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תקציר

עם אנכי שדה תחת איזינג מודל של פיזיקלי כמימוש הידוע קוונטי מגנט הוא LiHoF4
מונטה בשיטות שהשתמשו קודמים, ממחקרים תוצאות .[1] דיפולריות אינטראקציות
,[4, 5] (Mean Field) ממוצע שדה תורת על המבוססים וניתוחים [2, 3] שונות קרלו
.[1, 5, 6] Bx − T הפאזות בדיאגרמת הניסיוניות לתוצאות ביחס התאמה חוסר הראו
הפאזה בין המפריד בניסוי, שנמדד הפאזה מעבר קו חלש, אנכי שדה של בתחום בפרט,
ביחס בהרבה חלש באופן החיצוני בשדה תלוי הפאראמגנטית, לפאזה הפרומגנטית
ההתאמה חוסר את להסביר שיכול מנגנון מציעים אנחנו זו בתזה התיאורטיות. לתחזיות
יותר גדולה שהשפעתם הדיפולרית, האינטראקציה של לא־אלכסוניים איברים הזה.
את מקטינים מכך וכתוצאה זו, פאזה של האנרגיה את מקטינים הפאראמגנטית, בפאזה
אנחנו בהן קלאסיות, קרלו מונטה בסימולציות שימוש ידי על הקריטית. הטמפרטורה
הלא־אלכסוניים, האיברים בהשפעת הנגרם איזינג מצבי של לשינוי במפורש מתייחסים
משמעותי באופן הקריטית הטמפרטורה את מקטינה בחשבון שלקיחתם מראים אנחנו
נחלשת הזה המנגנון של שההשפעה מראים אנחנו בנוסף, חיצוני. מגנטי שדה בהיעדר
הטמפרטורה של התלות את להסביר שיכול מה חיצוני, אנכי מגנטי שדה הוספת עם

המגנטי. בשדה הקריטית
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Abstract

LiHoF4 is a quantum magnet known to be a good physical realization
of the transverse field Ising model with dipolar interactions [1]. Results
from previous studies, using various Monte Carlo techniques [2, 3] and
mean-field analyses [4, 5], show a persistent discrepancy with experimen-
tal results for the Bx − T phase diagram [1, 5, 6]. Namely, in the low Bx
regime, the experimental phase boundary separating the ferromagnetic
and paramagnetic phases has a much smaller dependence on magnetic
field in comparison to the theoretical predictions. In this work we propose
a mechanism which may account for the discrepancy. Offdiagonal terms
of the dipolar interaction, more dominant in the disordered paramagnetic
phase, reduce the energy of the paramagnetic phase, and consequently
reduce the critical temperature. Using classical Monte Carlo simulations,
in which we explicitly take the modification of the Ising states due to the
offdiagonal terms into account, we show that the inclusion of the these
terms reduces Tc markedly at zero transverse field. We also show that the
effect is diminished with increasing transverse field, leading to the above
mentioned field dependence of the critical temperature.
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1 Introduction

1.1 LiHoF4

LiHoF4 is a rare-earth compound in which only the Holmium ions, Ho3+,
are magnetic. The predominant interactions between the Ho3+ ions in
LiHoF4 are long-range dipolar interactions. The Ho3+ ions are also sub-
jected to a highly anisotropic crystal field potential which splits its 17-fold
degenerate ground state, leaving a ground state doublet and a first ex-
cited state at ∼ Ω0 = 11 K above it [7] (see also appendix A.2). This
means that at temperature T � Ω0 LiHoF4 is a good realization of the
Ising model with dipolar interactions. Quantum fluctuations between the
two Ising states can be induced by a transverse magnetic field, Bx, making
it such that LiHoF4 is well described by the transverse field Ising model
(TFIM) [3]. Disorder can be added to the system by dilution of Ho with
Y to get LiHoxY1−xF4. Since Y and Ho ions have very similar volumes
and Y ions are non-magnetic, the dilution adds randomness to the mag-
netic interaction without significantly affecting the lattice structure [8, 9].
It has been established that in the diluted case, interplay between the off-
diagonal diploar interaction and the transverse magnetic field gives rise
to effective longitudinal random fields [10–12]. Experimentally, at high
temperatures LiHoF4 is a paramagnet (PM), with a phase transition to a
ferromagnetic (FM) state occurring at Tc = 1.53 K. This critical temper-
ature can be lowered by applying an external magnetic field transverse
to the magnetic easy-axis of the crystal, which renormalizes the magnetic
moments and induces fluctuations between the two Ising ground states.
At a critical value of Bc ≈ 4.9 T a zero-temperature transition occurs be-
tween a ferromagnetic and paramagnetic phase [1].

Several works attempted to formulate a theoretical description of LiHoF4,
either by establishing a correspondence with the TFIM and deriving the
effective parameters [3] or by mean-field solutions to the full microscopic
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Hamiltonian [4, 5]. All of these attempts seem to estimate a critical tem-
perature that is higher than the well established experimental result at zero
transverse field. The nearest neighbor exchange interaction strength, Jex,
has been used as a fitting parameter in many of these works, as there has
been no direct determination of its magnitude. Being antiferromagnetic in
nature, the exchange interaction acts to lower the critical temperature, and
thus Jex was used to tune the expected Tc value to be in agreement with
the experimental value. Even though the Tc value at zero applied trans-
verse field, Tc(0), could be tuned in such a way to match experimental re-
sults, there still remains a significant discrepancy between the theoretical
predictions and the experimental data. Specifically, near Tc(0) the phase
boundary rises much more steeply than predicted by the model, as can be
seen in figure 1.1 – that is it has a much weaker dependence on the applied
field than expected.

Subsequent numerical works were made in an attempt to improve upon
these results, both by employing alternative numerical methods and by
using different sets of crystal-field parameters, but were ultimately unsuc-
cessful in explaining the discrepancy [2]. Additional experimental works
were also performed in the time since the original determination of the
phase diagram by Bitko et al. [1], using various other methods, but they
mostly agree with those original experiments and even accentuate the dis-
crepancy in the low Bx region [5, 6]. Thus, the steep rise of the phase
boundary near Tc remains an open question [9].
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Figure 1.1: Low Bx phase diagram of LiHoF4. The discrepancy between
experimental data compiled in ref. [5] and QMC simulations from ref. [3]
can be seen in this region. Other attempts at deriving the phase diagram
using different Monte Carlo simulations and different sets of crystal-field

parameters can be seen in ref. [2] to have the same discrepancy.

1.2 Transverse Field Ising Model

As mentioned, LiHoF4 in an external transverse magnetic field is a good
realization of the transverse field Ising model (TFIM) [1]. The Hamiltonian
of the TFIM is given by

HTFIM = −1
2 ∑

i,j
JijSz

i Sz
j − Γ ∑

i
Sx

i (1.1)

where Sz ≡ 1
2 σz,Sx ≡ 1

2 σx are spin-1
2 operators and the i,j subscripts indi-

cate the site on which they act. Here σz,σx are the familiar Pauli matrices.
The eigenstates of the Sz operator are denoted by |↑〉 and |↓〉 and have
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eigenvalues +1
2 and −1

2 respectively. When Γ = 0, HTFIM is diagonal in
the basis of eigenstates of Sz

i , which makes it the simple classical Ising
model. With Γ 6= 0, the Sx

i term causes tunneling between the up and down
eigenstates of Sz that flips the orientation of the Ising spin at site i and de-
crease the critical temperature Tc at which the system exhibits long range
order. For the simplest case of fixed ferromagnetic interaction, Jij = J > 0,
between nearest neighbors, the mean-field solution is given by the relation
[1]

coth
(

Γ
kBTc

)
=

J
Γ

(1.2)

which is schematically plotted in figure 1.2. There one can see the resem-
blance to the full phase diagram of LiHoF4 plotted in figure 2.2.

kBTc
J

kBT
J

Γc
J

Γ J

⟨σz⟩ ≠ ⟨

⟨σz⟩ ⟩ ⟨

Figure 1.2: Mean field phase diagram of TFIM
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1.3 Outline

Chapter 2 starts with a basic description of the LiHoF4 crystal and the sin-
gle Ho ion electronic states which provide the theoretical justification for
its treatment as a TFIM-like system. Next, two classes of previous theo-
retical attempts at describing the phase diagram of LiHoF4 as presented.
The first is mean-field calculations by Bitko et al. [1] and some subsequent
works [4, 5], and the second is a derivation of an effective spin-1

2 Hamil-
tonian describing the low-energy behavior of the system and performing
Monte Carlo simulations to get the phase diagram from it [2, 3]. In sec-
tion 2.5 we explain the importance of offdiagonal dipolar (ODD) terms to
the phase diagram and how they might explain the discrepancy between
experimental results and previous attempts at a theoretical description.
We then present the Hamiltonian that will be investigated numerically in
this work.
In chapter 3 we present the numerical methods used in this work, in-
cluding Monte Carlo simulations and the various methods used to find
self-consistent states during those simulations. Later, the methods used
to analyze the results of said simulations and establish their validity are
explained. The results are presented in chapter 4, where the effect of in-
clusion vs. exclusion of the ODD terms is discussed. There we make the
case that their inclusion is necessary to appropriately describe the phase
diagram, and that it could help explain the previously detailed discrep-
ancy. A summary of the results and analysis is given in chapter 5.
Appendix A.1 has a detailed discussion of the single-ion electronic states
that are the basis of every theoretical treatment of LiHoF4. Appendix A.2
features a derivation of the crystal field potential applied to the Ho ions,
and details the crystal-field parameters used in this work. Appendix B
explains the Ewald summation method that was used to deal with the
long-range dipolar interaction with periodic boundary conditions. It also
includes the numerical parameters chosen for the method and shows the
convergence of the results. Appendix C consists of the technical details
of the interpolation procedure that is used to obtain approximations of
quantities required for the simulation. Lastly, parameters of the simula-
tions and numerical results are given in appendix D.
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2 Theory

2.1 Crystal Structure and Microscopic Hamilto-
nian of LiHoF4

LiHoF4 forms a tetragonal structure with lattice constants a = 5.175 Å and
c = 10.75 Å. There are four Ho3+ ions per unit cell which form a lattice
with a basis with coordinates (0, 0, 1

2), (0, 1
2 , 3

4), (
1
2 , 1

2 , 0) and (1
2 , 0, 1

4) [9], as
can be seen in Figure 2.1. The crystal has S4 symmetry which will enable
us to express its crystal-field potential, VC, in terms of angular momentum
operators of the Ho3+ ions (see appendix A.2). The complete Hamiltonian
of LiHoF4 in a transverse magnetic field is given by [3]

H = ∑
i

VC(Ji)− gLµB ∑
i

Bx Jx
i +

1
2
(gLµB)

2 ∑
i 6=j

Vµν
ij Jµ

i Jν
j

+ Jex ∑
〈i,j〉

Ji · Jj + A ∑
i
(Ii · Ji) (2.1)

where Vµν
ij is the magnetic dipole interaction,

Vµν
ij =

δµν|~rij|2 − 3(~rij)
µ(~rij)

ν

|~rij|5
. (2.2)

Jex is the nearest-neighbor exchange interaction coupling constant. µB =
0.6717 K T−1 is the Bohr magneton and gL = 5

4 is a Landé g-factor. Ji are
angular momentum operators of the Ho3+ ions. A is the hyperfine in-
teraction strength, and Ii is the nuclear spin operator, where the total Ho
nuclear spin is I = 7

2 .
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Ho 3+

Li
+

F −

a
a

c

Figure 2.1: Unit cell structure of LiHoF4. The direction along the c axis is
the Ising axis and the external magnetic field Bx is applied perpendicular
to that axis in experiments. Figure taken from Gingras and Henelius [9].
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2.2 Mean-Field Solution

An early attempt to determine the Bx − T phase diagram of LiHoF4 via
susceptibility measurements was done by Bitko et al. [1], where they also
fit their experimental data to the full mean-field Hamiltonian of a single
Ho3+ ion. The procedure they employed used the Hamiltonian

Hmean-field = VC − g⊥µBBx Ĵx + A( Î · Ĵ)− 2J0
〈

Ĵz
〉

Ĵz (2.3)

which was solved self-consistently. Here J = 8, I = 7
2 , VC is the crystal-

field potential, g⊥ is the transverse g-factor, A is the hyperfine coupling
constant, and J0 is an average spin-spin longitudinal coupling strength.
g⊥ and J0 were fitted to match the experimental results, giving J0 =
0.0270± 0.0005 K and g⊥ = 0.74± 0.04. This 136× 136 Hamiltonian was
used to find Tc as a function of Bx by fixing Bx and calculating

〈
Ĵz
〉

self-
consistently starting from a high temperature and decreasing it until a
non-zero magnetization is numerically observed. This procedure gives
the solid line in figure 2.2. Next, the same procedure is repeated with the
best-fit values found previously, but without the hyperfine interaction, so
that (2.3) becomes a 17× 17 matrix. The resulting phase boundary is plot-
ted in figure 2.2 as a dashed line. For the low-Bx regime we see that the
inclusion of the hyperfine interaction has no noticeable influence on the
phase diagram, indicating that the splitting due to the hyperfine interac-
tion is small compared to Tc(Bx ≈ 0) and may be neglected in this range.
The mean-field treatment is lacking in two respects. First it introduces a
phenomenological effective g-factor for the transverse field, and second,
though it matches the experimental critical temperature Tc(Bx = 0) and
critical transverse field Bc

x(T = 0), it is not as good in the intermediate Bx
regime. Further experiments show that there is indeed a real, persistent
discrepancy in the low-Bx regime [5, 6].



9

Figure 2.2: Bx − Tc phase diagram of LiHoF4 from Bitko et al. [1].
Experimental phase boundary (full circles) for the ferromagnetic

transition. Dashed line is a mean-field solution without the hyperfine
interaction and solid line is the full mean-field fitted solution.

Subsequent work by Rønnow et al. [4] sought to address these issues. First,
Rønnow et al. presented a new set of crystal-field parameters (CFPs, see
appendix A.2) that in addition to susceptibility measurements [13] also in-
corporate results from several spectroscopic investigations (listed in ref.
[4]). This set of CFPs, listed in (A.6), is the one used in this work as
well. With this new set of CFPs, the only free parameter in the micro-
scopic Hamiltonian (2.1) is the nearest-neighbor exchange interaction Jex
[4]. Rønnow et al. used this new set of CFPs to reproduce the mean-
field model, and found that the fit that agrees with the low-temperature
experimental results predicts Tc(0) between 1.8 and 1.85 K instead of the
known 1.53 K. Therefore they conclude that fluctuations must be taken
into account, which they do by using the so called effective-medium theory
to first order in the 1/z expansion [4]. Additionally, they perform inelas-
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tic neutron scattering tests and try to fit the theoretical 1/z results to the
experimental ones by Bitko et al. and their own. They find that the 1/z
expansion gives Tc(0) = 1.74 K which is closer to the experimental value
than the simple mean-field result, but still not in agreement with it.

Different choices of Jex can mitigate the discrepancy at low Bx at the cost
of differing significantly from experimental results in the intermediate
regime of 2 T < Bx < 4 T, as can be seen with the dotted line in figure 2.3.
Hence one might conclude that mean-field like models might be missing
some essential element of the physics around the classical transition, and
therefore Jex should be chosen to match the high-Bx regime, as with the
solid blue line in figure 2.3.

2.3 Effective Spin-1
2 Hamiltonian for LiHoF4

A second approach to investigating the phase diagram is to start from the
full microscopic Hamiltonian of the LiHoF4 crystal in a transverse mag-
netic field given by eq. (2.1), and recast it as an effective spin-1

2 Ising
model with an effective transverse field. Most of the previous work in
this direction was done by Chakraborty et al. [3] who established a corre-
spondence between the full microscopic Hamiltonian and the TFIM and
then performed quantum Monte Carlo (QMC) simulations to obtain the
phase diagram. We briefly review that derivation before we can discuss
its possible shortcomings that may lead to the discrepancy described in
chapter 1. The basis for the derivation comes from the fact that diagonal-
izing the crystal field Hamiltonian VC gives a ground state doublet with
the next lowest excited state about 11 K above it. At temperatures around
Tc ∼ 1.5 K we can expect only the ground state doublet to be significantly
occupied, which creates an effective two-state Ising system. Denoting the
degenerate ground states by |α〉 and |β〉, they can be chosen such that
〈α|Jz|α〉 = − 〈β|Jz|β〉 and 〈α|Jz|β〉 = 0. Then we find that the operators
Jx,Jy have no nonzero matrix elements between the states |α〉 and |β〉. This
will be a key point in explaining our hypothesis later. For now, the de-
generate ground states, chosen as described, can be identified as the |↑〉
and |↓〉 states of the effective Ising model. To account for the role of the
external transverse field, Chakraborty et al. [3] diagonalize the single-site
Hamiltonian which includes the crystal field potential and the Zeeman
term of the external magnetic field,

Hsingle-site = VC − gLµBBx Jx (2.4)
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For a given value of Bx, the two lowest laying states are denoted by |α(Bx)〉
and |β(Bx)〉, and their energies by Eα(Bx) and Eβ(Bx) respectively. The
two states remain at least 10 K below the next excited level, so that we still
treat the two-dimensional space spanned by these states as our Ising space.
The basis of the subspace is chosen by unitary rotation of the states |α(Bx)〉
and |β(Bx)〉 according to (the Bx dependence is dropped for brevity)

|↑〉 = 1√
2
[|α〉+ exp(iθ) |β〉]

|↓〉 = 1√
2
[|α〉 − exp(iθ) |β〉] (2.5)

where the angle θ is chosen so that the matrix elements of Jz between the
states |↑〉 and |↓〉 are real and diagonal. Such a choice means that Jz, pro-
jected onto the low-energy subspace, is represented by Czzσz where Czz
is a constant of proportionality. The other angular momentum operators
are similarly projected onto the Ising subspace. Practically this amounts
to numerically finding the parameters Cµν in

Jµ = Cµ + ∑
ν=x,y,z

Cµν(Bx)σ
ν . (2.6)

Once the coefficients are found, the J operators are replaced by their two-
dimensional projections in the full Hamiltonian (2.1), which results in
many interaction terms between the effective Ising spins. Among these in-
teractions, the largest effective interaction is found to be Jz

i Jz
j ∝ (Czz)2σz

i σz
j

which is larger by two orders of magnitude than any other term except for
some constants that may be discarded by recalibrating the energy scale [3].
Therefore, an effective Hamiltonian is introduced,

HIsing = −∆(Bx)

2 ∑
i

σx
i +

1
2
(gLµBCzz(Bx))

2 ∑
i 6=j

Vzz
ij σz

i σz
j +

Jex(Czz(Bx))
2 ∑
<i,j>

σz
i σz

j . (2.7)

This Hamiltonian is then used to obtain the phase diagram in figure 1.1 us-
ing QMC. The resulting critical temperature is found to be Tc(0) = 2.03 K
which is significantly higher than the experimental value. Using the free
parameter Jex, the critical temperature is tuned to match the experimental
value of 1.53 K, though the predicted Tc(Bx) dependence for Bx > 0 is still
inconsistent with experiment.
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The discrepancy with the data close to the zero-field transition was at-
tributed by the authors to uncertainties in the crystal-field parameters.
The same Hamiltonian (2.7) was further investigated by Tabei et al. [2]
with the goal of examining various effects that may be the source of this
discrepancy. Particularly, they perform classical Monte Carlo in which
quantum effects are incorporated perturbatively, using different sets of
CFPs, and handling the long-range dipole-dipole interactions in different
ways. None of these variations is found to significantly change the re-
sulting phase diagram and bring it to closer agreement with experiments.
Hence we conclude that the discrepancy is neither of computational ori-
gin, nor is it a consequence of uncertainties in CFPs.

2.4 Nearest-Neighbor Exchange Interactions

An important factor that has significant influence on the phase diagram
is the nearest-neighbor exchange interaction, Jex. The exchange interac-
tion is antiferromagnetic in nature, so that is favors anti-aligned spins,
which means that its main effect is to suppress the critical temperature.
The exchange interaction is considered to be weak compared to the dipo-
lar interaction [3] based on the limited spatial extent of the unfilled 4 f
electronic orbitals of the Ho3+ ions [9], but it has not been measured di-
rectly [3]. Therefore, it is used in many of the theoretical models as a fitting
parameter used to generate the correct zero-field transition temperature.
We specifically mention two possible values for Jex. First, the one found in
Monte Carlo simulations [14] of Jex = 3.95 mK which is in close agreement
with the value of Jex = 3.91 mK determined by Tabei et al. [2]. The second
value is Jex = 1.16 mK which was found by Rønnow et al. [4] by fitting
to inelastic neutron scattering measurements such that good agreement is
obtained when 2 T < Bx < 4 T. This value overestimates the zero-field
critical temperature in their calculations by 14 percent compared with the
experimental zero-field critical temperature as can be seen in figure 2.3.
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Figure 2.3: Full phase diagram of LiHoF4 as a function of temperature
and applied transverse field. Open squares are quantum Monte Carlo
(QMC) results from ref. [3]. The dotted line is the 1/z calculation with

Jex = 3.13 mK and the dot-dashed line is the same calculation with
Jex = 1.16 mK, both from ref. [4]. The solid line is a mean-field (MF)
calculation taken from ref. [5]. Triangles represent results of several

different experiments [1, 5, 6] complied in ref. [5]. An apparent trade off
is observed between theoretical predictions that match the experimental
results at low temperatures but completely fail at the low-field regime,
and ones that give the correct zero-field Tc but fail to predict the correct
Tc(Bx) dependence and give a poor match at the intermediate Bx region.
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2.5 Proposed Hamiltonian

As mentioned in section 2.3, with Bx = 0 the only terms that remain in the
effective Hamiltonian are those representing zz interactions. This state-
ment is exact within the framework used by Chakraborty et al. [3], wherein
the angular momentum operators are projected onto the low-energy two-
dimensional subspace. This is a direct result of the fact that the Jx,Jy oper-
ators have no nonzero matrix elements between the states |↑〉 and |↓〉.
Still, Jx and Jy do couple the two Ising states in second order in the trans-
verse magnetic field, and even more importantly, second order corrections
to the expectation values 〈↑|Jz|↑〉, 〈↓|Jz|↓〉 and the corresponding ener-
gies are expected through mixing with higher levels. This second order
effect is effectively neglected by the direct projection of the operators.
Offdiagonal terms of the dipolar interaction have been known to give rise
to many interesting phenomena in the diluted case of LiHoxY1−xF4 [8, 10–
12, 15, 16] where they obviously do not cancel by symmetry. We argue that
similar effects, arising from internal transverse fields exerted by the

〈
Jz
i
〉

expectation values on the x angular momentum component Jx
j through

terms of the form Vzx
ij
〈

Jz
i
〉

Jx
j , make a significant impact on the phase dia-

gram even in the undiluted case. The reason is captured by the following
heuristic argument. First we consider some specific spin. In the ferromag-
netic phase, with infinite correlation length, any pair of mirror spins will
be correlated so that the effective transverse field they exert on the spin
of focus is canceled by symmetry. In contrast, in the paramagnetic phase,
assuming vanishing correlation length, any two such spins will be uncor-
related, so that the fields they exert may either cancel or add together with
equal probability. The resulting thermal averaged field is obviously zero,
but a non-zero variance of that field is expected. See illustration in fig-
ure 2.4.
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Figure 2.4: Schematic illustration of the induction of transverse local
fields in the paramagnetic phase. The two spins at the bottom are located
symmetrically with respect to the plane that includes the upper spin and
is parallel to the y− z plane. (a) In the ferromagnetic phase the two spins

at the bottom are correlated so that the fields they induce on the third
spin cancel out by symmetry. (b) In the paramagnetic phase the two spins

at the bottom are uncorrelated and may induce a nonzero transverse
magnetic field on the third spin.

Considering a single Ho ion subject to a transverse magnetic field and
under the crystal-field potential, we see that the energy of both the lowest
laying energy states is reduced as the transverse field is increased, as can
be seen in figure 2.5. This means that the typical magnitudes of the local
transverse fields control the energy of the system, i.e. the system can lower
its energy by choosing configurations that induce larger transverse fields.
Another important effect of the transverse fields is to decrease the absolute
value of 〈Jz〉 for both of the lowest energy states, by mixing them with the
higher electronic states. This also lowers the total energy of the system just
by reducing the dominant zz dipolar term proportional to 〈Jz〉2.

Hence, these offdiagonal dipolar terms lower the energy of the paramag-
netic phase compared to that of the ferromagnetic phase, and should thus
decrease the critical temperature. This effect, by its nature, is not likely to
be captured in any sort of mean-field like analysis as it depends on the spa-
tial fluctuations of the states. We posit that including these terms is neces-
sary to explain the previously mentioned discrepancy between theory and
experiment. We wish to build upon the previous results by Chakraborty
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Figure 2.5: Energy vs. Bx of the single Ho electronic states. Energy of the
17 electronic states of a single Ho ion, under crystal field potential, as a

function of transverse magnetic field Bx. The two lowest laying states can
be seen to decrease monotonically with Bx. The inset shows the three

lowest energy levels in the range 0 < Bx < 6 T. The gap between the two
lowest energy levels and the next excited level can be seen to only

increase with Bx.

et al. [3] described in 2.3 but add the internal transverse magnetic fields
that have been effectively neglected thus far. With that in mind, we return
to the full microscopic Hamiltonian of (2.1). Of the diagonal dipolar terms,
we keep only the zz interactions which have been established as the most
dominant, but we also keep the offdiagonal interaction terms. The dipo-
lar interaction, given in (2.2), is invariant under both i ↔ j and µ ↔ ν.
We also use the fact that

[
Jx
i , Jz

j

]
= 0 and

[
Jy
i , Jz

j

]
= 0 when i 6= j. In ac-

cordance with previous results we also keep only the zz term among the
three exchange interaction terms. Additionally, we neglect the hyperfine
interaction altogether, as is was found not to cause a significant difference
in this section of the Bx − T phase diagram. We rearrange the remaining
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terms of the Hamiltonian to get

Heff = ∑
i

VC(Ji)− gLµB ∑
i

Bx Jx
i +

1
2
(gLµB)

2 ∑
i 6=j

Vzz
ij Jz

i Jz
j +

(gLµB)
2 ∑

i 6=j
Vzx

ij Jz
j Jx

i + (gLµB)
2 ∑

i 6=j
Vzy

ij Jz
j Jy

i + Jex ∑
〈i,j〉

Jz
i Jz

j (2.8)

Then, we group together the terms which constitute effective internal
magnetic fields so that

Heff = ∑
i

VC(Ji)− gLµB ∑
i

Bi · Ji + Jex ∑
〈i,j〉

Jz
i Jz

j (2.9)

where

Bx
i = Bx − gLµB ∑

j 6=i
Vzx

ij Jz
j

By
i = −gLµB ∑

j 6=i
Vzy

ij Jz
j (2.10)

Bz
i = −1

2
gLµB ∑

j 6=i
Vzz

ij Jz
j

are the effective internal fields. The Monte Carlo simulation procedure
requires that we switch between the many-body states of the system,
calculating their energy and measuring the observables of interest. The
single-site Hamiltonian, given by the first two terms in (2.9), is solved self-
consistently for the expectation values

{〈
Jz
i
〉}

as in

Heff = ∑
i

VC(~Ji)− gLµB ∑
i
〈Bi〉ψ · Ji + Jex ∑

〈i,j〉
Jz
i Jz

j . (2.11)

Thus we construct many-body states for the simulation by diagonalizing
the single-site Hamiltonian, choosing one of its eigenstates and taking the
product of all these states as a many-body state. The expectation values
are determined self consistently in a procedure described in section 3.2
such that the single-site states that determine the expectation values of the
fields are compatible with those fields. In other words, we neglect quan-
tum many-body effects such as entanglement and instead consider each
ion separately. Nevertheless, the single ion is treated exactly by diago-
nalization of its Hamiltonian in a manner that is self-consistent with all
other ions. Periodic boundary conditions are used, and the dipolar inter-
action (2.2) is calculated using the Ewald summation method described in
appendix B.
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3 Numerical Methods

3.1 Diagonalization of the single-site Hamilto-
nian

The framework used in this work requires that each Ho site have two
states, designated up and down, and that each of these states have its
own energy and magnetic moment that are functions of the local magnetic
field. The determination of these two quantities requires diagonalizing the
single-site Hamiltonian,

Hsingle-site = VC(J)− gLµBB · J . (3.1)

We diagonalize this Hamiltonian numerically and designate its two low
energy levels |α〉 and |β〉 such that Eα < Eβ. The case of degeneracy arises
only for Bz = 0 which we exclude assuming within the simulation the lo-
cal Bz will always some nonzero value. Next, the states |α〉 and |β〉 are
identified as |↑〉 or |↓〉 according to their 〈Jz〉 in the following manner: If
〈α|Jz|α〉 > 〈β|Jz|β〉 then |α〉 ≡ |↑〉 and |β〉 ≡ |↓〉 and vise versa otherwise.
In the range of B discussed in this work this is a one-to-one relation, except
for the mentioned Bz = 0 case. The two required quantities, energy and
magnetic moment, are calculated in this process, and are used throughout
the simulation.
The process of exact diagonalization described above is quite computa-
tionally intensive and performing it multiple times for each spin-flip, as
required for the self consistent calculation (see section 3.2), is not feasi-
ble. The solution that was chosen to address this difficulty is to obtain the
required quantities approximately by calculating them ahead of time on
a grid of Bx, By and Bz and saving the results. Then, during the simula-
tion a linear interpolation scheme is used to approximate these quantities
for arbitrary B, using the pre-calculated values. The interpolation scheme
works as follows: For a single site with given (Bx, By, Bz), first the clos-
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est values in each dimension are located in the interpolation table. The
procedure is made more efficient by exploiting the fact that for each spin,
subsequent searches are highly correlated, as they occur following each
spin-flip, and the local fields are not expected to change significantly. The
exact algorithm for finding the closest values is detailed in ref. [17, sub-
section 3.1.1]. Once the two closest values in each direction are found, the
value is calculated by trilinear interpolation, the details of which are given
in appendix C.

This scheme gives rise to two issues worth noting, the density of pre-
calculated points, and the minimum and maximum pre-calculated values.
Both are chosen with the assumption (which is self-consistently confirmed
later) that the typical fields encountered during the simulation are not very
large, and therefore we choose the values so that they are more dense
around B = 0 and the maximum and minimum to be ∼ ±2 T. In the
(rare) case when the local magnetic field falls outside the bounds of the
table, the required values are calculated directly, by exact diagonalization
of the Hamiltonian in (3.1). The density of the table can have a significant
effect around Bz = 0, that will be discussed in section 4.1. Figure 3.1 shows
a slice of the interpolated functions with exact values for comparison. The
largest difference between the two for 〈Jz〉 is around Bz = 0.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
Bz

−6

−4

−2

0

2

4

6

<
J z
>

Bx=0.51 
By=-0.03

Bz=0.029 TBz=-0.029 T

Magnetic Moment vs. Bz

 p
down
 p exact
down exact

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
Bz

−255.0

−252.5

−250.0

−247.5

−245.0

−242.5

−240.0

−237.5

E

Energy vs. Bz

 p
down
 p exact
down exact

Figure 3.1: Energy and magnetic moment vs. Bz. On the left is the
magnetic moment 〈Jz〉 plotted against Bz for Bx = 0.51 T and

By = −0.03 T. On the right is the energy against Bz for the same
parameter values. Both graphs show the pre-calculated values as small
black Xs and the linear interpolation between them. Additionally the

exact values are plotted in red and green. The largest difference between
the two is easily observed for the magnetic moments between the two

points explicitly denoted on the graph, Bz = ±0.029 T.
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3.2 Self-consistent calculation

Our procedure requires that we find valid states of the full system. We
construct such states from the Hamiltonian in (2.11) by finding single-site
states that are eigenstates of the first two terms of eq. (2.11). Each site is
designated ”up” or ”down” within the Monte Carlo scheme, so that one
of the low energy states is chosen according to this designation and the Jz

expectation value as described in section 3.1. Then the full state of the sys-
tem is taken as the product of all the single-site states. This enables us to
recalculate the value of 〈Bi〉ψ with the newly obtained ψ (as described in
section 3.1), which in turn modifies the single-site states and thus their Jz

expected values. We wish to find states ψ that self-consistently satisfy both
conditions, i.e. being a product of eigenstates of the single-site Hamilto-
nian with given 〈Bi〉ψ, and indeed inducing those 〈Bi〉ψ. In order to get
such states we use one of two numerical methods which will be described
in the remainder of this section. First we redefine the problem in more
general terms. The full states are not actually required for the Monte Carlo
process, but only the

〈
Jz
i
〉

values for each of the sites, from which we can
calculate the energy of the state and all observables of interest for the pur-
pose of finding the phase transition. Hence, we actually need to find the
roots of a nonlinear system of equations,

f1(x1, ..., xN) = 0
... (3.2)

fN(x1, ..., xN) = 0

where fi(x1, . . . , xN) is one of two functions,

fi(x1, . . . , xN) =

{
gi↑(x1, . . . , xN)− xi or
gi↓(x1, . . . , xN)− xi

(3.3)

and

giχi(x1, . . . , xN) = 〈χi(Bi(x1, . . . , xN))|Jz
i |χi(Bi(x1, . . . , xN))〉 (3.4)

depending on the current thermal configuration of the system within the
Monte Carlo procedure with χi ∈ {↑, ↓}. The variables x1, . . . , xN are the
expectation values

〈
Jz
1
〉

, . . . ,
〈

Jz
N
〉
. In practice the expectation values in

fi(x1, . . . , xN) are approximated by trilinear interpolation as explained in
section 3.1.
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One important note is that within this framework the orientations of the
spins are set by the Monte Carlo simulation. The self-consistent calculation
cannot change them, but only adjust their magnitudes. E.g. for a spin
designated ”up”, only positive values of 〈Jz〉 will be able to satisfy the
self-consistent calculation.

3.2.1 Nonlinear Gauss-Seidel method

Although the local fields are linear functions of the magnetic moments as
described in eq. (2.10), the magnetic moments are complicated nonlin-
ear functions of the local fields, and are obtained by diagonalizing (3.1),
choosing one of the two low energy states and then taking its expectation
value 〈Jz〉. Hence the system of equations in question (3.2) is nonlinear,
and no algorithm is guaranteed to reliably find a solution [17]. The Gauss-
Seidel method is a classical iterative method for solving linear systems of
equation, but we find that implementing a similar idea for our nonlinear
problem was quite effective. The iterative step is defined by

x(l+1)
i = giχi(x(l+1)

1 , . . . , x(l+1)
i−1 , x(l)i , x(l)i+1, . . . , x(l)N ) (3.5)

where the superscripted index indicates the iteration number. In other
words, the magnetic moment of the ith spin is set to its target value, based
on the current values of other magnetic moments. Then, the new value is
immediately used for setting the magnetic moment of the (i + 1)th spin.
All N values {x1, . . . , xN} are set successively this way and then we pro-
ceed to the next iteration. In practice a relaxation parameter α is intro-
duced so that

x(l+1)
i = αgχi(x(l+1)

1 , . . . , x(l+1)
i−1 , x(l)i , x(l)i+1, . . . , x(l)N ) + (1− α)x(l)i (3.6)

This way, α allows us to control how drastically xi values change at each
iteration, where α = 1 reduces eq. (3.6) back to eq. (3.5) and α = 0 means
the initial guess is never changed. Setting 1 < α < 2 is known as over-
relaxation [17] and was not found to be useful for this problem. We found
that setting α = 0.95 gave the quickest convergence and best convergence
success rates for this problem.

3.2.2 Newton’s and Broyden’s methods

A second class of iterative methods is one that tries to improve the entire
solution vector x = (x1, . . . , xN) simultaneously by taking into account the
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derivatives of the functions fi (3.2) as well as their values. The iteration
steps are determined by expanding each of the functions in a Taylor series
around x,

fi(x + δx) = fi(x) +
N−1

∑
j=0

∂ fi

∂xj
δxj + O(δx2) (3.7)

The partial derivatives matrix Jij ≡ ∂ fi
∂xj

is known as the Jacobian matrix.
Then, in order to get a step that brings each of the functions fi closer to
zero, we set fi(x + δx) = 0. In matrix notation this means

0 = f (x) + J · δx (3.8)

which is a linear system of equations for δx. The solution is used to update
x as in

x(l+1) = x(l) + δx (3.9)

Thus Newton’s method involves calculating the Jacobian matrix, solving
(3.8) and changing x according to (3.9). The partial derivatives in J are
taken from the trilinear interpolation, where they have a relatively simple
form (see appendix C). Broyden’s method is an alternative to Newton’s
method that provides a computationally cheaper approximation of the Ja-
cobian matrix that is also updated at each iteration. The exact procedure
is detailed in Ref. [17, section 9.7.3]. Both of these methods are slightly
modified so that the step in (3.9), is taken in the direction of δx but not
necessarily by that size. The size of the step is instead determined so that
the norm of the vector function squared, ‖ f (x)‖2, is optimally decreased.
This modification is supposed to help achieve better global convergence
[17, section 9.7].

The nonlinear Gauss-Seidel method is the first one attempted as it is the
most efficient of the methods described. Only if it fails to converge to a
solution is one of the other methods, i.e. Broyden’s method or Newton’s
method, used.

Both the nonlinear Gauss-Seidel and Newton’s and Broyden’s methods
are iterative in nature and thus require an initial state from which to start
their operation. The obvious choice is to use the previous Monte Carlo
state, i.e. the solution that was found for the previous spin configuration
which differs from the current configuration by only the one spin that was
flipped. This also allows us to introduce another modification to the al-
gorithm that is used in case both of these methods fail to find a solution.
The idea is to gradually flip the selected spin and continuously adjust the
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solution so that it is valid at every step during the change. In practice this
means that when flipping the ith spin, e.g. from |↑〉 to |↓〉, the function gi↑
is gradually changed to gi↓. For all methods, convergence is determined
by the condition

1
N

N

∑
i
| fi(x1, . . . , xN)| < εtol (3.10)

where we set εtol = 5× 10−3.

3.3 Monte Carlo simulation

Monte Carlo simulation is a numerical method used extensively in sta-
tistical mechanics [18]. The Metropolis algorithm, introduced in 1953 by
Metropolis et al., is the most widely used Monte Carlo algorithm and the
main tool used in this work. The algorithm is used to calculate thermal
averages, that, in equilibrium, are given by the Boltzmann average

〈Q〉T =
∑µ Qµe−Eµ/kT

∑µ e−Eµ/kT (3.11)

where the sum over µ is a sum over all possible states of the system, and
Qµ and Eµ are the value of the observable Q and the energy in the state
µ respectively. The general idea behind the Metropolis algorithm is to
create a new state from the previous one by modifying it slightly. If the
transition probability between such successive states, µ and ν, obeys the
detailed balance condition of

P(µ→ ν)

P(ν→ µ)
= e−β(Eν−Eµ) (3.12)

then the equilibrium distribution of states produced by the described pro-
cess will be the Boltzmann distribution. When we have a successive se-
quence of random states whose distribution is the Boltzmann distribution
we may average any observable over that sequence to estimate eq. (3.11)
(this is known as importance sampling) [18]. The Metropolis algorithm
satisfies the condition (3.12) by choosing one spin at random and flipping
it with the probability

A(µ→ ν) =

{
e−β(Eν−Eµ) if Eν − Eµ > 0
1 otherwise

(3.13)
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where A(µ → ν) is the probability of accepting the new state ν, which is
proportional to the transition probability P(µ→ ν). In summary, the flow
of the algorithm for the Ising model is as follows, given an initial state
µ = {si} with energy Eµ where {si} are the values of the spins,

1. Choose random spin si and flip it to get a new state
ν = {s1, ..., si−1,−si, si+1, ..., sN}

2. Calculate the energy of the new state Eν

3. If Eν < Eµ accept the new state and go back to 1

4. If Eν > Eµ accept the new state with probability e−β(Eν−Eµ) or reject
it with probability 1− e−β(Eν−Eµ) and return to 1.

We call the above process a Monte Carlo step, and N (the total number
of spins) such Monte Carlo steps are called a Monte Carlo sweep (MCS).
A MCS is the basic unit of time of the simulation and measurements of
observables are taken after each such sweep. Continued iteration of the
above algorithm would reach a steady-state in which the sequence of gen-
erated states obeys the Boltzmann distribution, and from which meaning-
ful measurements can be taken. The two most important aspects of the
simulation which must be taken into consideration to ensure that the mea-
surements are valid are equilibration and autocorrelation. They will be
discussed in the next two sections.

To calculate the energy of a state as required by the Metropolis algorithm,
the Hamiltonian in (2.11) is used as follows: First its first two terms are
used to self-consistently determine the expectation values

〈
Jz
1
〉

, . . . ,
〈

Jz
N
〉

(as explained in section 3.2), and then they are used to calculate the energy
of the full Hamiltonian in (2.11).

3.3.1 Equilibration

The algorithm described in 3.3 starts from some initial configuration,
which in our case we choose to be a random one, corresponding to T → ∞.
Thus we have no reason to assume that measurements performed in the
first few MCS are representative of the system at the finite temperature
that is currently being simulated. The time, in MCS, the simulation has to
run until it reaches an equilibrium steady-state is called the equilibration



25

time, τeq. The way we determine τeq is by monitoring all measured observ-
ables as a function of MCS. We perform logarithmic binning of each mea-
sured observable, meaning that measurements are averaged over an expo-
nentially increasing number of MCS. The ith bin, where i = 0, 1, 2..., holds
the average of measurements performed at MCS between t0 = 2i − 1 and
t1 = 2t0 (MCS are numbered starting from zero). In figure 3.2 we show the
equilibration process of two observables, energy per spin and magnetiza-
tion. The two quantities are plotted as a function of MCS bin, where each
point is the average of the corresponding quantity among the measure-
ments in that bin. The error bars are the statistical errors of the measure-
ments in the bin, calculated using the autocorrelation analysis described in
the next section. An observable is assumed to be equilibrated once three
consecutive bins agree within error bars [19]. As mentioned, only once
all measured observables are equilibrated the system is considered equi-
librated and measurements are used. The measured observables are the
total energy, the magnetization per spin and the magnetization per spin
squared, and the k-dependent magnetization, defined in (3.18), squared.
Simulations of temperatures that did not meet this criterion (< 2 %) were
not used in the final analysis.
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Figure 3.2: Example of equilibration process. The equilibration process
for two observables, Energy per spin and total magnetization. Two
system sizes are plotted, L = 5, 6, and other parameter values are

Bx = 0.0, T = 1.5 and ODD terms are included. Small triangles mark the
point of equilibration for each system size and each observable as

determined by the conditions described in this section.

3.3.2 Autocorrelation

The Metropolis algorithm has the advantage that generating new states
from previous ones by flipping a spin is relatively computationally easy,
but this comes with a drawback that successive states are highly corre-
lated. In contrast, two states that differ by a large enough number of MCS,
which we denote τauto, may be assumed uncorrelated [18]. In order to
address the issue of correlations we employ the so called ”binning” or
”blocking” method [20, 21], in which the data used is not the individual
measurements but an average of them over a range of MCS called a ”bin”.
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These should not be confused with the logarithmic bins described in sec-
tion 3.3.1 that are used to monitor equilibration. Rather, these bins are
made up of measurement taken after the system is deemed equilibrated.
If the size of the bins is greater than τauto then we can use the bin averages
as uncorrelated estimations of the observables of interest.
In practice the procedure we employ is as follows: Given a data set of
measurements x1, ..., xN, we create a new ”binned” data set x′1, ..., x′N/2 by
averaging pairs of successive measurements. This process is performed
iteratively so we can define it in terms of the ”binning level” l such that

x(l)i :=
1
2

(
x(l−1)

2i−1 + x(l−1)
2i

)
(3.14)

where the zeroth level is the original data set. For each binning level, the
standard error of the binned data set is computed, as well as its uncer-
tainty (by bootstrap analysis, see sec. 3.3.3). The sequence of values for the
standard error will increase until a fixed point is reached where the value
remains roughly constant within error bars. This point signifies that the
length of the bins is large compared to the autocorrelation time, so that
correlations do not significantly affect the estimate of the error. For large
binning levels, the data set becomes increasingly small and fluctuations of
the error become very large. Therefore, when plotting the standard error
vs. binning level, the fixed point appears as a distinct plateau, as can be
seen in figure 3.3. We determine the existence of such a plateau by de-
manding three consecutive points that agree within error bars, and then
taking the first binning level within that plateau as the one for which the
binned data set is effectively uncorrelated. That is the data used in further
analysis. If no such plateau is found, it is taken as a signal that the simu-
lation has not run for long enough [21] and the largest value obtained for
the standard error is considered a lower bound on that error [20].
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Figure 3.3: Example of binning analysis. The standard error of the energy
(the measured observable in this example) within the binned array is
plotted against the binning level. The red horizontal line indicates the

asymptotic value of the error, determined by the plateau, and the vertical
black line indicates the binning level at which we consider the bin

averages uncorrelated.The simulation parameters are: L = 4, Bx = 0.0,
T = 1.47434 and ODD terms are excluded.

3.3.3 Finite size scaling

A computer simulation is inherently limited by the available memory, and
hence only finite systems may be simulated. We would still like to study
the bulk characteristics of the system, which may be smeared out for sys-
tems that are not infinitely large. The finite size scaling method allows one
to extract the values of critical exponents and the value of Tc by simulat-
ing systems of different sizes L and analyzing their results [18]. The non-
analytic part of a given observable close to the critical temperature can be
described by a finite-size scaling form. For example, the finite-size mag-
netization from a simulation of an Ising system is asymptotically given by
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[18]
〈mL〉 ∼ L−β/νm̃[L1/ν(T − Tc)] (3.15)

where m̃ is an unknown universal scaling function that is the same for all
L. Thus, if we perform a set of Monte Carlo simulations for various differ-
ent L, measure the magnetization over a range of temperatures around Tc,
and plot Lβ/ν 〈mL〉T as a function of the scaled variable x = L1/ν(T − Tc),
for a correct choice of ν, β and Tc, we should have all values fall on a single
curve that would represent the universal function m̃. This technique can
be improved by studying combined dimensionless quantities that do not
require we know the critical exponents in advance. A notable example is
the Binder ratio given by [22]

g =
1
2

[
3−

〈
m4〉
〈m2〉2

]
∼ G̃

(
L1/ν(T − Tc)

)
. (3.16)

Another example for such a quantity, which is the one we use in this work,
is the finite-size correlation length given by [22]

ξL =
1

2 sin(kmin/2)

[ 〈
m2(0)

〉
T

〈m2(kmin)〉T
− 1

] 1
2

(3.17)

where

m(k) =
1
N

N

∑
i=1
〈Jz

i 〉 exp(−ik · Ri) . (3.18)

Here 〈.〉T refers specifically to thermal average, Ri is the location of the
site i and kmin = (2π

L , 0, 0). The finite-size correlation length divided by
the linear system size has the same scaling form as the Binder ratio,

ξL

L
∼ X̃

(
L1/ν(T − Tc)

)
(3.19)

so that for T = Tc it is independent of the system size L. Therefore we can
expect curves for different system sizes to cross at the critical temperature.
The advantage of ξL/L over the Binder ratio is that the Binder ratio is
restricted to the interval [0, 1] while ξL/L is not, which makes the crossing
of different curves clearer and more accurate [19]. To systematically get the
values for Tc and the critical exponent ν, we assume the scaling functions
(3.19) and (3.16) can be approximated by a third-order polynomial close to
the critical point: f (x) = p0 + p1x+ p2x2 + p3x3 (where x = L1/ν(T− Tc)),
and perform a global fit for the six free parameters, p0 . . . p3, ν and Tc using
the Levenberg-Marquardt algorithm [19].
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Bootstrap analysis To estimate the error bars of Tc obtained by finite size
scaling, we use the so called bootstrap method [18, section 3.4.3]. The exact
procedure follows ref. [19]: For each size L and each temperature T, the
averages in eq. (3.16) and eq. (3.17) are calculated from a resampled data
set rather directly than from the data set of Monte Carlo results. This new
dataset is obtained from the Monte Carlo data set of size NMC by choos-
ing at random NMC measurements with replacement, so that the same
measurement may be picked more than once. The new dataset is used to
calculate either the Binder ratio or the correlation length for each L and T,
and then they are fitted to obtain the free parameters as described above.
This is then repeated Nboot = 500 times so that we have Nboot different
estimates of these parameters. The estimated errors of the parameters are
then given by the standard deviation among the Nboot bootstrap samples.
The data set which is resampled in this case has already been processed
as described in the previous sections so that it is considered to consist of
independent measurements describing the equilibrium values of the mea-
sured observables.
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4 Results

The results of the Monte Carlo simulations are presented in this chapter.
As the purpose of the simulations is to estimate the significance of the
proposed mechanism of offdiagonal dipolar terms causing a decrease in
Tc, the simulations are performed twice: Once with the offdiagonal dipo-
lar terms included in the Hamiltonian (2.11) and once with these terms
omitted so that internal transverse fields are artificially suppressed. This
is done by explicitly setting Bx

i = Bx and By
i = 0 for all i in (2.10). In this

case the self consistent calculation described in 3.2 becomes trivial, but it
is performed as described nonetheless with the purpose of establishing its
validity.

The process from which the following results are obtained is as follows:
The value of Bx is set, and then a range of temperatures around Tc is
simulated for several system sizes. These simulations are used to ob-
tain the averages required to calculate the finite-size correlation length
ξL which is used in the finite-size scaling method to obtain an exact es-
timate of Tc. Figures 4.1–4.4 show the finite-size scaling results. The di-
mensionless quantity ξL/L plotted in these figures is expected to scale as
ξL/L ∼ X̃

[
L1/ν(T − Tc)

]
. At the critical temperature T = Tc, the argu-

ment of the scaling function is zero, and hence independent of L, so all
lines for different system sizes are expected to cross at this temperature.
As can be seen in (a) of all of these figures, the lines indeed cross, but
at noticeably different points for different pairs of Ls. This is most likely
due to corrections to finite-size scaling that are significant for small sys-
tem sizes where the scaling expressions used to determine exponents do
not work well enough [18, 19]. In principle one can find a better estimate of
the critical temperature by calculating it for pairs of distinct system sizes,
e.g. T∗c (L, 2L) and estimating the limit value of L → ∞. Unfortunately
we could not simulate larger system sizes than what is presented due to
the computational complexity of the algorithm used. Therefore we take
these corrections as given, and incorporate them into our error estima-
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tions explicitly, since they are systematic rather than statistical errors and
are not expected to be incorporated by the bootstrap error estimation (see
section 3.3.3). Hence, the difference between the crossing of L = 4, 5 and
L = 5, 6 is added to the error bars as a rough estimate of the error in-
troduced by the scaling corrections. Despite these corrections, all figures
show reasonable collapse to a universal curve as can be seen in (b).
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Figure 4.1: Finite size correlation length ξL/L as a function of the
temperature for different linear system sizes L. Data is for Bx = 0.0 and
internal fields unsuppressed so that the mechanism is active. (a) Shows

the crossing of different system sizes. (b) Scaling analysis of the data. The
solid line corresponds to the optimal scaling function based on a

polynomial approximation.
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Figure 4.2: Finite size correlation length ξL/L as a function of the
temperature for different linear system sizes L. Data is for Bx = 0.0 and
internal fields suppressed so that the mechanism is inactive. (a) Shows

the crossing of different system sizes. (b) Scaling analysis of the data. The
solid line corresponds to the optimal scaling function based on a

polynomial approximation.
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Figure 4.3: Finite size correlation length ξL/L as a function of the
temperature for different linear system sizes L. Data is for Bx = 0.3 T and
internal fields unsuppressed so that the mechanism is active. (a) Shows

the crossing of different system sizes. (b) Scaling analysis of the data. The
solid line corresponds to the optimal scaling function based on a

polynomial approximation.
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Figure 4.4: Finite size correlation length ξL/L as a function of the
temperature for different linear system sizes L. Data is for Bx = 0.3 T and

internal fields suppressed so that the mechanism is inactive. (a) Shows
the crossing of different system sizes. (b) Scaling analysis of the data. The

solid line corresponds to the optimal scaling function based on a
polynomial approximation.

The values of Tc obtained by the finite-size scaling procedure are then plot-
ted on the full phase diagram in figure 4.5. The inset of the figure shows
the low-Bx region closer up, where it is more obvious that the difference
between Tc obtained with and without the ODD terms decreases as Bx is
increased. On the inset to the right the results without ODD terms can
be seen to be compatible with the mean field result, though it is consis-
tently lower, which might be attributed to finite size effects. On the inset
to the left, the results with the ODD terms can be seen to also overestimate
Tc compared to experiment, albeit by a much smaller amount. The result
for Bx = 0.3 T is, surprisingly, higher than that for Bx = 0 which will be
discussed in the next section.
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Figure 4.5: Phase diagram of LiHoF4 with numerical results.
Experimental data (triangles) and mean-field fit (solid line) from ref. [5].

Quantum Monte Carlo (QMC) data (open squares) is from ref. [3]. The Xs
are the numerical results of this work, where orange is for simulations
with offdiagonal dipolar terms included and green is for simulations
where they are excluded. The inset shows the low-Bx region of both

results, where the behavior at Bx = 0.3 T relative to Bx = 0.0 T can be seen
more clearly. All numerical results use Jex = 1.16× 10−3 K.

4.1 Discussion

The numerical results presented above clearly show that inclusion of the
ODD terms leads to a significant decrease of Tc, which is of the order of
magnitude that separates the mean-field Tc obtained by Babkevich et al.
[5] from the experimental value. This fact suggests that these terms may
account for the discrepancy between previous theoretical predictions and
experimental data. All results presented in this chapter use the exchange
parameter suggested by Rønnow et al. [4] of Jex = 1.16 mK. This ex-
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change parameter produces mean-field results that agree with experimen-
tal results for Bx > 3 T but give Tc(0) much larger than the experimental
value. Therefore, we suggest that this is the correct value of Jex, and that
the mechanism described in section 2.5 is the one that lowers Tc to its ex-
perimental value in the real LiHoF4. This mechanism fundamentally relies
on the actual configuration of the spins and therefore is not expected to be
represented in any mean-field description. As additional support for this
hypothesis, figure 4.6 shows the standard deviation of the internal trans-
verse fields, Bi

x, over all sites as a function of temperature. It can clearly be
seen that the standard deviation, and hence the typical value of the local
transverse field, increases with temperature, which is consistent with the
heuristic argument given in section 2.5.

A second important observation is that the difference between the numer-
ical results with and without the ODD terms is smaller for Bx = 0.3 T. This
may explain the Tc(Bx) dependence, in that it suggests the mechanism is
attenuated by increasing the external Bx.

Of course, the numerical results, even with ODD terms included, do not
agree with the experimental ones. One possible reason for this lies in the
interpolation scheme described in section 3.1. As can be seen in the left
graph of figure 3.1, for values |Bz| < 0.029 T, the interpolated function
is roughly constant at about 〈Jz〉 ≈ ±5µB while the actual function goes
rapidly to zero. This would mean that in the course of the simulation
higher expectation values are assigned to the spins in that Bz region than
what is actually dictated by the applied local field. Roughly speaking,
since the Jz expectation values act as effective magnitudes of the spins,
such an artificial increase in their values would raise Tc. This issue be-
comes more significant with higher applied transverse field, whether in-
ternal or external, since the Bz region affected by this becomes larger. Con-
sequently, the issue should affect simulations with ODD terms included
more as their local transverse fields consist of external as well internal
fields. This is true also for Bx = 0 where the issue does not exist at all
without ODD terms, but it does when they are included. This would ex-
plain why simulations without ODD terms give Tc(0) approaching the
mean-field prediction (up to scaling corrections), while with ODD terms
they give Tc(0) that is higher than the experimental result.
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Figure 4.6: The standard deviation of local transverse fields Bx
i among all

Ho sites as a function of temperature. Bx = 0.0 T, ODD terms included.
Similar behaving results are obtained for Bx > 0.0 T as well.
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5 Summary

In this work we have numerically studied the phase transition of LiHoF4
under applied transverse external field Bx, at the low-Bx region. The main
hypothesis presented was that correct treatment of the offdiagonal terms
of the dipolar interaction could account for the discrepancy between the-
ory and experiment in the low-Bx regime.

Using Monte Carlo simulations we found that inclusion of these terms
in the studied Hamiltonian leads to a significant decrease of Tc at zero-
transverse field. The decrease is of the correct order of magnitude re-
quired to explain the discrepancy between the mean-field solution and
experimental results. In addition, we have shown that at Bx > 0, the di-
minishing of Tc as a result of the offdiagonal dipolar terms becomes less
effective. This is consistent with our hypothesis, as the discrepancy also
diminishes with increasing Bx. Furthermore, our results provide support
to the determination of Jex based on the high-Bx regime, as was done in
ref. [5].

However, exact agreement with experimental data in the low-Bx region
could not be achieved. This might partly be due to the limited range of
system sizes used in this work, but may also point to an issue with the
simulation procedure as discussed in section 4.1.

There are several avenues for further work based on these results. First,
it would be crucial to confirm or refute the suggestion raised in sec-
tion 4.1 that the cause of the remaining discrepancy lies in the interpolation
scheme. This could be done, e.g. by varying the minimal Bz value form
which the magnetic moment is interpolated (currently |Bz| = ±0.029 T),
and monitoring its affect on Tc. Second, running more simulations to ob-
tain additional points at Bx > 0, with and without the ODD terms, could
further support the claim that the effect is diminished with increasing Bx,
and hopefully reproduce the correct phase boundary shape. Lastly, in
order to explore larger system sizes than currently possible, a different
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model might prove useful. For example, a model with short-range inter-
actions, as opposed to the long-range dipolar interactions currently used,
should be considerably easier to simulate. Such a model could be formu-
lated simply by truncating the dipolar interactions at some distance. One
would obviously not expect such a model to give the exact same values of
Tc, but it might be used to study the Tc(Bx) dependence nonetheless.
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A Single Ho3+ Ion and Crystal
properties

A.1 Single Ion Electronic States

The Ho ions in the LiHoF4 crystal are trivalent, so that each ion has 10
electrons in its unfilled 4 f shell (4 f 10) [3]. The spatial extent of the 4 f shell
means that for rare earth ions, the crystalline environment does not signif-
icantly change the free states, so that they may be treated as isolated ions
[23]. Thus we apply Hund’s rules to find the ground state electronic con-
figuration, which gives J = 8 (L = 6, S = 2), denoted 5 I8. There is strong
spin-orbit coupling [7], so the z projections of the total orbital angular mo-
mentum L and total spin S are not good quantum numbers. Instead, the
total angular momentum J and its projection Jz are used to characterize
the electronic states, which gives rise to a 17-fold degenerate ground state
with a Landé g-factor of gL = 5

4 [7, 23]. Interactions of the Ho3+ ions with
the Li+ and F− ions lift the degeneracy, as will be discussed in the next
section.

A.2 Crystal Field Hamiltonian

The Coulomb interactions of the Ho3+ ions with the Li+ and F− ions can
be captured in the crystal field Hamiltonian, VC, which can be approxi-
mately constructed based on the symmetry of the crystal [24]. The approx-
imated model used is known as the point-charge approximation. In essence
it amounts to treating other ions as point charges, thus neglecting the finite
spatial extent of their charge. Additionally, it neglects the overlap of the
magnetic ions’ wave functions with those of their neighbors, and screen-
ing by electrons in outer shells. Its power lies in preserving the symmetry
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of the crystal, which enables us to easily expand it in terms of functions
that posses the same symmetries of the crystal. Under this approximation
the electrostatic potential V(r, θ, φ) due to the surrounding point charges,
at point (r, θ, φ) near the origin at the ion is

V(r, θ, φ) = ∑
j

qj∣∣Rj − r
∣∣ (A.1)

where qj is the total charge of the jth ion, that is at location Rj relative
to the origin. In order to take advantage of the symmetry of the crystal,
the potential is expanded in terms of tesseral harmonics, which are a real
form of spherical harmonics [24]. Using the notation of Prather [25], the
potential (A.1) takes the form

V(r, θ, φ) = ∑
j

qj

∞

∑
n=0

rn

R(n+1)
j

4π

(2n + 1)

n

∑
m=0

[
Cm

n (θ, φ)Cm
n (θj, φj)

+ Sm
n (θ, φ)Sm

n (θj, φj)
]

(A.2)

where Cm
n and Sm

n are tesseral harmonics (a list of which is given in ref. [25,
Table 2]). The potential can be written as

V(r, θ, φ) =
∞

∑
n=0

rn
n

∑
m=0

[Am
n Cm

n (θ, φ) + Bm
n Sm

n (θ, φ)] (A.3)

where Am
n and Bm

n are constants involving sums over all other crystal ions.
Some of these coefficients can and in fact must vanish, so that the potential
function can reflect the point symmetry of the crystal as it should. Prather
[25] investigates the symmetry possessed by the tesseral harmonics, and
lists the ones that could give a non-vanishing contribution to the potential
function for different point symmetry groups.

LiHoF4 has S4 point symmetry through the Ho ions, which means that it
is invariant with respect to a rotation of π

2 about the z-axis followed by
reflection with respect to the x− y plane [2, 23].

Following ref. [25] we can then list the tesseral harmonics that appear in
the expansion of the potential in (A.3). In fact not all tesseral harmonics
that respect the crystalline symmetry are relevant; Some of them only cou-
ple electronic states that belong to excited configurations and are therefore
neglected 1, and others have vanishing matrix elements between electronic
states due to selection rules of integrals of spherical harmonics [24].

1The lowest excited electronic configuration, 5 I7, lies approximately 7400 K above the
ground state configuration [3], so this is well justified in the temperature range of interest
for this work.
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For evaluating the matrix elements of the crystal field potential between
coupled wave functions within the J manifold we use the method of oper-
ator equivalents developed by Stevens [26]. The method uses the Wigner-
Eckhart theorem to replace tensor operators, such as x, y and z, by angular
momentum operators Jx, Jy and Jz within the given J subspace. Because
the angular momentum operators do not commute like their spatial coun-
terparts, products of x, y and z must be replaced by a sum of products of
all different permutations of Jx, Jy and Jz, divided by the number of such
permutations. This gives an operator that is proportional to the original
operator. Thus, the tesseral harmonics that remain in the expansion of the
crystal field potential can be written in Cartesian coordinates, and then
transformed to angular momentum operators according to this method.
The relevant operator equivalents in the case of LiHoF4 are [3]

O0
2 = 3J2

z − J(J + 1) (A.4a)

O0
4 = 35J4

z − 30J(J + 1)J2
z + 25J2

z − 6J(J + 1) + 3J2(J + 1)2 (A.4b)

O4
4(C) =

1
2

(
J4
+ + J4

−

)
(A.4c)

O0
6 = 231J6

z − 315J(J + 1)J4
z + 735J4

z + 105J2(J + 1)2 J2
z

− 525J(J + 1)J2
z + 294J2

z − 5J3(J + 1)3

+ 40J2(J + 1)2 − 60J(J + 1)

(A.4d)

O4
6(C) =

1
4

(
J4
+ + J4

−

) (
11J2

z − J(J + 1)− 38
)
+ h.c. (A.4e)

O4
6(S) =

1
4i

(
J4
+ − J4

−

) (
11J2

z − J(J + 1)− 38
)
+ h.c. (A.4f)

and the final crystal field Hamiltonian is

VC = B0
2O0

2 + B0
4O0

4 + B0
6O0

6 + B4
4(C)O

4
4(C)

+ B4
6(C)O

4
6(C) + B4

6(S)O
4
6(S) (A.5)

where the coefficients Bm
l are known as crystal field parameters (CFPs),

and are generally found by fitting to experimental data. In this work we
use the CFPs suggested by Rønnow et al. [4] that in addition to susceptibil-
ity measurements [13] also incorporate results from several spectroscopic
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investigations. Their values are

B0
2 = −0.696 K

B0
4 = 4.06× 10−3 K

B4
4(C) = 0.0418 K

B0
6 = 4.64× 10−6 K

B4
6(C) = 8.12× 10−4 K

B4
6(S) = 1.137× 10−4 K (A.6)

The only terms in (A.5) that break z axis rotation symmetry are B4
4O4

4 and
B4

6O4
6, that mix free states with ∆MJ = ±4. Therefore eigenstates of the

crystal field Hamiltonian are linear combinations of either |±7〉, |±3〉, |∓1〉
and |∓5〉; |±6〉, |±2〉, |∓2〉 and |∓6〉; or |±8〉, |±4〉, |0〉, |∓4〉 and |∓8〉 [7].
Figure A.1 shows the energy levels of the crystal field Hamiltonian vs.
their Jz expectation value.
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Figure A.1: Energy levels vs. the expected value of Jz, in zero applied
field, under the crystal field potential (A.5). Obtained by numerical

diagonalization. The low-energy Ising doublet can be seen, as well as the
first excited singlet at ≈ 11 K above it.
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B Ewald Summation Method

In order to incorporate the long-range dipolar interaction of eq. (2.2) we
simulate the system with periodic boundary conditions. In this way, the
system is considered to be surrounded by periodic copies of itself in every
direction. Within this framework the effective interaction between a pair
of spins consist not only of the direct dipolar interaction between them, but
also of the dipolar interaction between all periodic copies of those spins.
The method chosen to calculate these effective interactions is the Ewald
summation method which is considered very useful for calculating long
range dipolar interactions [9, 27]. The sum we wish to calculate is

Vµν
ij =

′

∑
n

δij(rij + n)2 − 3(rij + n)µ(rij + n)ν

|rij + n|5 (B.1)

The prime symbol indicates that for i = j the sum does not include the
n = 0 term. The sum in (B.1) is conditionally convergent, meaning that
the result depends on the order of summation [27], which is why the
Ewald method is required. In the Ewald method we separate this sum
into two convergent sums: one in real space and the other in reciprocal
space. A derivation of the technique is presented in ref. [27], here we shall
only present the final forms used in this work, using the notation found in
ref. [28]:

Vµν
ij =

′

∑
n

δµνB(rij)r2
ij − C(rij)r

µ
ijr

ν
ij

r5
ij

+
4π

L3 ∑
K 6=0

KµKν

K2 e−K2/4α2
eiK·rij − 4α3

3
√

π
δµνδij (B.2)

where
B(r) = erfc(r) +

2αr√
π

e−α2r2
(B.3a)
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C(r) = 3erfc(r) +
2αr(3 + 2α2r2)√

π
e−α2r2

(B.3b)

K are reciprocal lattice vectors and n = L(kx̂ + lŷ + mẑ) where k, l, m are
integers and x̂, ŷ,ẑ are unit vectors. erfc(x) is the complementary error
function. The first term in (B.2) is the real space sum, the second is the
reciprocal space sum and the third is a self interaction term that repre-
sents the interaction of a spin with its periodic images. Another term
which accounts for the polarization of the surface may be introduced in
order to model different system shapes, however for the case of a long,
cylindrical shape which we are considering, this surface term is zero [29].
We calculate the real and reciprocal sums by truncating them at Nreal

cuto f f

and Nreciprocal
cuto f f respectively. For the real sum, Nreal

cuto f f is the absolute value

of the cutoff in each direction, so that in practice (2Nreal
cuto f f + 1)3 vectors

are summed. For the reciprocal sum only half as many terms need to
be summed after changing the complex exponential to a cosine function.
Equation (B.2) is valid for any choice of α, but numerical convergence of
the real and reciprocal sums depend strongly on the choice of α. Hence,
α is chosen by plotting the slowest converging case, which was found to
be the zz self interaction, once with Nreal

cuto f f held constant and an increas-

ing sequence of Nreciproccal
cuto f f s and then vise versa. Such plots are shown in

figure B.1, and they allow us to optimally choose α such that it balances
the convergence of the reciprocal and real parts. Based on this procedure
we choose α = 2/Lz for all L. For that α, Both Nreciproccal

cuto f f and Nreal
cuto f f are

increased gradually until a combination is found for which no additional
increase in either Nreciproccal

cuto f f or Nreal
cuto f f changes the results. At this stage

not only the zz self interaction but all types of interactions with all nearest
neighbors are monitored. The resulting interactions are calculated once for
each system size and saved to be used in simulations. Therefore comput-
ing time is less of a concern which allows us to set the cutoffs much higher
than necessary. The values chosen are Nreciprocal

cuto f f = 12 and Nreal
cuto f f = 10.
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Figure B.1: Convergence tests of the Ewald sums

Vzz
ii calculated using the Ewald summation method as in (B.2) for L = 6.
(a) Nreal

cuto f f is held constant at 2 and (b) Nreciprocal
cuto f f is held constant at 6.
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C Interpolation

In this appendix we present the technical details of the trilinear interpo-
lation that is used to obtain approximations of 〈Jz〉 and the energy, from
the single-site Hamiltonian, as a function of the applied local magnetic
field. For the sake of abstraction we use f (x, y, z), x, y, z for the approx-
imated function (either the energy or magnetic moment in our case) and
its variables (Bx, By and Bz in our case). The closest values to (x, y, z) for
which the function was calculated in advance are denoted (x1, y1, z1) and
(x2, y2, z2) where x1 < x < x2 and likewise for y and z. This defines a
grid cube that contains the point (x, y, z). The interpolation then consists
of four linear interpolations along the four edges of the cube parallel to the
x axis [17],

R11 =
x2 − x
x2 − x1

f (x1, y1, z1) +
x− x1

x2 − x1
f (x2, y1, z1)

R21 =
x2 − x
x2 − x1

f (x1, y2, z1) +
x− x1

x2 − x1
f (x2, y2, z1)

R12 =
x2 − x
x2 − x1

f (x1, y1, z2) +
x− x1

x2 − x1
f (x2, y1, z2)

R22 =
x2 − x
x2 − x1

f (x1, y2, z2) +
x− x1

x2 − x1
f (x2, y2, z2) .

This gives interpolated values of the function on four points along these
edges that define a square containing the point (x, y, z). Then, we perform
linear interpolation along two edges of this square parallel to the y axis,

Q1 =
y2 − y
y2 − y1

R11 +
y− y1

y2 − y1
R21

Q2 =
y2 − y
y2 − y1

R12 +
y− y1

y2 − y1
R22 .
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Lastly, we then perform linear interpolation between the two points found
in the previous step, along the z axis,

f (x, y, z) = Q1 +
z− z1

z2 − z1
(Q2 −Q1) . (C.1)

The order in which the interpolation steps along the three axes are per-
formed is arbitrary, and may be switched when needed. This is useful, e.g.
when the partial derivative of the function with respect to one of its vari-
ables is needed. In this case, for example, it is easy to identify ∂ f

∂z = Q2−Q1
z2−z1

.

In practice we set up two interpolation tables, one for the energy and one
for the magnetic moment, both of the |↑〉 state. The energy and magnetic
moment of the |↓〉 state may then be obtained from the table by making
the transformation Bz → −Bz:〈
↑ (Bx, By, Bz)

∣∣Jz∣∣↑ (Bx, By, Bz)
〉
= −

〈
↓ (Bx, By,−Bz)

∣∣Jz∣∣↓ (Bx, By,−Bz)
〉

〈
↑ (Bx, By, Bz)

∣∣Hsingle-site
∣∣↑ (Bx, By, Bz)

〉
=〈

↓ (Bx, By,−Bz)
∣∣Hsingle-site

∣∣↓ (Bx, By,−Bz)
〉

(C.2)
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D Numerical Parameters

In this section we detail the numerical parameters used in the simulations
performed as part of this work. In all tables in this section L is the lin-
ear system size, T is the temperature, Nmc is the total number of MCS,
Neq is the number of MCS until equilibration and Neff is the number of ef-
fective independent measurements after accounting for correlations. The
last two are determined by a process detailed in sections 3.3.1 and 3.3.2
respectively.

Table D.1 summarizes the results presented in chapter 4. The errors listed
for Tc are only the statistical errors. Errors plotted in figure 4.5 include er-
rors stemming from finite-size corrections that are estimated as the differ-
ence between corresponding results for L = 4, 5 and L = 5, 6, as explained
in chapter 4.

All other tables in this section detail the total number of MCS, number
of MCS until equilibration and the effective number of measurements for
each temperature and each linear system size simulated.
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Table D.1: Summary of simulation results. Only statistical errors are
given for Tc; Errors stemming from finite-size corrections are estimated as
the difference between corresponding results for L = 4, 5 and L = 5, 6 as

explained in chapter 4.

L Bx Tc ODD terms
4,5 0 1.7565(1) excluded
4,5 0.3 1.7522(1) excluded
4,5 0 1.5730(1) included
4,5 0.3 1.5838(1) included
5,6 0 1.7748(4) excluded
5,6 0.3 1.7706(4) excluded
5,6 0 1.5906(3) included
5,6 0.3 1.6013(4) included

4,5,6 0 1.7665(2) excluded
4,5,6 0.3 1.7612(2) excluded
4,5,6 0 1.5823(2) included
4,5,6 0.3 1.5930(2) included
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Table D.2: Simulation parameters for L = 4, Bx = 0.0, without ODD terms

L T Nmc Neq Neff

4

1.61

2097152 16383

16256
1.61757 16256
1.62507 16256
1.63252 16256
1.63999 16256
1.64751 16256
1.65508 16256
1.66269 16256
1.67037 16256
1.67812 8128
1.68597 8128
1.69397 8128
1.70213 4064
1.71044 8128
1.71887 8128
1.72751 8128
1.73651 8128
1.74594 8128
1.75568 8128
1.76566 2032
1.77593 2032
1.78661 2032
1.79796 4064

1.81 4064
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Table D.3: Simulation parameters for L = 5, Bx = 0.0, without ODD terms

L T Nmc Neq Neff

5

1.69

1275000 32767

2420
1.69635 605
1.70263 2426
1.70886 1213
1.71508 1213
1.72131 2426
1.72756 4852
1.73386 2426
1.74026 4852
1.7468 4852

1.75357 4852
1.76065 4852
1.7681 4852

1.77603 4852
1.78455 4852
1.79378 4852
1.80382 4852
1.81458 4852
1.82585 4852
1.8374 4852

1.84926 4852
1.86171 9704
1.87511 4852

1.89 4852
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Table D.4: Simulation parameters for L = 6, Bx = 0.0, without ODD terms

L T Nmc Neq Neff

6

1.69

363000 131071

1811
1.69635 1811
1.70263 905
1.70886 905
1.71508 905
1.72131 905
1.72756 905
1.73386 905
1.74026 905
1.7468 452

1.75357 905
1.76065 905
1.7681 905

1.77603 905
1.78455 905
1.79378 905
1.80382 905
1.81458 905
1.82585 452
1.8374 452

1.84926 905
1.86171 1811
1.87511 905

1.89 905
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Table D.5: Simulation parameters for L = 4, Bx = 0.3, without ODD terms

L T Nmc Neq Neff

4

1.67

2097152 32767

4032
1.67661 2016
1.68313 8064
1.6896 8064
1.69607 8064
1.70255 8064
1.70905 8064
1.71558 8064
1.72217 8064
1.72886 8064
1.73568 8064
1.7427 8064

1.75 8064
1.75765 8064
1.76573 16128
1.77427 8064
1.78333 8064
1.79299 8064
1.80337 16128
1.81464 16128
1.82698 16128
1.84038 16128
1.85475 16128

1.87 16128
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Table D.6: Simulation parameters for L = 5, Bx = 0.3, without ODD terms

L T Nmc Neq Neff

5

1.67

1191000 262143

7256
1.67661 3628
1.68313 3628
1.6896 1814
1.69607 7256
1.70255 1814
1.70905 3628
1.71558 3628
1.72217 3628
1.72886 1814
1.73568 3628
1.7427 3628

1.75 7256
1.75765 3628
1.76573 7256
1.77427 3628
1.78333 1814
1.79299 3628
1.80337 1814
1.81464 1814
1.82698 1814
1.84038 7256
1.85475 7256

1.87 7256
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Table D.7: Simulation parameters for L = 6, Bx = 0.3, without ODD terms

L T Nmc Neq Neff

6

1.67

328500 32767

2310
1.67661 2310
1.68313 2310
1.6896 2310

1.69607 2310
1.70255 2310
1.70905 1155
1.71558 1155
1.72217 577
1.72886 1155
1.73568 1155
1.7427 1155
1.75 1155

1.75765 1155
1.78333 1155
1.79299 1155
1.80337 1155
1.81464 1155
1.82698 1155
1.84038 577
1.85475 1155

1.87 577
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Table D.8: Simulation parameters for L = 4, Bx = 0.0, with ODD terms

L T Nmc Neq Neff

4

1.44

2097152 1048575

8192
1.4474 8192

1.45477 8192
1.46213 8192
1.46949 8192
1.47688 8192
1.48431 8192
1.49179 4096
1.49933 4096
1.50695 4096
1.51468 4096
1.52254 8192
1.53054 8192
1.53874 4096
1.54715 4096
1.55581 4096
1.56478 4096
1.5741 8192

1.58383 8192
1.59401 8192
1.60469 4096
1.61589 4096
1.62764 4096

1.64 8192
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Table D.9: Simulation parameters for L = 5, Bx = 0.0, with ODD terms

L T Nmc Neq Neff

5

1.5

2097152 524287

3072
1.50638 3072
1.51257 3072
1.5186 3072
1.52462 3072
1.53075 3072
1.53709 3072
1.5436 3072
1.55017 3072
1.55676 3072
1.56343 3072
1.57032 3072
1.57753 1536
1.58512 1536
1.59315 3072
1.60173 1536
1.61099 3072
1.62104 3072
1.63167 3072
1.6427 3072
1.66747 3072
1.6841 3072

1.7 6144
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Table D.10: Simulation parameters for L = 6, Bx = 0.0, with ODD terms

L T Nmc Neq Neff

6

1.5

351000 131071

2230
1.50638 2230
1.51257 1115
1.5186 2230

1.52462 2230
1.53075 2230
1.53709 2230
1.5436 1115

1.55017 1115
1.55676 1115
1.56343 1115
1.57753 1115
1.58512 1115
1.59315 1115
1.60173 1115
1.61099 1115
1.62104 1115
1.63167 1115
1.6427 1115

1.65437 1115
1.66747 1115
1.6841 2230

1.7 1115
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Table D.11: Simulation parameters for L = 4, Bx = 0.3, with ODD terms

L T Nmc Neq Neff

4

1.45

2097152 131071

15360
1.45736 15360
1.46469 7680
1.472 7680
1.4793 15360

1.48661 15360
1.49397 15360
1.50139 7680
1.5089 15360

1.51652 7680
1.52428 1920
1.5322 7680

1.54029 7680
1.54856 7680
1.55702 7680
1.56573 7680
1.57478 7680
1.58422 7680
1.59407 7680
1.60432 7680
1.61496 3840
1.62603 3840
1.63768 3840

1.65 3840
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Table D.12: Simulation parameters for L = 5, Bx = 0.3, with ODD terms

L T Nmc Neq Neff

5

1.48

1680000 8191

3265
1.48722 3265
1.49429 3265
1.50119 3265
1.50796 3265
1.51467 3265
1.52143 1632
1.52839 3265
1.53573 3265
1.54329 3265
1.55068 3265
1.55774 3265
1.56467 3265
1.57166 3265
1.57892 3265
1.58669 3265
1.59545 3265
1.60538 3265
1.61589 3265
1.62658 3265
1.63751 3265
1.64973 6530
1.66544 6530

1.68 1632
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Table D.13: Simulation parameters for L = 6, Bx = 0.3, with ODD terms

L T Nmc Neq Neff

6

1.48

250500 16383

1829
1.48722 1829
1.49429 914
1.50119 3658
1.50796 914
1.51467 914
1.52143 228
1.52839 457
1.53573 457
1.54329 228
1.55068 914
1.55774 914
1.56467 228
1.57166 457
1.57892 914
1.58669 914
1.59545 914
1.60538 457
1.61589 1829
1.62658 914
1.63751 1829
1.66544 1829

1.68 1829
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