distribution towards
the center, vanishing at x1 = 0.5. The outcome of the com-
petition between these two opposing effects is determined
by the denominators of D and V . Both D and V contain
polynomials of the total population ρ in their denominator,
and therefore both effects weaken as growth proceeds during a
batch (the larger the population, the smaller the effect of each
birth on the relative abundance). However, the denominator
of D is quadratic in ρ, while the denominator of V is only
linear in ρ. As a result, the relative strength of mutation
increases as growth proceeds, driving the system towards a δ

function at x1 = 0.5 as the population becomes very large. To
demonstrate this, we show a numerical simulation of Eq. (3)
in Fig. 3(e). Beginning with a narrow distribution of abun-
dances in a small population, P rapidly widens once growth
begins due to demographic noise. As growth proceeds, the
distribution becomes narrow once again as demographic noise
decreases in strength relative to the equalizing effect of muta-
tion.

Broadly speaking, mutations in our model lead to a “rich-
get-poorer” effect in which high-abundance species feed
low-abundance species with a steady stream of mutants, coun-
tering the “rich-get-richer” impact of the early-bird effect and
competition for a single dominant nutrient. However, because
growth in this system is stochastic, for small enough initial
populations this rich-get-poorer effect must first overcome the
diversity-reducing effects of demographic noise.

III. DISCUSSION

In nature, microbial metabolic strategies vary within a
single generation and across generations. In this paper, we
have built on existing models of resource competition under
serial dilution by exploring what happens when species are
able to modify their metabolisms. We considered two types
of strategy change: transient regulatory changes and random
mutations. Interestingly, these two mechanisms have substan-
tial but drastically different effects on community diversity,
highlighting the potential impact of changes in metabolic
strategy on real microbial communities.

We first considered the outcome of introducing an
“adapter,” a species capable of regulating its enzyme allo-
cation, into a stable diverse ecosystem. We found that, over
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long time periods, the adapter curtailed diversity in a manner
similar to introducing a species with an enhanced enzyme
budget [21]. This can be viewed as an augmented early-bird
effect. In our previous model, an early bird can take advan-
tage of fast initial growth to rapidly consume all nutrients,
even those it consumes inefficiently. An adapter can tune its
enzyme levels to first efficiently consume the more valuable
nutrient, and then switch enzyme production to focus on
the remaining nutrients. Thus, it benefits from both an early
population advantage and opportune enzyme allocation. As
a result, the invading adapter gains a small but significant
fitness advantage and gradually takes over the community. In
some cases, the rest of the community is able to self-organize
such that the differences in nutrient concentrations became
too small for the adapter to detect, precluding its advantage.
Intriguingly, in some cases, the adapter only reaches dom-
inance over a very long, emergent timescale. In that case,
fluctuations in a real ecosystem might wash away the adapter’s
advantage. In summary, the impact of enzyme regulation by
some species in an ecosystem depends on both the metabolic
cost of maintaining enzyme regulation and the presence of
other timescales in the system. Studying the relevance of the
long timescale introduced by enzyme regulation in shaping
ecosystem diversity is a promising direction of future study.

In this paper, we have focused on competition between
adapters and nonadapters, but we did not consider the scenario
of competition between adapters. On evolutionary timescales,
this scenario is likely to arise as the adapters themselves
will mutate and speciate. This is a worthwhile direction
of future study, as it is not clear that adaptation will col-
lapse diversity in the context of adapter-adapter competition.
Interestingly, a recently published work analyzing a con-
ceptually similar model of enzyme regulation showed that
competition between adapters can stabilize diversity [25].
While this model differs from the one we analyze here in
the regulation scheme employed, these results suggest the
intriguing possibility that adaptation can collapse diversity
when it first arises, but promote diversity once the adapters
themselves speciate.

In contrast to our results on adaptation, we found that
the addition of mutations that randomize metabolic strategy
modified the relationship between bolus size and diversity
to be monotonically increasing. This is a dramatic change
from the model without mutation, where the relationship is
generally nonmonotonic [23]. However, as with the original
model, this behavior can be understood in terms of the early-
bird effect. Without mutation, the early-bird effect leads to a
rich-get-richer effect that initially decreases diversity as bolus
size increases. This occurs because increasing the supply of
nutrients leads to the additional nutrients being disproportion-
ately taken up by the most abundant species. Indeed, until
nutrients become saturating in the c0 � K limit, the more
nutrient, the less diversity. However, the addition of mutation
opposes this one-sided concentration of biomass, acting some-
what similarly to “income tax”: the species that consume the
most nutrients and therefore proliferate fastest are the species
that lose the largest fraction of their population each batch to
mutations. As the bolus size grows, the number of birth events
(and therefore mutation events) increases, thereby increasing
overall diversity by redistributing a larger fraction of the total

population from more abundant to less abundant species. Our
simulations have focused on a particular class of strategy-
randomizing mutations, and so it would be interesting to see
if our observations generalize beyond this particular choice of
mutational effect.

Our exploration of the early-bird effect and the adapter
provides some insight into the enzyme regulation strategies
utilized by real microbes. When supplied with high concen-
trations of nutrients (corresponding in our model to a large
nutrient bolus) real microbes are known to utilize a diauxic
strategy in which they will exclusively consume the most
valuable nutrient until it is entirely depleted before switching
to metabolism of less valuable nutrients [37]. This strategy is
entirely consistent with the optimal enzyme regulation needed
to exploit the early-bird effect. It is better to devote all re-
sources to the nutrient that allows for the highest growth, and
then use the early-bird advantage to more efficiently exploit
the remaining nutrients. Interestingly, it has been found that
in environments containing low nutrient levels (corresponding
to the small bolus size limit of our model), microbes instead
employ a mixed-utilization strategy where they attempt to
consume multiple different types of nutrients [38,39]. This is
also consistent with our model; in the low nutrient limit the
early-bird effect is weak or nonexistent, lowering the benefit
of sophisticated regulatory strategies (though growth on mul-
tiple nutrients simultaneously could also arise if individual
nutrient concentrations are too low to support growth on that
nutrient alone). These results highlight the fact that certain
effects cannot be found in chemostat models, and therefore
models with fluctuating nutrient supply have an important role
in efforts to understand microbial ecosystems.

In our previous work, we argued that in order to understand
microbial diversity, it is necessary to take into account fluctua-
tions in the environment. Here, we have shown that variations
within the microbes themselves can also play a key role in
microbial diversity. Indeed, these two types of fluctuations can
interact in a complex manner, as is the case with the adapter’s
exploitation of the early-bird effect. On a practical level, our
results suggest that measuring microbial abundances and en-
vironmental conditions may not be sufficient to understand
diversity in microbial ecology experiments. Even in a simple
model, if some microbes can adapt to ambient conditions,
they may shape the ecosystem in complicated ways over very
long timescales. And so, it appears that predictive models
of microbial ecosystem dynamics would benefit from infor-
mation about the microbes’ inner states and decision-making
processes.
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TABLE I. Annotation glossary.

Symbol Description

t Time measured from the beginning of a batch

p Number of nutrients

m Number of competing species

me Effective number of species at steady state

ν Mutation rate

i (1 . . . p) Latin index enumerating nutrients

ci(t ) Time-dependent concentration of nutrient i

c0
∑p

i=1 ci(0); total nutrient concentration at time t = 0

Ki ≡ K Monod half-velocity constant

σ, σ ′, . . . (1 . . . m) Greek indices enumerating species

ρσ (t ) Species σ biomass density at time t since the start of a batch

xσ (t ) Species σ relative abundance at time t since the start of a batch

�ασ (ασ,1, . . . , ασ,p); enzyme allocation strategy for species σ

E E = ∑
i ασ,i = 1; enzyme budget

jσ,i Nutrient i consumption rate by species σ

APPENDIX

This section describes the methods used in this paper. All
code and data used in this paper can be found in [40]. An
annotation glossary for this paper can be found in Table I.

1. Deterministic dynamics

We numerically solve the ODEs within each batch using a
custom MATLAB-coded fourth-order Runge-Kutta solver with
adaptive step size. Step size at a given time step is chosen
such that the relative change of all state variables is below a
predetermined threshold.

To numerically solve the Fokker-Planck model of mu-
tation, we utilize a custom MATLAB-coded first-order Euler
solver. The interval [0,1] was discretized into 801 points and
all derivatives were computed using first-order centered differ-
ences. Zero-flux conditions were imposed at the boundaries of
the domain.

2. Population bottleneck sampling

We implement discrete sampling when diluting from one
batch to the next by picking without replacement ρ0 indi-
viduals from a total end-of-batch population of ρ0 + c0. If
there are noninteger populations at the end of a batch (as
can occur with deterministic dynamics), they are rounded up

TABLE II. Gillespie reactions for mutation-selection dynamics.

Name Reaction Rate

Birth σ → 2σ (1 − ν )ρσ

∑
i jσ,i

Mutation σ → σ + σ ′ νρσ

∑
i jσ,i with randomly chosen σ ′

Time t → t + �t �t = − ln[U (0, 1)]/
∑

σ,i ρσ jσ,i

if ρσ − floor(ρσ ) > U (0, 1) where floor rounds down to the
nearest integer and U (0, 1) is a uniform random variable be-
tween 0 and 1. For all simulations with stochastic bottlenecks,
we allow the simulation to equilibrate for 10 000 dilutions and
average over 90 000 further dilutions.

3. Mutation-selection dynamics

We use Gillespie’s algorithm to simulate the reactions
shown in Table II until all nutrients {ci} are depleted, with
U (0, 1) a uniform random variable between 0 and 1. For
each “birth” reaction (ρσ increases by 1), ci decreases by
jσ,i/

∑
i jσ,i.

For all simulations featuring mutation (Figs. 5–8 of Ap-
pendix), we let the system equilibrate over 10 000 dilutions,
many more than required to reach steady state in the deter-
ministic model, and then average over at least 90 000 more
dilutions. To ensure that the results do not depend on the

FIG. 4. Example of diauxie in the adaptation model. When sens-
ing tolerances are large, the adaptation model can exhibit diauxie,
in which nutrients are consumed sequentially rather than simultane-
ously. In the simulation shown, ρ0 = K = 1, c0 = 103, �c = 0.95,
and nutrient 1 fraction = 0.55.
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FIG. 5. Median number of extant species as a function of c0/K
at different mutation rates ν from 0.002 (dark) to 0.01 (light) with
nutrient 1 fraction 0.005. With increasing ν, more species are created
by mutation during each batch. When ν = 0, the median number
of extant species fluctuates between one and two species due to
extinctions though sampling noise. The steady state reflects a balance
between the addition of new species through mutation and the loss
of species due to interbatch sampling.

number of possible strategies (due to mutations saturating all
possible species), we increase the total number to 201 species
equally spaced between 0 and 1.

4. Derivation of the Fokker-Planck equation
for the mutation model

We consider a batch culture containing two species with
equal fitness. The dynamics of the growth process can be
described as a random walk of the relative abundance x1 of
species 1 on the interval [0,1]. The dynamics of the prob-
ability distribution of x1 as a function of total abundance
in the batch ρ can be approximated as a Fokker-Planck
equation with effective diffusion coefficient D and effective

FIG. 6. Mutation-selection balance for high ρ0 and K (ρ0 = 105,
K = 105, and ν = 10−3). The results presented in Fig. 3 in the
main text are for ρ0 = 1000, K = 1000, and ν = 0.01; with those
parameters, sampling noise dominates in the c0/K � 1 limit. Here,
we explore the c0/K � 1 limit using larger ρ0 and K . (a) Effec-
tive number of species me for different nutrient compositions as a
function of nutrient bolus size c0/K . (b) Rank-abundance curves for
nutrient 1 fraction 0.05 (cyan, lighter gray) and 0.5 (magenta, darker
gray); line thickness corresponds to c0/K values. We note the similar
trends to the results in the main text.

FIG. 7. Number of extant species under mutation-selection bal-
ance for ρ0 = 105, K = 105, and ν = 10−3. Note the monotonic
increase in the median number of extant species with c0 without
saturating the total number of possible species (here 201).

drift velocity V :

∂P

∂ρ
= ∂

∂x1

(
D

∂P

∂x1

)
− ∂ (PV )

∂x1
. (A1)

The form of V and D can be computed from the mi-
croscopic dynamics. Consider a batch containing ρ cells, n
of which belong to species 1. The drift velocity, V , will be
the expected value of the change in relative abundance from
mutation events:

V (x1, ρ) = ν

(
n

ρ

)(
n

ρ + 1
− n

ρ

)

+ ν

(
ρ − n

ρ

)(
n + 1

ρ + 1
− n

ρ

)
. (A2)

This expression reduces to

V (x1, ρ) = ν(1 − 2x1)

ρ + 1
. (A3)

Similarly, the diffusion coefficient, D, will be the variance
of the change in relative abundance due to stochastic neutral
growth

V (x1, ρ) = (1 − ν)

(
ρ − n

ρ

)(
n

ρ + 1
− n

ρ

)2

+ (1 − ν)

(
n

ρ

)(
n + 1

ρ + 1
− n

ρ

)2

, (A4)

which simplifies to

D(x1, ρ) = (1 − ν)x1(1 − x1)

(ρ + 1)2
. (A5)
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FIG. 8. Left two columns: Timecourses of two stochastic models without mutation (ν = 0) and with mutation (ν = 0.005). In the main
text, we only present data on the steady states of the stochastic models while here we examine the full timecourses. In all cases, interbatch
sampling is stochastic without replacement. In the model without mutations (ν = 0), sampling causes extinctions of species with no possibility
of recovery. The model with mutations results in a fluctuating number of species, as species constantly go extinct and are reborn through
mutation. The x axis is the batch number. Right two columns: Timecourses of two stochastic models, as the left two columns, but rescaling the
x axis to count the number of generations. The fractional population increase in a single batch with c0 nutrients is ρ0+c0

ρ0
and so the number of

elapsed generations is no. batches × log2( ρ0+c0
ρ0

).
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