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It is demonstrated that using the FitzHugh–Nagumo model, stimulation of excitable media inside a region
possessing sharp corners, can lead to the appearance of sources of spiral-pairs of sustained activity. The
two conditions for such source creation are: The corners should be less than 120◦ and the range of
stimulating amplitudes should be small, occurring just above the threshold value and decreasing with
the corner angle. The basic mechanisms driving the phenomenon are discussed. These include: A. If the
corner angle is below 120◦, the wave generated inside cannot emerge at the corner tip, resulting in the
creation of two free edges which start spiraling towards each other. B. Spiraling must be strong enough;
otherwise annihilation of the rotating arms would occur too soon to create a viable source. C. The
intricacies of the different radii involved are elucidated. Possible applications in heart stimulation and
in chemical reactions are considered.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Excitable media are important in many areas. They appear in
the heart [1], and in the nervous [2] and gastrointestinal [3] sys-
tems of the body, in Belousov Zhabotinsky and related chem-
ical reactions [4], among others. The usual function of an ex-
citable medium (EM) is related to the passage of excitation waves
through it. When not stimulated, the EM stays quiescent. Below-
threshold stimulation causes the appearance of a relatively small
pulse, which promptly vanishes. Above-threshold stimulation pro-
duces a single wave, or a single burst of pulses which propagate
through the EM, followed by a return to the resting state. This
functioning is exhibited e.g. in the normal performance of the
heart tissue and of the neurons in the body.

In certain unusual circumstances (see e.g. [5–7] for such con-
ditions in the heart structure), a permanent source of waves can
form in an EM. Such a source repeatedly emits waves which regu-
larly propagate through the medium. If this phenomenon occurs, it
may cause e.g. undesirable malfunctions in the heart (tachycardia
and even fibrillation). A permanent source can be induced either
by a regular (extrinsic or intrinsic) pace-maker, by boundary con-
ditions, or by the creation of a self-sustained spiral or spiral-pair
source.
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Spiral pairs can be generated by several different methods [8].
Here we shall describe a new procedure to induce spiral pair
source creation, based on what we would like to call the “corner
effect”.

2. The corner effect

Consider a triangular region, subsequently referred to as the
“corner”, shown in Fig. 1, embedded in a 2D excitable medium.
During a very short period of time, an external stimulation impulse
is applied in the corner throughout the triangular area depicted in
Fig. 1. The stimulation amplitude, just above the activation thresh-
old, is chosen in a small range, to be defined exactly in the follow-
ing. Outside the corner region the medium is quiescent, while the
excitability is the same both inside, and outside the corner, at all
times. In order to be specific we use the FitzHugh–Nagumo system
[9] to characterize the medium:

∂v

∂t
= D

(
∂2

∂x2
+ ∂2

∂ y2

)
v + v(v − a)(1 − v) − w + δ(t)I(x, y),

∂ w

∂t
= ε(v − dw), (1)

where all variables are dimensionless. Here, v is the action poten-
tial, while w is the refractivity, an inhibitory variable, δ(t)I(x, y) is
the input current, or impulse. The constants D , a, and ε are the dif-
fusion constant, the excitability parameter, and the ratio between
the fast and the slow time constants respectively. The constant
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d controls the shape of the wave. Here δ(t) is the Dirac delta
function and I(x, y) is a constant of magnitude A, inside the cor-
ner, and zero elsewhere. The corner is part of an excitable square
domain, obeying Neumann boundary conditions on all sides. All
following calculations were carried out with the parameter values
a = 0.12, D = 0.2, ε = 0.005, d = 3. The system of equations was
solved by using a second order Euler finite difference scheme with
time and spatial increments �t = 0.125, �x = �y = 0.5 over a

Table 1
List of definitions and abbreviations.

Variable Definition

A Stimulation amplitude
Ac The lowest (critical) stimulation amplitude for the corner effect
A+

c Stimulation amplitude just above Ac

A f The upper value of A for the corner effect
ALP Arc-like pulse, a structure (see Ref. [10]) capable of creating a

spiral-pair source
α Corner’s angle
C , Vn Velocity of a plane wave and normal velocity of a wave in an

excitable medium, respectively
R∗ The smallest radius of a wave (measured where ν > 0.1) after

stimulation and before its outwards propagation
R0 = R+

cr A radius just above Rcr

R ′ Radius of a circular path followed by the tip of each spiral arm
Rcr(A) Same as R ′

cr but as a function of the stimulating amplitude
R ′

cr Minimum (critical) radius of a stimulated circular area for
producing a propagating wave

Reff Radius of a circle having the same area as that of the
maximum area in the corner where no wave appears (Fig. 7)

R f See inset (Fig. 6)
Rr Radius of the smallest circle within a corner where a wave can

emerge (Fig. 1a) and also the radius of a “corner rounding
circle” (Fig. 10)

� Distance from corner vertex along which no wave can emerge
(see inset, Fig. 6)

K Wave curvature
ν Action potential (in the heart or neurons)
VF Ventricular fibrillation
FHN FitzHugh–Nagumo
grid of 400 × 400 points. It was verified that moving the corner
vertex along the x axis direction from (0,0) did not change results.
Table 1 summaries the definitions of parameters and abbreviations
used in this study.

We wish to explore the effect of a corner in generating a per-
manent source of waves. Such a source appears only for stimulations
just above the activation threshold Ac , typical of the medium. Thus,
following a single stimulation impulse with A < Ac , the activity,
consisting of v and w of Eq. (1), ultimately collapses to zero; a sin-
gle stimulation with A � Ac , on the other hand, produces a single
outgoing pulse, which disappears at the boundary of the medium;
only when the stimulation A is slightly larger than Ac , the corner
shaped stimulation is able to generate a stable source.

Figs. 1–3 show the three cases, A < Ac (Fig. 1), Ac < A < A f
(Fig. 3), where A f is the highest value of A for which a spiral pair
source ensues, and A > A f (Fig. 2). For all values of A, the dynam-
ics is as follows: the maximum of v in the corner is at first drawn
inwards, due to the out-going diffusion current. The maximum of v
increases thereafter inside the corner, simultaneously building up
the refractivity w . The latter causes v to decrease inside the cor-
ner. When A < Ac (Fig. 1) both v and w eventually disappear.
For A > A f (Fig. 2) a single, continuous wave propagates out-
wards, without any free edges, or splits (see below) being created.
We now concentrate on the behavior for the values Ac < A < A f
(Fig. 3).

The actual wave patterns developed in this region are quite
complex. The combined action of the increase in w and the cor-
ner shape effect leads to the formation of two segments of small
width and finite length (i.e. they possess free edges), which cannot
re-enter the vertex of the corner (see below). These edges spiral
towards each other, eventually generating the spiral-pair source.
The precise shape and size of the corner region where the effect is
valid will now be discussed.

Fig. 4 describes the threshold level Ac and the range of A
values, up to A f , where a permanent source of spiral-pairs is ob-
tained for an excitability value of a = 0.12 in Eq. (1). The results
Fig. 1. Time evolution of v(x, y) for the case of A = 0.1550 < Ac = 0.1555 and α = 40◦ . The corner border is shown in red, while the shaded area outlined in blue represents
v(x, y) > 0.1 at successive times. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this Letter.)

Fig. 2. Time evolution of v(x, y) for the case of A = 0.1575 > A f = 0.1566 and α = 40◦ . The corner is depicted in red, while the shaded area outlined in blue represents
v(x, y) > 0.1 at successive times. Note the change of scales in b,c, made in order to include the whole wave. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this Letter.)
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Fig. 3. Time evolution of v(x, y) for the case of Ac < A = 0.1560 < A f and α = 40◦ . The corner is depicted in red, while the shaded area outlined in blue represents
v(x, y) > 0.1 at successive times. Note the changes of scales in d–f. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this Letter.)
Fig. 4. The range of amplitudes A generating a spiral-pair source via sharp corners.
Note that below α = 10◦ the structures become too narrow.

of numerical integration being sensitive to the grid density used
for the purpose, the number of grid points inside the narrow re-
gion of the corner’s vertex depends on the unit cell dimensions,
which could distort the resolution. The results in Figs. 1–3 were
obtained with the same unit cell for all corner angles, and it was
verified that halving the cell size caused relative changes of less
than 10−4. It is clear that: (a) The threshold, Ac , is angle indepen-
dent. (b) The range of stimulation amplitude in which a perpetual
source can be generated is indeed very small, and its discovery
therefore has probably been missed till now. (c) The range of the
stimulation amplitude increases with decreasing angles from ∼ 0
at 130◦ , to ∼ 0.022 at 10◦ . Following is an explanation of the un-
derlying mechanism of this corner effect.

We propose that the effect is largely the outcome of a com-
bination of the following two well-known processes: (1) Due to
their high curvature near the vertex of the corner, the waves gen-
erated by the stimulation cannot emerge there, and consequently
segments with free edges are symmetrically created on both sides
of the corner. (2) These free edges proceed to spiral towards each
other since they are slower than the rest of the outgoing waves.
The condition for this spiraling to induce a permanent source is
that a viable arc-like pulse (ALP [10]) be created. We will show,
however, that details are important to provide a better understand-
ing of the sequence of events.

2.1. The curvature

It is well known [11] that, in order to obtain a viable prop-
agating wave in an excitable medium, a stimulating current of a
specific amplitude, A, should be applied to a minimal (“liminal”)
area [12], characterized by its critical radius R ′

cr ,2 which is the
minimum radius of a circle of this area. A similar radius can be de-
fined by measuring the minimum size, ∼ 2R ′

cr , of a gap (isthmus)
through which a plane wave can pass [13]. A minimum radius is
also inferred from the maximum curvature a wave can have. Ac-
cording to the Eikonal equation, the normal velocity Vn of a wave
in an excitable medium [14] is given by:

Vn = C − Dk, (2)

where C is the velocity of a plane wave, D is the diffusion coeffi-
cient and k = 1/R is the wave curvature. A minimum R is obtained
for Vn = 0, i.e. for R ′

cr = D/C .
The dependence of R ′

cr on the stimulation amplitude is of ma-
jor importance here. However, both methods discussed above to
obtain R ′

cr treat a fully developed pulse or a large A. We intend to
find the minimal radius, Rcr(A) for threshold and near threshold
values of A.

Consider a situation where a stimulation of amplitude A is ap-
plied in a disc of radius R within an excitable medium (Fig. 5a).

2 Note that this and the next critical radii are designated by a prime to distinguish
them (see below) from the critical radii relevant to this work.
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Fig. 5. Evolution of v(x, y) from a stimulation of a disc of a radius just above threshold (R0 = R+
cr ) for A = 0.1560. v(x, y) is shown as a contour within which v > 0.1 (in

red). a) The stimulation at t = 0. b) The minimum size situation. c) The outgoing ring (target wave). For this A value, R0 = 13 and the minimum radius is R∗ = 6.4. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this Letter.)
Fig. 6. The different critical radii as functions of A (see text).

The time evolution of v(x, y) depends on R . For the case of R < R0
(not shown), the activity decays to zero, and no outgoing pulse is
created. However, for R > R0 (see Figs. 5b and 5c in which we set
R = R0, just above Rcr) the initial behavior is similar to that found
for a corner for which A > Ac , namely, the space of the action po-
tential first decreases as a result of the outgoing diffusion current
(Fig. 5b). The value of w in the interior then increases lowering
v there, and leaving only a ring of v (see Fig. 5c). We designate
the minimal radius of the action potential just before it develops
into the mentioned ring by R∗ , which is smaller than the initial
radius R0 (Fig. 5b). With no corners disturbance the ring progresses
outwards as a (single) target wave.

For a specific A two critical radii can thus be defined: (1) R0(A)

the disk radius for which this A is the threshold and (2) R∗(A) the
minimum radius to which the v-disc shrinks (Fig. 5a), just before
turning to a ring. These critical radii are shown in Fig. 6 (together
with additional radii to be discussed below). It is seen that R0
values change approximately as A−1/2, as can be expected if stimu-
lation area is the determining factor. The amount of ingoing length
L = R0 − R∗ decreases slowly with A.

For a corner of angle α (Fig. 6, inset) we assume that near
the corner’s vertex there is a curvature of radius Rr , below which
waves cannot form. In a region of length � = Rr cot(α/2) from the
vertex along the corner’s sides the wave cannot emerge (see Sec-
tion 2.3 for another definition of Rr ). Consequently, following a
usual contraction and the creation of a w-wave inside (see above),
segmented waves of finite lengths emerge on both sides of the cor-
ner, each having a free edge. These waves move away from the
Fig. 7. The effective area of a 20◦ corner as a function of A. Inset a): Effective area
(S = 516) for A = 0.156, Reff = 12.81; v(x, y) is drawn as a blue contour within
which v = 0.1. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this Letter.)

corner causing the slower moving free edges to spiral in the oppo-
site direction, i.e. inwards. The “forbidden” radius R f for the corner
is considered at the time where the two segments have already
been created, and are just about to begin their spiraling (inset,
Fig. 6). R f is calculated by the distance from one contour tip to the
intersection of the two normals from the tips to the corner sides.
As expected, it is found (Fig. 6) that R f depends imperceptibly
on the corner’s angle, and decreases with increasing stimulation
amplitude. Its magnitude is also quite close to that of R∗ .

A different approach to compare the corner effect with the radii
R∗ and R0, could be based on comparing areas, as follows. Con-
sider a corner situation, where v(x, y) has shrunk to its minimal
size, just before it develops into the two free edges (see Fig. 3b,
and the inset of Fig. 7). We introduce a circular sector centered
at the vertex of the corner having a radius equal to the largest
distance between the vertex and the curve of v(x, y) along the
x direction (shaded region in the inset of Fig. 7). This area should
be compared to the largest disc area below threshold. Fig. 7 dis-
plays this area as a function of A for a corner of 20◦ . We define an
effective radius, Reff of a circle having the same area as the circu-
lar sector. Fig. 6 shows Reff as a function of A for corners of both
20◦ , and 40◦ . It is evident that the area approach is not appropri-
ate here, since Reff depends on the corner’s angle.
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2.2. Tip motion

After formation, the two segments start to propagate. For A =
A+

c , each tip moves in a small circle, as described in Ref. [15]. In
order to clarify this motion, a corner of 40◦ was selected, and after
the formation of the two disjoint segments on both sides of the
corner, the top segment was completely discarded from the sys-
tem, while the remaining segment was allowed to move on. Fig. 8
displays, for α = 40◦ and A = 0.1555, the movement of the lower
segment (measured at v = 0.1) at successive times, from t = 10 to
t = 100, separated by time intervals of � = 10. It is seen that the
tip moves around a small circle.

For higher A values, the radius of final rotation of the tip
changes only slightly, since the change in A for the whole range
of the ALP is very small (see [16] for the dependence of this radius
on the system parameters). However, it is the transient movement
of the tip before its final rotation which is the cause for the in-
ability to create an ALP for higher A values, as can be seen in
Fig. 9. The latter displays, by the method described in Ref. [17] the
transient tip motion for increasing values of A. The initial posi-
tion is marked by O , and successive numbers and arrows describe
the trajectory direction. The tip location was calculated at suc-
cessive time intervals of width � = 5, from t = 0 up to t = 600.
Note [10] that, it is the arms of the two spirals, which eventu-
ally collide and are mutually annihilated. To produce a viable ALP,
however, the tip zone must have enough free room in order to
avoid destruction in the process. These ‘tip zones’ of the segments
move symmetrically, but their motion depends on the initial value
of A. Thus, for A = A+

c , each tip zone moves along a simple cir-
cle [15]. For higher A values they move on oval shaped trajectories
which eventually settle down onto circular orbits centered at dif-
ferent locations than the one for A = A+

c (Fig. 9). It is this pair of
oval trajectories which controls the creation of an ALP, since the
two segments collide while still moving on them. Before collision
the relative motion of the tips is such that the distance between

Fig. 8. Successive contours of v = 0.1 drawn from t = 10 to t = 100 separated by
time intervals of � = 10 for α = 40◦ and A = 0.1555. The assembly of tips describes
a movement around a small circle.
them decreases. If collision occurs at this stage, i.e. the tips them-
selves have collided (option 1), no ALP can be created since the
tips annihilate each other. If the conditions for option 1 do not
apply, then the free tips continue their own spiraling trajectory,
the relative motion of the tips reversing sign, and the distance be-
tween them increases. If a collision (and annihilation) occurs at
this stage (option 2) it will have affected portions of spirals be-
hind the tips. The tips break away from the original spirals, and
a viable ALP can emerge. The final oval shaped stage of the tra-
jectory before collision can be locally approximated by a circle of
radius R ′ as suggested in Fig. 9. It was verified numerically that R ′
barely changes with A. The feature that does change is the center
of this circle. With increasing A these centers approximately move
along a straight line (the centers’ locus) with a slope of ∼ α/4 in
the direction of the corner vertex. The shortest distance between
tips thus decreases with increasing A and therefore for A > A f ,
option 1 is realized. Otherwise (Ac < A < A f ) option 2 takes place.

2.3. How sharp should a corner be?

Is a rounded corner as efficient in spiral pair creation as a sharp
one? In order to answer this query we ran a set of 40◦ corners,
with rounded vertices, and recorded the A f as a function of the
radius, Rr of the rounding (Fig. 10). It is seen that below Rr = 7,
almost no change in A f is detected, i.e. the corner is sharp enough.
The difference between the A f values for Rr = 7 to Rr = 0 is about
3.5 · 10−5. This value of Rr = 7 is to be compared with R f for
A = 0.15660 (see Fig. 6). For larger Rr values there is a gradual
decrease of A f until Rr > 22 beyond which the ALP is no longer

Fig. 10. The radius Rr (red points) of rounding of a corner of 40◦ as a function of
A f . The smooth curve serves only as a guide to the eye. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this Letter.)
Fig. 9. Tip motion for α = 40◦ and different values of A. Only the movement of the lower segment is presented. The initial point of movement is marked by O . The trajectory
traced out by the tip is shown by successive numbers and arrows.
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created, i.e. A f = Ac . This Rr value is to be compared to the value
of R0 for Ac (see Fig. 6).

In order to check self-consistency, consider e.g. the case where,
�, the distance from the corner vertex along its side, where waves
cannot emerge, equals 19.3. From the insert in Fig. 6, this � value
corresponds to Rr = 7 for α = 40◦ and to Rr = 13.5 for α = 70◦ .
According to Fig. 4, the A f values for these α are 0.1566 and
0.1560 respectively. Now, from Fig. 10, these A f correspond to Rr

of 7 and 13.5 as obtained above.

3. Applications

The method of spiral creation described here can be useful for
several reasons: (a) it is quite easy to use this method to create
double spirals in numerical simulations, in experimental arrange-
ments it can be implemented by using electrodes of, say, triangular
or square shapes: (b) it may be used in chemical reactions such as
the Belousov–Zhabotinsky ones [18] to induce spiral pairs and (c) it
may be useful in heart studies such as [19], instead of the current
method of inducing VF by rapid pacing.

The use of this method experimentally should however be
treated with caution. Firstly, the method was developed only for
the FHN system and therefore may be inapplicable in other sys-
tems, although the FHN was shown (see e.g. [20]) to be broad
enough to model many experimental arrangements. Secondly, e.g.
in cardiac tissue, intrinsic heterogeneity in experimental prepara-
tions could cause spatial variations in the stimulus threshold larger
than the A f –Ac range. Moreover, the tissue response below the
stimulating electrode is usually complex [21] and it may generate
“secondary sources” [22]. The method applicability should also be
checked in non-stationary (e.g. living) media and under anisotropic
and asymmetric conditions.

4. Conclusions

Sharp corners have been shown to be possible birthplaces for
double spiral sources at least for the FHN model. The procedure
described here to obtain these spiral pairs seems to be an easy
way to artificially create double spirals in an excitable medium.
Although the range of stimulation amplitude values for such a cre-
ation is rather small (on the order of 1% of the threshold stimulus),
the conditions for source creation are that they should be just
above threshold values, a task which is not too difficult to achieve:
It is quite easy to find the threshold amplitude, and then to apply
a stimulation amplitude just a bit higher. Too high an amplitude
is immediately detected by the appearance of a single target wave.
The process of creation was analyzed in detail revealing several
hidden mechanisms.
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