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Approximations:
1) Large scale structure (LSS) composed of halos
2) Halo mass distribution: isothermal sphere
3) Strong shocks only

CONCEPT

ANALYTICAL  MODEL

TREE-SPH COSMOLOGICAL SIMULATION
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Converging flows during structure formation (SF)
Electron acceleration

Inverse-Compton (of CMB photons) and synchrotron emission
Collisionless shocks

Intergalactic shocks emit radiation in the following process:

M,T

rsh

Me-e-

�

�

�

�

Halo Dimensional Analysis:

Halo Parameters:
M - mass
T - temperature
rsh - shock radius

- mass accretion rateM�
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Emitted Radiation:

electron energy  �e�5% (2.5%-7.5%)

magnetic energy  �B�1% (0.05%-2%)

Parameterization (no complete model):

halo luminosity:

Integration over 
halo abundance:

(images: the 
integrands in 
the mass-
redshift plane)

% out of shock 
thermal energy

Cosmological model

fluctuation normalization
fluctuation power
Hubble coefficient

baryon energy
dark matter energy

vacuum energy
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Simulation parameters

3.6 � 1011M

�SPH particle massMSPH

50initial redshiftZ0

mass resolution

simulation box size
# of dark matter particles
number of SPH particles 

~1011M �Mres

200 MpcL
2243Ndm

2243Nb

Cooling is inefficient in the relevant regions (panel 1)        Adiabatic simulations suffice
Entropy changes (panel 2) of SPH particles trace the shocks (panel 4)

SHOCK IDENTIFICATION
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70% syn. tracer (22 GHz)
30% gas tracer (21 cm)

EXTRAGALACTIC GAMMA-RAY BACKGROUND

GAMMA-RAY SIGNAL
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MODEL CALIBRATION

CMB

Bremsstrahlung from Ly	 clouds

IGM   shocksGalactic synchrotron �� ��
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IGM fluctuation dominate on 1’-00.5 scales

~ const for 400<�<4000

21 cm 
tomography
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RADIO SKY

very dense, beyond shocks

Panel 1: phase space with tcool/tH contours 
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Panel 3: density slice (100x100x10 Mpc)

Panel 4: same density 
slice as shown in panel 3, 
but including the M>4 
shocked particles only
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100 105Panel 2: histogram of 
entropy change �S*�
�S/CV accumulated by
SPH particles in the 
epoch 0<z<2

Particles with �S*
above the cutoff 
trace all shocks of 
Mach number M>4

Shock fronts may 
be identified

>100 MeV

>10 GeV log10T

J/<J> Conclusions:

• >10 sources well 
resolved by GLAST 
(for �e�0.05)

• �-ray clusters: 
targets for MAGIC, 
HESS, VERITAS

• �-ray morphology: 
accretion rings with 
bright emission at 
filament intersections
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Model halo parameters (column 1) are calibrated with various features of the simulation 
(column 2). Agreement between the radiation fields extracted from the simulation and from 
the calibrated model (column 3) provides an independent check of the calibration scheme.

Value (range)Calibrated using Param.

Typical size of bright emitting region (e.g. 2 Mpc for 1015M �)
Mass fraction processed by strong shocks, e.g. f(z<2) � 41%

Mass average temperature: <T(z)>M � 4X106e-0.9z K
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Conclusions:

• IGM 
 10% of EGRB flux

• > a dozen GLAST sources 
for �e>0.03

• Cross-correlation with LSS 
(e.g. Scharf & Mukherjee 2002)

calibrated model
simulation
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IGM shocks: significant fraction of the ERB

Radio sky brightness Intensity fluctuations �I
�

on 00.5 scales

modeled EGRB [ref 7] 408 MHz Previous EGRB estimates are:

• Non isotropic on large scale

• Correlated with Galactic tracers

• High (� total polar intensity)

EGRET >100 MeVFit EGRET latitude 
profile as a sum of 
2 components; one  
linear in a Galactic 
gas tracer and the 
other linear in a 
synchrotron tracer:

Results:

Robust EGRB flux upper limit

(~1/3 of previous estimates)

CONCLUSIONS AND IMPLICATIONS
Conclusions

• �-ray sources detectable by GLAST and �erenkov detectors

• Signal fluctuations dominate the radio sky on ~1’-0.50 scales

• Indirect detection, e.g. cross correlations with LSS tracers

• Extragalactic backgrounds: EGRB low, ERB unknown

• Calibrated analytical model, fast shock identification in SPH

Implications of signal detection

• First identification of intergalactic shocks

• Reconstruction of large-scale flows

• Tracer of warm-hot IGM (WHIM)

• Probe of intergalactic magnetic fields

�e=5%

SNR observations
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isothermal 
sphere:

velocity dispersion

Hubble’s coefficient

effective mass

The emission from strong shocks dominates the radiation from the 
periphery of galaxy clusters and from galaxy filaments; traces LSS

e.g. according to the Press-
Schechter halo mass function


