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Gauss’ law:       𝛁 ⋅ 𝑩 = 0; 
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State equation. 

(Known 𝒗 is needed in advance in order to find 𝑩.) 

 

 

Eulerian analysis 
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 𝜌

 𝜌 
 𝑩 ⋅ 𝛁 𝒙(𝑡) 

Elsasser (1956) 
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   Non Local Expression! 

One must first integrate over the flow to  

compute  the mapping of 𝒙  on  𝐻   

(a hypersurface on which B is known) 

𝒙 = 𝒙(𝒙 ) 
Solutions: 

• Numerical  

• Semi-analytic 

- simplified surface representing  bow shocks  

- (Corona-Romero & Gonzalez-Esparza 2013)  

           or the Heliopause (R𝑜 ken et al. 2014)  

• Analytical: 

 

Use constant 𝑩  (difficult enough) 

Solve 𝛻 × 𝒗 × 𝑩 = 0 (difficult even for simple 𝒗) 

Forget about time dependency (complicated) 

Forget about Elsasser’s Equation (complicated to use) 

- e.g. incompressible potential flow around a sphere  

      (Dursi & Pfrommer 2008; Romanelli et al. 2014)   

Isn’t there a simpler way? 

Lagrangian analysis 

Since the magnetic field is “frozen” to the flow, we can use stream (𝜆) or path (Λ) 

functions (that describe the flow) in order to derive a local EM field expression.  
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Path and Stream functions 

 Exist as long as particle diffusion can be neglected (Yih 1957). 

 Constant along the flow 

 Exist when discontinuity surfaces are involved. 

In order to describe the flow in 3D space we need 3 functions: 

 In time dependent flows: Λ𝛼=1,2,3. 

 In steady flows: 𝜆𝜅=1,2 and an additional quantity𝜑 (for example 𝜌 𝑜𝑟 𝑣). 
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𝐵 𝜅 = 𝑩 ⋅ 𝛁𝜆𝜅 𝐻  

𝐵 3 =
𝑣

𝑣𝑞
𝑩 ⋅ 𝛁𝑞

𝐻 

 

  

Steady State: 

𝑣𝑞 =
𝑑𝑞

𝑑𝑡
= 𝒗 ∙ (𝛻𝑞) 

Δ𝑡 𝒙 =  
𝑑𝑞′

𝑣𝑞(𝜆𝜅, 𝑞′)
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Time dependent: 
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𝜌 𝐵 𝑖
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𝐵 𝛼 = 𝑩 ⋅ 𝛁Λ𝛼 𝐻  
Fourth parameter, 𝑄 𝒙, 𝑡 , to 
parameterize space-time. 

Applications 

Steady incompressible Stokes flow: 
Naor & Keshet (2015) 

𝑞 = 𝑧   ;    𝜆1 = 𝑅𝜙  ;   𝜆2 =
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Inverse polarity reversal layer  (𝐵𝑣 = 0): 
Naor & Keshet (2015) 

 Steady incompressible potential flow, with a passive evolution of the magnetic field 

 

 𝑩  here is position dependent 

 The angle between 𝐵 𝑧 and 𝐵 𝑥  is  𝜃0 = 45∘ 𝑡 = −Δt;   𝜔 = 6𝜋;   𝜁 = 0.25   

𝛁 ⋅ 𝒗 = 0     ; 𝛁 × 𝒗 = 0 ;  𝑞 = 𝑧   ;    𝜆1 = 𝑅𝜙  ;   𝜆2 =
𝜚2

2𝑅
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𝑅3

𝑟3
       

MHD simulations: 
• Our analysis can be immediately incorporated into existing hydrodynamic codes 

that are based on stream or path functions (e.g. Pearson 1981, Beale 1993, Loh & 

Hui 2000, Hui 2007), in order to passively evolve the EM fields in a simulated 

flow.  

• In a path functions prescription, the 3D  

     EM fields are frozen onto the grid.  

• The EM fields do not need to be evolved. 

• Their back reaction on the flow can be easily 

     computed (an efficient MHD simulation). 

Λ1  

Λ2  

Λ3  𝑩  

Strong magnetization in dense astronomical systems 

𝚫𝐁 ≠ 𝟎 

Maximal Timescale  

Neglect: 

• Viscosity 

• Compressibility 

• Time dependency 

• Turbulence 

• Non linear effects 

• finite conductivity 

 
 

EM field Above Heliospheres and Magnetospheres: 

                        The normalized potential of the Rankine half-body.  

                                𝐿𝑚 is the distance between the object and the nose of the discontinuity. 

Thick  - galaxies in galaxy clusters 

Mid Thick – AGN bubbles in CCCs cores 

Mid Thin – stars in the galactic center 

Thin – stars in globular clusters      

(Z<<-R) 

Naor et al (2016, in prep) 

Naor et al (2015) 
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Typical strategy for finding 𝑩 when 𝒗 is known: 


