Quantum fluctuations and the phase diagram of anisotropic dipolar magnets

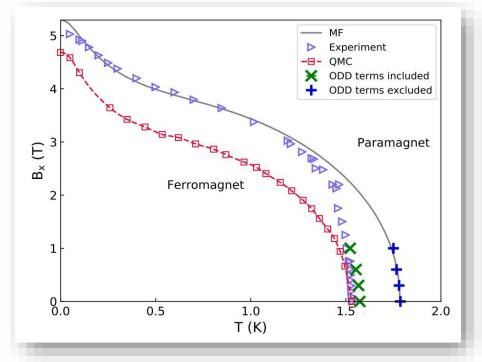
Correlated Days, Ein Gedi, 06/2022

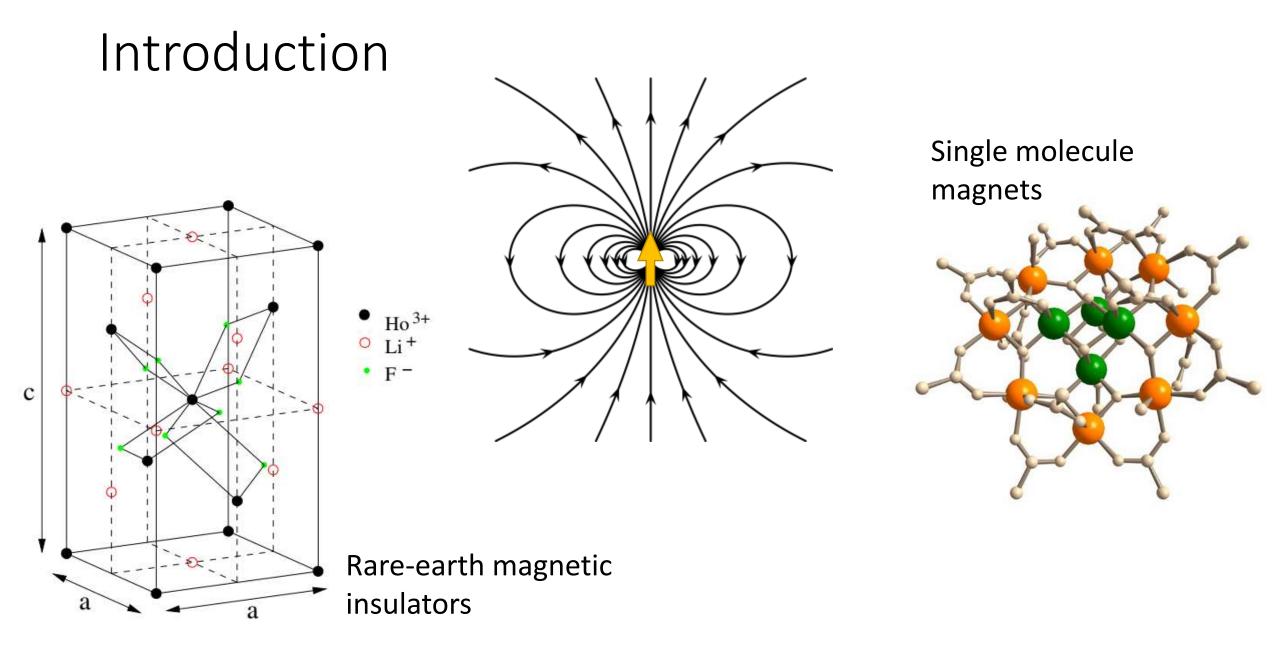
Tomer Dollberg (BGU)

Moshe Schechter (BGU)

Juan Carlos Andresen (BGU)

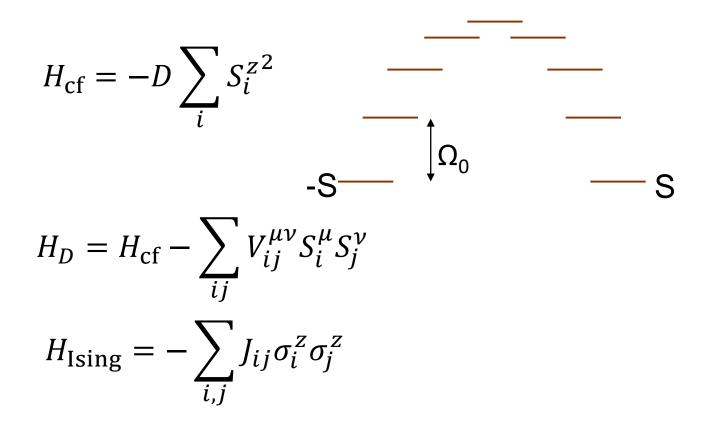
TD, J. C. Andresen, and M. Schechter, Phys. Rev. B 105, L180413 (2022)





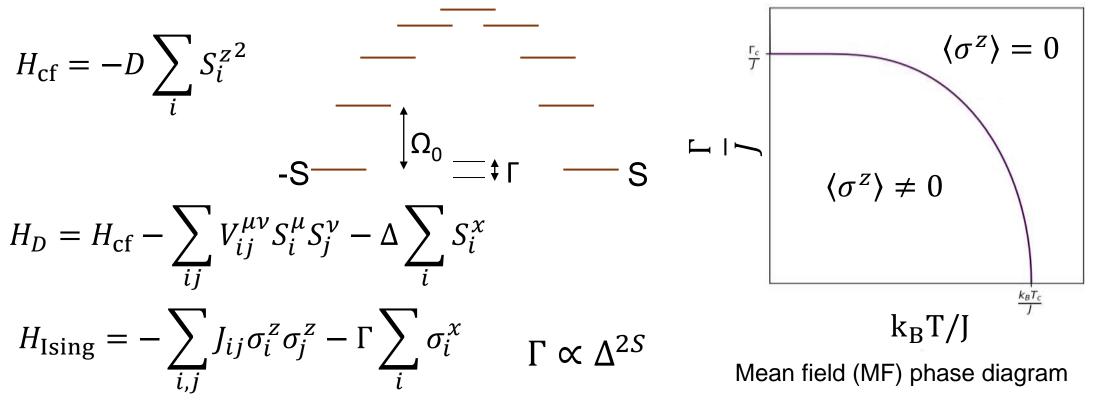
Anisotropic dipolar systems

Magnetic insulators, large spin, strong lattice anisotropy, dominant dipolar interaction



Anisotropic dipolar systems

Magnetic insulators, large spin, strong lattice anisotropy, dominant dipolar interaction



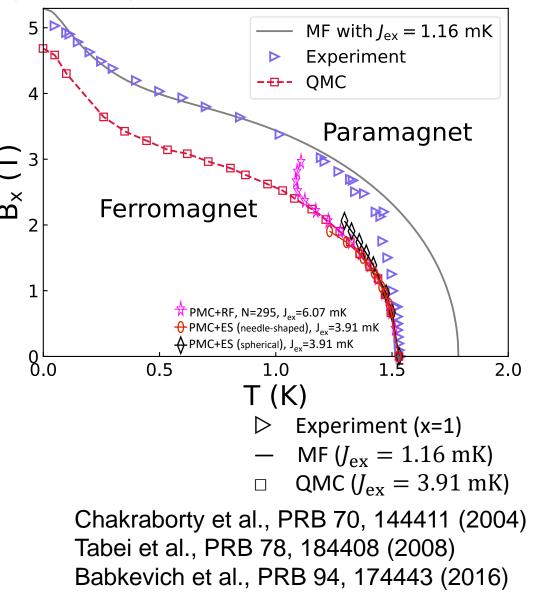
of transverse field Ising model (TFIM)

LiHoF₄ – the archetypal Ising magnet?

• Full microscopic Hamiltonian (J=8, I=7/2):

$$H = \sum_{i} H_{cf}(\boldsymbol{J}_{i}) - g_{L}\mu_{B} \sum_{i} B_{x}J_{i}^{x} + \frac{1}{2}(g_{L}\mu_{B})^{2} \sum_{i \neq j} V_{ij}^{\mu\nu}J_{i}^{\mu}J_{j}^{\nu} \qquad \bigoplus_{\boldsymbol{H} \neq \boldsymbol{J}_{i}} H_{ex} \sum_{\langle i,j \rangle} \boldsymbol{J}_{i} \cdot \boldsymbol{J}_{j} + A \sum_{i} (\boldsymbol{I}_{i} \cdot \boldsymbol{J}_{i})$$

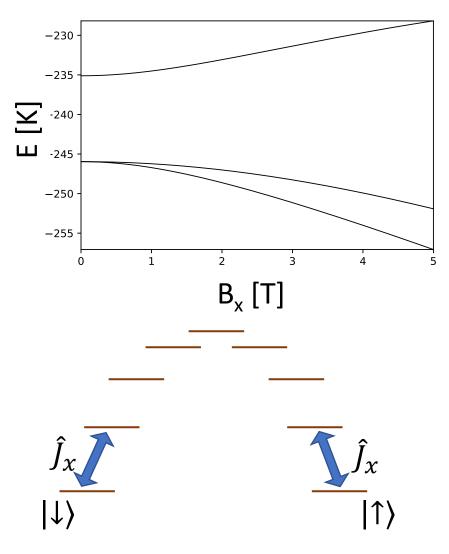
- The only free parameter, J_{ex} , can be used to tune $T_c(B_x = 0)$
- Something missing!



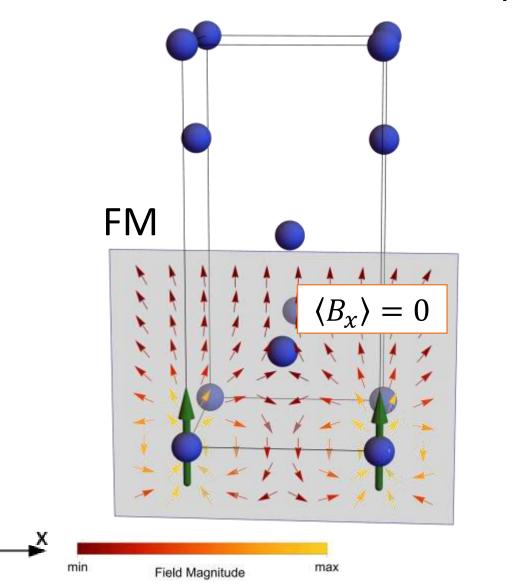
Off-diagonal dipolar (ODD) terms

- Terms of the form $V_{ij}^{zx} \langle J_i^z \rangle J_j^x$
- Effectively act as internal transverse magnetic fields
- Decrease the energy of spin j regardless of its state
- Neglected in TFIM due to projection
- Vanish due to symmetry in FM phase

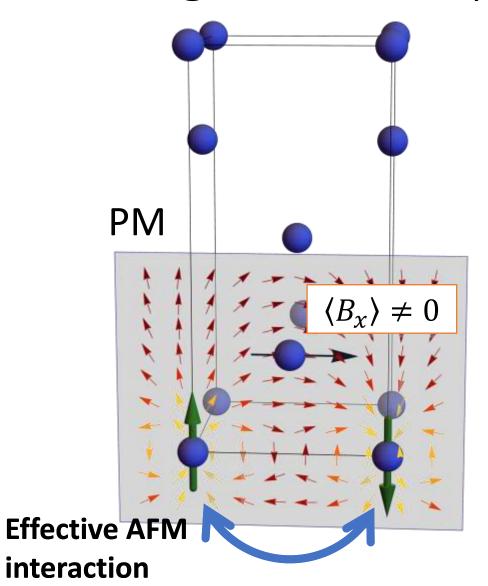
Energetically disfavor ferromagnetic order



ODD terms and the phase diagram - example



▲ Z



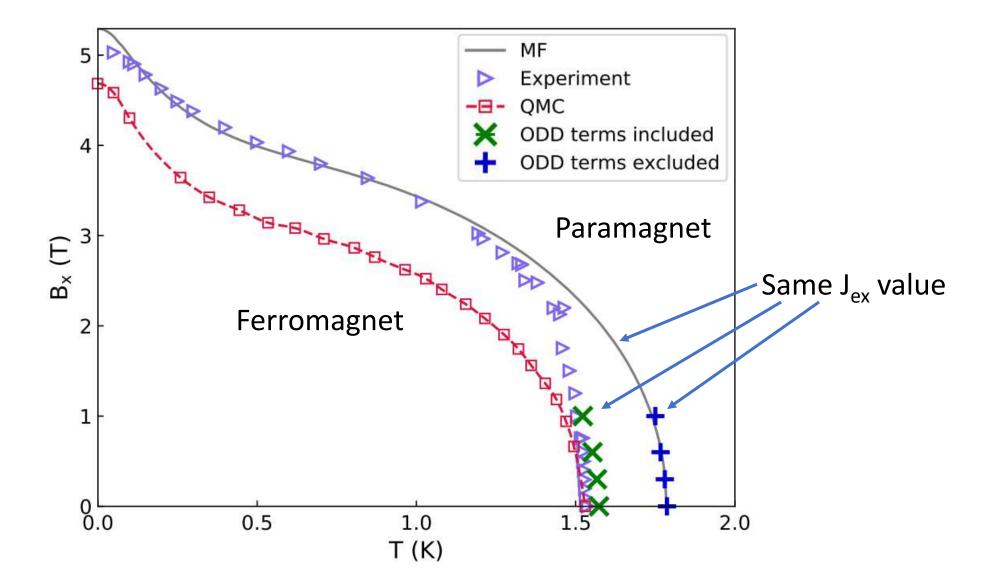
Studied Hamiltonian – Monte Carlo Simulation

- Starting from the full microscopic Hamiltonian we keep ODD terms
- Approximation: for each spin, each of the other N-1 spins are projected not *one* of their single-site states neglecting quantum many body effects

 $(I_{ov} = 1.16 \text{ mK})$

- Effective Hamiltonian
- Hybrid quantumclassical Monte Carlo $H_{eff} = \sum_{i} H_{cf}(J_{i}) - g_{L}\mu_{B} \sum_{i} \langle B_{i} \rangle \cdot J_{i}$ $B_{i}^{x} = B_{x} - g_{L}\mu_{B} \sum_{j \neq i} V_{ij}^{zx} J_{j}^{z}$ $B_{i}^{y} = -g_{L}\mu_{B} \sum_{j \neq i} V_{ij}^{zy} J_{j}^{z}$ $B_{i}^{z} = -\frac{1}{2} g_{L}\mu_{B} \sum_{j \neq i} V_{ij}^{zz} J_{j}^{z} - \frac{J_{ex}}{2g_{L}\mu_{B}} \sum_{j \in N.N.} J_{j}^{z}$

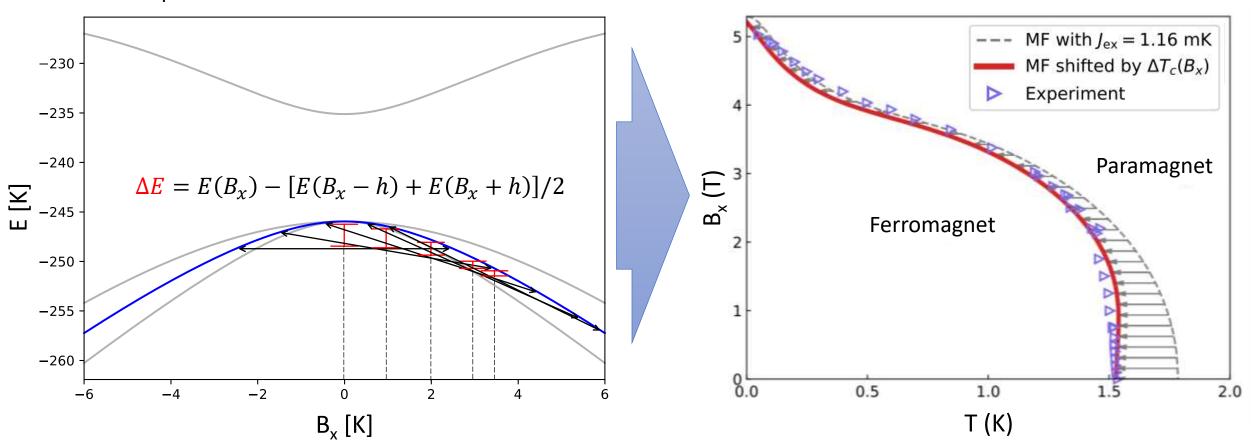
Numerical results



Can it explain the full phase boundary line?

 ΔE is an estimation of energy difference between the PM and FM phases

Further, assume $\Delta T_c \propto \Delta E$



Conclusions

- Quantum fluctuations induced by off-diagonal dipolar terms affect even the classical phase transition of dipolar Ising systems
- The effect diminishes with increasing external B_x
- Description of anisotropic dipolar systems by the Ising model essentially insufficient

Thank you!