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Abstract
The phenomenology of the ‘0.7 anomaly’ in quantum point contacts is fully explained in terms
of a quasi-localized state, which forms as the point contact opens up. Detailed numerical
calculations within spin-density functional theory do indeed confirm the emergence of such a
state. Quantitative calculations of the conductance and the noise are obtained using a model
based on these observations, and are in excellent agreement with existing experimental
observations.

(Some figures in this article are in colour only in the electronic version)

1. Introduction and summary

The ‘0.7 anomaly’, the subject of this collection, has been a
long standing puzzle since it was first realized [1] that this is a
generic phenomenon, which in fact had been already evident in
the first experiments on conductance quantization in quantum
points contacts (QPCs) [2, 3]. In this article I will demonstrate
that existing experimental observations are consistent with a
simple model, based on the formation of a quasi-bound state
in the QPC as it opens up. I will first discuss the model and
how it explains the ‘0.7 anomaly’ rather briefly, and then in
later sections will elaborate on a first principle calculation that
indeed gives rise to the formation of such a state (section 2) and
on quantitative calculations of the conductance and the noise
using a model based on these observations (section 3).

The main assumption (to be substantiated in section 2)
underlying the model is the emergence of a quasi-localized
state at the QPC near pinch-off. With this assumption the
following physics emerges:

• The conductance is reduced from its universal value of
G0 ≡ 2e2/h, basically due to Coulomb blockade. As an
electron is transferred through the quasi-localized state, it
reduces the probability that another electron, with opposite
spin, will be simultaneously transferred. Consequently,
depending on parameters, the conductance will have a
constant value between 0.5G0 and G0 for any value of gate
voltage in the Coulomb blockade regime.

• As the gate voltage is further increased the Coulomb
blockade energy is overcome and the conductance reaches
the value G0. As we will see in section 2, the localized
state disappears for such gate voltages.

• As magnetic field is increased the quasi-localized state
energy splits. Similar to the physics of quantum dots, the
conductance will decrease to 0.5G0 and the separation in
gate voltage between the ‘0.7’ step and the first plateau
will increase linearly.

• The conductance around the ‘0.7’ plateau may be thought
of as carried by two channels, one with almost perfect
transmission and one with reduced transmission. This
leads to the reduction of the shot noise in this regime,
compared to the situation where both channels carry the
same conductance.

• At ‘high’ temperatures the spin of the quasi-localized
state is fluctuating among all degenerate directions. As
temperature is reduced below the Kondo temperature,
at zero magnetic field, this local spin will be screened
by the lead electrons—the Kondo effect—enhancing the
conductance beyond its high temperature value towards
the unitarity limit, G0. A small magnetic field, such as the
Zeeman splitting is of the order of the Kondo temperature,
will polarize the spin.

• Formation of a quasi-localized state will also occur at
large magnetic fields, where the lower spin branch of the
second QPC mode crosses the higher spin branch of the
first model, giving rise, in this case, to a ‘1.2’ plateau.
Due to the finite magnetic field, Kondo physics will not
be relevant here at low temperatures.

• Sometimes a localized state is also formed at the opening
of the second subband, giving rise to a ‘1.7’ plateau.
Unlike the generic situation in the first subband, we find
the formation of this state in the second subband to be
sensitive to parameters.
All these observations are in agreement with experiments.
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Figure 1. The gate electrodes for the SDFT calculation (a). The red (darker) gates define the maxima possible number of modes, while the
yellow (brighter) gate define the QPC. An example of electron density in the wire is also depicted. (b) The effective potential in the 2DEG.

Figure 2. The spin up (a) and spin down (b) density distribution near the gate voltage corresponding to the 0.7 anomaly, indicating formation
of a magnetic impurity on top of the QPC.

2. Formation of a magnetic impurity—a density
functional calculation

In this spin-density functional calculation (SDFT) [4], which
generalizes an earlier SDFT calculation [5], we treat the two-
dimensional electron gas (2DEG), the electrodes and the donor
layer as a set of three electrostatically coupled two-dimensional
systems (figure 1(a)). We assume the donor layer is uniform
and fully ionized, and the gates are kept in some voltage
(gate voltage) with respect to the 2DEG. Then, according to
spin-density functional theory (SDFT) [6], the properties of
the system can be uniquely determined in terms of the spin
densities of the 2DEG and of the distribution of charge on
the electrodes. We treat the 2DEG quantum mechanically by
including its kinetic energy and exchange–correlation energy
in the energy functional, taking into account the GaAs effective
mass and dielectric constant. We used the local spin-density
approximation for the exchange–correlation functional, as
parameterized in [7] (for more details see [4]). The effective
self-consistent potential experienced by electrons in the 2DEG
is depicted in figure 1(b).

We want to be able to include the possibility of a quasi-
localized state in the calculations. If such a state indeed forms,
it will necessarily be occupied by a single spin. To be able to

incorporate such a solution within SDFT, we allow solutions
of the Kohn–Sham equation [8] which break spin symmetry.
Indeed the lowest energy solution, as the QPC opens up, is a
spin-polarized state (though the spin direction is arbitrary)—
as the effective QPC barrier is lowered the two semi-infinite
electrons gases on its two sides start to overlap each other
and the density on top of the QPC increases. Once this
density is enough to support a full electron, the lowest energy
solution describes a quasi-localized electron on top of the QPC
(figure 2). This solution was found to be the ground state for
all the range of parameters we have checked, thus supporting
the idea that the formation of such a magnetic impurity in the
opening of the first mode is a generic effect.

A similar solution is found sometimes, but not always, at
the opening of the second mode (as electrons occupying the
lowest mode screen out the Coulomb interactions), and the
energy gained by the formation of the quasi-localized state
is significantly lower, suggesting that a feature in the second
plateau may be present, but sensitive to details. On the other
hand we also find a generic localized state solution in large
Zeeman fields, where the higher spin state in the lower mode
and lower spin state in the next mode become degenerate (see
figure 3). In this case we expect reduction of the conductance
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Figure 3. Formation of a quasi-localized state at the crossing of two spin subbands at large magnetic field. The two spin densities (top and
bottom) are shown at three values of magnetic field, demonstrating the formation of that state only at a special value of the field.

from its 1.5G0 value, but no spin degeneracy. This is consistent
with the observation of the ‘analog’ states [9].

While at high temperatures the localized electron
fluctuates between all possible spin directions, so that the
state is instantaneously polarized, one expects that as the
temperature is lowered below the Kondo temperature, this spin
will be screened by the electrons in the leads. Unfortunately,
such a state is beyond the capability of SDFT in its local
approximation (similar to the Hydrogen molecule problem).
In addition, SDFT also cannot, in principle, give the
correct dynamical properties of the system, in particular the
conductance (see e.g. [10]). In order to evaluate transport
properties and also include the Kondo effect, we use, in the
next section, the static properties of the system, as obtained
from SDFT, to write down an effective Hamiltonian from
which one may calculate these properties using standard many-
body techniques.

3. The effective model and transport properties

Our SDFT results indicate that even an initially smooth QPC
potential can produce a narrow quasi-bound state, resulting
in a spin bound at the center of the QPC. We [11] thus
model the QPC and its leads by the generalized Anderson
Hamiltonian [12]

H =
∑

σ ;k∈L ,R

εkσ c†
kσ ckσ +

∑

σ

εσ d†
σ dσ + Un↑n↓

+
∑

σ ;k∈L ,R

[V (1)
kσ (1 − nσ̄ )c†

kσ dσ + V (2)
kσ nσ̄ c†

kσ dσ + H.c.]

(1)

where c†
kσ (ckσ ) creates (destroys) an electron with momentum

k and spin σ in one of the two leads L and R, d†
σ (dσ )

creates (destroys) a spin-σ electron on ‘the site’, i.e. the quasi-
bound state at the center of the QPC, and nσ = d†

σ dσ . The
hybridization matrix elements, V (1)

kσ for transitions between 0
and 1 electrons on the site and V (2)

kσ for transitions between
1 and 2 electrons, are taken to be step-like functions of
energy, mimicking the exponentially increasing transparency
(the position of the step defines our zero of energy). Physically,
we expect V (2)

kσ < V (1)
kσ , as the Coulomb potential of an electron

already occupying the QPC will reduce the tunneling rate of
a second electron through the bound state. In the absence of
magnetic field the two spin directions are degenerate, ε↓ =
ε↑ = ε0.

To obtain a quantitative estimate of the conductance
we note that the relevant gate voltage range corresponds
to the singly occupied state regime. We therefore perform
a Schrieffer–Wolff transformation [13] to obtain the Kondo
Hamiltonian [14]

H =
∑

kσ∈L ,R

εkσ c†
kσ ckσ +

∑

k,k′σ∈L ,R

(J (1)

kσ ;k′σ − J (2)

kσ ;k′σ )c†
kσ ck′σ

+ 2
∑

k,k′σσ ′∈L ,R

(J (1)

kσ ;k′σ ′ + J (2)

kσ ;k′σ ′)c
†
kσ �σσσ ′ck′σ ′ · �S

J (i)
kσ ;k′σ ′ = (−1)(i+1)

4

[
V (i)

kσ V (i)
k′σ ′

εkσ − ε
(i)
σ

+ V (i)
kσ V (i)

k′σ ′

εk′σ ′ − ε
(i)
σ ′

]
. (2)

The potential scattering term (first line), usually ignored in
Kondo problems, is crucial here, as it gives rise to the large
background conductance at high temperature. The magnetic
field B , defining the z-direction, enters the problem via
the Zeeman term, Sz B . The couplings are assumed to be
exponentially increasing as the QPC is opened. (In the above
and in the following B and T denote the corresponding
energies, gμB B and kBT , respectively, where kB is the
Boltzmann constant, μB is the Bohr magneton, and with
the appropriate g-factor.) Since V (1) � V (2) then also
J (1) � J (2).

The main calculational problem is that J (1) is not small
and thus cannot be used as a small expansion variable. To
overcome this we note that the model can be solved exactly in
the large B limit, where the spin channels are decoupled. Thus
we [15] perform an expansion around large fields (the small
parameter is exp(−B/T )), which merges with the perturbation
expansion in small J for zero magnetic field. Interpolating
between these limits, the conductance can be written

G = e2

h
(T1 + T2)

Ti = g̃2
i

1 + g̃2
i

,

(3)
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Figure 4. The conductance and the noise, resulting from the approximate calculations presented here and in [15].

where

g̃2
i ≡ g2

i + B

T sinh B
T

(g1 + g2)
2

1 + (g1 + g2)2
, (4)

and gi = 4πν J (i).
At low temperature the Kondo effect develops, which

leads to

g̃2
2 → g̃2

2 + g2
2

(
1

2
− B

T sinh B
T

)
+ GRG

2 , (5)

with

GRG
2 = 1

(
ln

√
B2+T 2

TK

)2

π2

8

(
1 + 2B

T sinh B
T

)
(6)

with the Kondo temperature TK � U exp(−π/g2). The Kondo
contribution enhances the contribution of the second channel,
and gives rise to the merging of the ‘0.7’ feature with the
first 2e2/h conductance step. As pointed out in [11], the
resulting TK increases exponentially with εF, in agreement with
the experimental observation that TK increases exponentially
with the gate voltage [16]. The resulting conductance is
plotted in figure 4(a), giving rise, as expected, to plateaus
in the conductance around G � 0.7G0, which increase
with decreasing temperature (due to the perturbative nature
of the calculation a spurious nonmonotonicity appears in the
conductance). Since the latter is due to the Kondo effect, a
zero-bias anomaly in the nonlinear conductance will develop
at low temperatures, as seen experimentally [16].

Using the values of the transmission for the two channels,
equation (3), one can also evaluate the shot noise, which is
depicted in figure 4(b), giving rise to a dip in the noise around
the ‘0.7’ anomaly, again consistent with experiments [17].

4. Conclusions

We have demonstrated that all the experimental data, as far
as we know, can be explained using a simple model that
invokes the localization of an electron in the QPC near pinch-
off. The emergence of such a quasi-localized state has been
corroborated by spin-density functional calculations.
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