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Gauss’ law:       𝛁 ⋅ 𝑩 = 0; 
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State equation. 

(Known 𝒗 is needed in advance in order to find 𝑩.) 

 

 

Eulerian analysis 
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Elsasser (1956) 
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   Non Local Expression! 

One must first integrate over the flow to  

compute  the mapping of 𝒙  on  𝐻   

(a hypersurface on which B is known) 

𝒙 = 𝒙(𝒙 ) 
Solutions: 

• Numerical  

• Semi-analytic 

- simplified surface representing  bow shocks  

- (Corona-Romero & Gonzalez-Esparza 2013)  

           or the Heliopause (R𝑜 ken et al. 2014)  

• Analytical: 

 

Use constant 𝑩  (difficult enough) 

Solve 𝛻 × 𝒗 × 𝑩 = 0 (difficult even for simple 𝒗) 

Forget about time dependency (complicated) 

Forget about Elsasser’s Equation (complicated to use) 

- e.g. incompressible potential flow around a sphere  

      (Dursi & Pfrommer 2008; Romanelli et al. 2014)   

Isn’t there a simpler way? 

Lagrangian analysis 

Since the magnetic field is “frozen” to the flow, we can use stream (𝜆) or path (Λ) 

functions (that describe the flow) in order to derive a local EM field expression.  
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Path and Stream functions 

 Exist as long as particle diffusion can be neglected (Yih 1957). 

 Constant along the flow 

 Exist when discontinuity surfaces are involved. 

In order to describe the flow in 3D space we need 3 functions: 

 In time dependent flows: Λ𝛼=1,2,3. 

 In steady flows: 𝜆𝜅=1,2 and an additional quantity𝜑 (for example 𝜌 𝑜𝑟 𝑣). 
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Steady State: 

𝑣𝑞 =
𝑑𝑞

𝑑𝑡
= 𝒗 ∙ (𝛻𝑞) 

Δ𝑡 𝒙 =  
𝑑𝑞′

𝑣𝑞(𝜆𝜅, 𝑞′)
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Time dependent: 
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𝐵 𝛼 = 𝑩 ⋅ 𝛁Λ𝛼 𝐻  
Fourth parameter, 𝑄 𝒙, 𝑡 , to 
parameterize space-time. 

Applications 

Steady incompressible Stokes flow: 
Naor & Keshet (2015) 
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Inverse polarity reversal layer  (𝐵𝑣 = 0): 
Naor & Keshet (2015) 

 Steady incompressible potential flow, with a passive evolution of the magnetic field 

 

 𝑩  here is position dependent 

 The angle between 𝐵 𝑧 and 𝐵 𝑥  is  𝜃0 = 45∘ 𝑡 = −Δt;   𝜔 = 6𝜋;   𝜁 = 0.25   

𝛁 ⋅ 𝒗 = 0     ; 𝛁 × 𝒗 = 0 ;  𝑞 = 𝑧   ;    𝜆1 = 𝑅𝜙  ;   𝜆2 =
𝜚2

2𝑅
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𝑅3

𝑟3
       

MHD simulations: 
• Our analysis can be immediately incorporated into existing hydrodynamic codes 

that are based on stream or path functions (e.g. Pearson 1981, Beale 1993, Loh & 

Hui 2000, Hui 2007), in order to passively evolve the EM fields in a simulated 

flow.  

• In a path functions prescription, the 3D  

     EM fields are frozen onto the grid.  

• The EM fields do not need to be evolved. 

• Their back reaction on the flow can be easily 

     computed (an efficient MHD simulation). 

Λ1  

Λ2  

Λ3  𝑩  

Strong magnetization in dense astronomical systems 

𝚫𝐁 ≠ 𝟎 

Maximal Timescale  

Neglect: 

• Viscosity 

• Compressibility 

• Time dependency 

• Turbulence 

• Non linear effects 

• finite conductivity 

 
 

EM field Above Heliospheres and Magnetospheres: 

                        The normalized potential of the Rankine half-body.  

                                𝐿𝑚 is the distance between the object and the nose of the discontinuity. 

Thick  - galaxies in galaxy clusters 

Mid Thick – AGN bubbles in CCCs cores 

Mid Thin – stars in the galactic center 

Thin – stars in globular clusters      

(Z<<-R) 

Naor et al (2016, in prep) 

Naor et al (2015) 
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Typical strategy for finding 𝑩 when 𝒗 is known: 


