The information entropy of quantum mechanical states

Alexander Stotland, Ben-Gurion University

Collaboration:

Doron Cohen (BGU) Andrei Pomeransky (Toulouse) Eitan Bachmat (BGU/CS)

Reference:

A. Stotland, A.A. Pomeransky, E. Bachmat, D. Cohen, Europhysics Letters 67, 700 (2004)

Information theory point of view

Shannon:

$$\mathcal{S}[\rho|\mathcal{A}] = -\sum_{r} p_r \ln(p_r)$$

 ρ - state of the system

 \mathcal{A} - measurement setup

What is the label r?

r labels the possible outputs of a measurement.

Definite output:

$$S = 0$$

Output one of n possibilities:

$$\mathcal{S} = \ln(n)$$

Maximally mixed state:

$$\mathcal{S} = \ln(N)$$

N - dimension of Hilbert space

Quantal definition of absolute entropy

$$S_{\text{total}} = S[A] + \sum_{A} P(A)S[\rho|A]$$

Average over all possible basis sets:

$$S[\rho] = \overline{S[\rho|A]} = S_0(N) + F(p_1, p_2, ...)$$

Minimum uncertainty entropy:

$$S_0(N) = \sum_{k=2}^{N} \frac{1}{k} \approx \ln(N) - (1-\gamma) + \frac{1}{2N}$$

Excess statistical entropy:

$$F(p_1, p_2, ...) = -\sum_{r} \left[\prod_{r' (\neq r)} \frac{p_r}{p_r - p_{r'}} \right] p_r \ln(p_r)$$

It is a measure for lack of purity.

Should be compared with:

$$S_{\text{von Neumann}} = -\sum_{r} p_r \ln p_r$$

Derivation - part one

$$f(s) = -s\ln(s)$$

$$S = \sum_{a} f\left(\sum_{r} p_{r} |\langle r|a\rangle|^{2}\right)^{A}$$

$$= \sum_{s} f\left(\sum_{r} p_{r} |\langle r|U|s\rangle|^{2}\right)^{U}$$

$$= Nf\left(\sum_{r} p_{r} |\langle r|\Psi\rangle|^{2}\right)^{\Psi}$$

$$= Nf\left(\sum_{r} p_{r} (x_{r}^{2} + y_{r}^{2})\right)^{\text{sphere}}$$

$$= N\int_{0}^{\infty} f(s) P(s) ds$$

$$s = \sum_{r} p_r |\Psi_r|^2 = \sum_{r=1}^{N} p_r (x_r^2 + y_r^2)$$

We have to find P(s), and do the integral...

Derivation - part 2

$$P(s) = \left\langle \delta(s - \sum_{r} p_r(x_r^2 + y_r^2)) \right\rangle_{\text{sphere}}$$

$$= (N-1)! \int_0^\infty ds_1 ... ds_N \, \delta(1 - \sum_r s_r) \delta(s - \sum_r p_r s_r)$$

$$= (N-1)! \int_0^{\infty} ... \int \frac{d\omega d\nu}{(2\pi)^2} e^{(1-\sum_r s_r)(i\nu+0)+i(s-\sum_r p_r s_r)\omega}$$

$$= (N-1)! \int \frac{d\omega d\nu}{(2\pi)^2} e^{i\nu + i\omega s} \prod_{r} \frac{1}{i\omega p_r + i\nu + 0}$$

$$= \int \frac{d\omega}{2\pi} \frac{(N-1)!}{(i\omega)^{N-1}} \sum_{r} e^{i\omega(s-p_r)} \prod_{r'(\neq r)} \frac{1}{p_{r'} - p_r}$$

$$= (N-1) \sum_{(p_r > s)} \left[\prod_{r' (\neq r)} \frac{1}{p_r - p_{r'}} \right] (p_r - s)^{N-2}$$

$$\int_0^p (p-s)^{N-2} s \ln(s) ds = \frac{p^N}{N(N-1)} \left[\ln(p) - \sum_{k=2}^n \frac{1}{k} \right]$$

Main results

Pure state:

$$S_0(N) = \sum_{k=2}^{N} \frac{1}{k} \approx \ln(N) - (1-\gamma) + \frac{1}{2N}$$

$$\sim$$
 $S_{\rm F}[\rho] < 1 - \gamma$

Mixed state:

$$S_{\mathrm{F}}[\rho] = -\sum_{r} \left| \prod_{r'(\neq r)} \frac{p_r}{p_r - p_{r'}} \right| p_r \ln(p_r)$$

Mixture of two states:

$$S_{\rm F}[\rho] = -\frac{1}{p_1 - p_2} (p_1^2 \ln(p_1) - p_2^2 \ln(p_2))$$

Uniform mixture of n states:

$$S_{\mathrm{F}}[\rho] = \ln(n) - \sum_{k=2}^{n} \frac{1}{k}$$

Inequalities

Entropy of a subsystem:

$$S[\sigma] < S[\rho]$$

System composed of two independent subsystems:

$$S[\rho|\mathcal{A}\otimes\mathcal{B}] = S[\sigma_{\mathrm{A}}|\mathcal{A}] + S[\sigma_{\mathrm{B}}|\mathcal{B}]$$

Hence

$$S[\rho] \ge S[\sigma_{\rm A}] + S[\sigma_{\rm B}]$$

A particular case is:

$$S_0(NM) > S_0(N) + S_0(M)$$

On the other hand (generalization):

$$S_{\rm F}[\rho] \le S_{\rm F}[\sigma_{\rm A}] + S_{\rm F}[\sigma_{\rm B}]$$

As in the case with Von-Neumann:

$$S_{\mathrm{H}}[\rho] \le S_{\mathrm{H}}[\sigma_{\mathrm{A}}] + S_{\mathrm{H}}[\sigma_{\mathrm{B}}]$$

Summary

We have found explicit expressions for the minimum uncertainty entropy $S_0(N)$, and for the excess statistical entropy $F(p_1, p_2, ...)$.

 $F(p_1, p_2, ...)$ can be used as a measure for lack of purity of quantum mechanical states, and it is strongly correlated with the Von-Neumann entropy $S_{\rm H}[\rho]$.

 $F(p_1, p_2, ...)$ is bounded from above by $(1 - \gamma)$.

The total information entropy $S[\rho]$, unlike the Von-Neumann entropy, has properties that do make sense from information theory point of view.

Time evolution under non-perturbative circumstances

Alexander Stoland, Ben-Gurion University

Collaborations:

Doron Cohen (BGU)

Discussions:

Vladimir Goland

Problems and their classical treatment

• Step potential

$$\delta E_{\rm cl} = V_{\rm step}$$

Moving wall

$$\delta E_{\rm cl} = 2MvV$$

• Ring

$$\delta E_{\rm cl} = eV$$

 $\delta \mathbf{E}_{\scriptscriptstyle \mathrm{cl}} \gg \mathbf{\Delta}$ - semiclassical case

Step potential

• Classical energy distribution

• QM energy distribution

Quantum Classical Correspondence

Energy distribution moments:

$$\delta E^r = \int p_t(E) E^r dE$$

r=1 - expectation value

r=2 - variance

Bohr QCC:

- Gaussian wavepacket
- smooth potentials

 \Rightarrow the same moments

But not always the wavepackets are gaussian...

LRT: the long time behavior is determined by the short time behavior.

Second moment \Rightarrow Central limit theorem

- r = 2 robust QCC
- r > 2 fragile QCC

We tried to find a "sick" problem. The worst problem for Bohr: Step potential

Is there a QCC in this problem???

Step - analytical results

- Detailed QCC (r > 2) is destroyed.
- Restricted QCC (r=2) is preserved.

Classical moments:

$$\langle (p - p_0)^r \rangle = u^r \times |A|^2 v_{\rm E} t$$

 $u = -U_0/v_{\rm E}$ is the momentum change

QM analytical solution:

$$|\langle p_2|\mathcal{U}|p_1\rangle|^2 = 4u^2 \frac{\sin^2\frac{(p_2-p_1-u)v_{\rm E}t}{2}}{(p_2-p_1)^2(p_2-p_1-u)^2}$$

QM moments:

•
$$r = 1$$

 $\langle p_2 - p_1 \rangle = 2\pi u \times v_{\rm E} t - 2\pi \sin(u v_{\rm E} t)$

•
$$r = 2$$

 $\langle (p_2 - p_1)^2 \rangle = 2\pi u^2 \times v_{\rm E} t$

•
$$r > 2$$

$$\langle (p_2 - p_1)^r \rangle = \infty$$

The second moment is identical to the classical one, and the first moment has a modulation part in addition.

Moving Wall

• QM picture

$$\delta E_{\rm cl} \ll \Delta \iff V \ll \frac{\hbar}{ML} \iff \text{adiabatic behavior}$$

Otherwise, the behavior is different:

AC driving \implies FGR: $\hbar\omega = E_n - E_m$

In our problem there is no AC driving!

Is there a self-generated ω ?:

"
$$\hbar\omega$$
" = $dE_{\rm col} = 2MvV$

YES!

Moving Wall

Numerical Solution

$$\frac{da_n}{dt} = -\frac{i}{\hbar} E_n a_n - \frac{V}{L} \sum_{m(\neq n)} \frac{2nm}{n^2 - m^2} a_m$$

Density plots of $a_n(t)$:

Semiclassical:

Adiabatic:

 a_n VS. m for T_1 time

 a_n VS. m for $2T_1$ time

The plots are not so simple!

Description

$$\delta E_{\rm cl} = eV$$

 $A = \Phi \delta(x - x_0)$ - the vector potential.

$$\mathcal{E} = -\frac{1}{c}\dot{\Phi}\delta(x-x_0)$$
 - the electric field.

Note: Gauge Invariance

$$A' = A - \nabla \Lambda$$
 $U' = U + \frac{1}{c} \frac{\partial \Lambda}{\partial t}$

The problem was solved in the following ways:

- Analytical solution (for linear energies)
- Numerical solution (for linear energies)
- Numerical solution (for quadratic energies)

Numerics/Solution

Hamiltonian:

$$H = \frac{1}{2M} \left(p - \frac{e}{c} A(t) \right)^2$$

Periodic boundary conditions:

$$\Psi(x) = \Psi(x+L)$$

Schrodinger equation:

$$\frac{da_n}{dt} = -\frac{\imath}{\hbar} a_n E_n - \alpha \sum_{m(\neq n)} \frac{1}{n-m} a_m, \quad \alpha = \frac{\dot{\Phi}}{\Phi_0}$$

$$E_n = \frac{1}{2M} \left(\frac{2\pi\hbar}{L} \right)^2 \left(n - \frac{\Phi(t)}{\Phi_0} \right)^2$$

Analytical solution for $E_n = \Phi_c^2 - 2\Phi_c n$:

$$|a_n(t)|^2 = \left(\frac{\alpha}{\Phi_c}\right)^2 \frac{\sin^2\left(\Phi_c t \left(n - n_0 + \alpha \left(t - \frac{\pi}{\Phi_c}\right)\right)\right)}{(n - n_0 + \alpha t)^2 (n - n_0 + \alpha \left(t - \frac{\pi}{\Phi_c}\right))^2}$$

MOVIE

QM picture

Energy levels:
$$E_n = \frac{1}{2M} \left(\frac{2\pi\hbar}{L} \right)^2 \left(n - \frac{\Phi}{\Phi_0} \right)^2$$

Different regimes:

Is there a self-generated ω ?

"
$$\hbar\omega$$
" = eV

YES!

Analysis

Hamiltonian:

$$H = \frac{1}{2M} \left(p - \frac{e}{c} A(t) \right)^2$$

Periodic boundary conditions:

$$\Psi(x) = \Psi(x+L)$$

The Schrodinger equation:

$$\frac{da_n}{dt} = -\frac{i}{\hbar} a_n E_n - \frac{\dot{\Phi}}{\Phi_0} \sum_{m(\neq n)} \frac{1}{n-m} a_m$$

where

$$E_n = \frac{1}{2M} \left(\frac{2\pi\hbar}{L} \right)^2 \left(n - \frac{\Phi(t)}{\Phi_0} \right)^2$$

Note: Moving Wall

$$\frac{da_n}{dt} = -\frac{i}{\hbar} E_n a_n - \frac{V}{L} \sum_{m(\neq n)} \frac{2nm}{n^2 - m^2} a_m$$

$$E_n = \frac{\hbar^2 \pi^2}{2ML^2} n^2$$

Derivation of the "ring" equation

Strategy:

- $A = \tilde{A} + \nabla \Lambda$ does not change the fields.
- Find a potential which can be solved easily and then find the gauge function Λ .

$$\implies \tilde{A} = \frac{\Phi}{L}$$

$$\Lambda(x) = \begin{cases} -\frac{\Phi}{L}x & , \ 0 < x < \frac{L}{2} \\ -\frac{\Phi}{L}x + \Phi & , \ \frac{L}{2} < x < L \end{cases}$$

- Verify that $\oint \tilde{A} \cdot dl = \oint A \cdot dl$.
- Find the new wave functions for our original potential by: $\Psi = \tilde{\Psi} \exp\left(\frac{ie}{\hbar c}\Lambda\right)$

Use the standard procedure and obtain:

$$\frac{da_n}{dt} = -\frac{\imath}{\hbar} a_n E_n - \sum_{m(\neq n)} a_m \left\langle \psi_m \left| \frac{d}{dt} \right| \psi_n \right\rangle$$

Numerical Solution - Evolution Matrix

The density plot of $a_n(t)$

The plot of a_n VS. m for $1.5T_1$ time. The plot of a_n VS. m for $2T_1$ time.

The Hamiltonian depends on time explicitly.

 \Rightarrow The evolution operator $U = e^{-\frac{i}{\hbar}Ht}$ is meaningless.

BUT: If $\Phi(t) \gg \dot{\Phi}t$ we may approximate $\Phi(t) = \text{const.}$

Fourier Method

The equation:

$$\frac{da_n}{dt} = -\frac{i}{\hbar} E_n a_n + \alpha \sum_{m(\neq n)} \frac{1}{n-m} a_m$$

$$E_n = \frac{1}{2M} \left(\frac{2\pi\hbar}{L}\right)^2 \left(n - \frac{\Phi(t)}{\Phi_0}\right)^2 , \qquad \Phi(t) = \Phi_{\text{const}} + \dot{\Phi}t$$

If $\Phi(t) \gg \dot{\Phi}t$ we may approximate $\Phi(t) = \text{const.}$

$$A_k = \sum_{n=-\infty}^{\infty} a_n e^{-ikn}$$
 Bloch electorns in a lattice $a_n = \frac{1}{2\pi} \int_0^{2\pi} A_k e^{ikn}$ $\Rightarrow k \text{ basis.}$

 $\sum_{m(\neq n)} \frac{1}{n-m} a_m$ is a convolution for m!!!

Omitting prefactors: $E_n = n^2 - 2\Phi_c n + \Phi_c^2$

•
$$E_n = 0, E_n = \Phi_c^2 - 2\Phi_c n$$
 - Analytical

•
$$E_n = \Phi_c^2 - 2\Phi_c n$$
, $E_n = (n - \Phi_c)^2$ - Numerical

Preliminary calculation

$$\frac{da_n}{dt} = \alpha \sum_{m(\neq n)} \frac{1}{n-m} a_m , \quad (E_n = 0)$$

Initial conditions: $a_n(t) = \delta_{n,n_0}$.

Fourier transforms:

$$A_k(t) = \sum_{n=-\infty}^{\infty} a_n e^{-ikn}$$

$$E_k = \alpha \sum_{n=-\infty}^{\infty} \frac{e^{-ikn}}{n}, \quad n \neq 0$$

Therefore:

$$\frac{d}{dt}A_k(t) = E_k A_k(t)$$

$$A_k(t=0) = e^{-ikn_0}$$

Solving the equation and performing the inverse transform one can obtain:

$$a_n(t) = \frac{\sin \pi \alpha t}{\pi (\alpha t + n - n_0)}$$

Analytical Solution

$$\frac{da_n}{dt} = -iE_n a_n + \alpha \sum_{m(\neq n)} \frac{1}{n-m} a_m$$

$$a_n = \tilde{a}_n e^{-\imath E_n t}$$

$$\Rightarrow \frac{d\tilde{a_n}}{dt} = \alpha \sum_{m(\neq n)} \frac{e^{i(E_n - E_m)t}}{n - m} \tilde{a}_m$$

The RHS is a convolution for $E_n - E_m \sim n - m$.

So approximate: $E_n = \Phi_c^2 - 2\Phi_c n$.

This equation can be solved analytically using the Fourier method (but the solution is a little bit tricky...)

$$|a_n(t)|^2 = \left(\frac{\alpha}{\Phi_c}\right)^2 \frac{\sin^2\left(\Phi_c t \left(n - n_0 + \alpha \left(t - \frac{\pi}{\Phi_c}\right)\right)\right)}{(n - n_0 + \alpha t)^2 (n - n_0 + \alpha \left(t - \frac{\pi}{\Phi_c}\right))^2}$$

Analytical Solution - Discussion

The solution:

$$|a_n(t)|^2 = \left(\frac{\alpha}{\Phi_c}\right)^2 \frac{\sin^2\left(\Phi_c t \left(n - n_0 + \alpha \left(t - \frac{\pi}{\Phi_c}\right)\right)\right)}{(n - n_0 + \alpha t)^2 (n - n_0 + \alpha \left(t - \frac{\pi}{\Phi_c}\right))^2}$$

Compare to the "step potential":

$$|\langle p_2|\mathcal{U}|p_1\rangle|^2 = 4u^2 \frac{\sin^2\frac{(p_2-p_1-u)v_{\rm E}t}{2}}{(p_2-p_1)^2(p_2-p_1-u)^2}$$

• The behavior is very similar!

Numerical Solution

Write **the** equation

$$\frac{da_n}{dt} = -iE_n a_n + \alpha \sum_{m(\neq n)} \frac{1}{n-m} a_m = P_1 a_n + P_2 a_n$$

We saw that for $a_n(0) = \delta_{n,n_0}$ the solution for $E_n = 0$ is:

$$a_n(t) = \frac{\sin \pi \alpha t}{\pi (\alpha t + n - n_0)}$$

For the case of $a_n(0) = b_n$ the solution for $E_n = 0$ is:

$$a_n(t) = \frac{\sin \pi \alpha t}{\pi} \sum_{m} \frac{b_n}{\alpha t + n - m}$$

It is a convolution!!!

The equation $\frac{da_n}{dt} = P_1 a_n$ is solved analytically.

Numerical Solution - Cont.

"Split" algorithm

- 1. P_1 with the step $\Delta t = 0.5 dt$
- 2. P_2 with the step $\Delta t = 0.5dt$ and the initial conditions which are the results of the previous step.

Calculated using the FFT algorithm.

3. P_1 with the step $\Delta t = 0.5dt$ and the initial conditions which are the results of the previous step.

Advantages of this algorithm:

- has no limitations for E_n it may depend on time explicitly
- much faster than the "evolution matrix method"
- uses less memory

Summary

1. The theory of response requires a theory for an energy spreading.

$$\delta E^r = ?$$
, $r = 1, 2, ...$

- 2. Beyond the Bohr correspondence: distinction between the restricted and detailed QCC.
- 3. Detailed QCC is fragile.

Examples:

- step
- moving wall
- ring
- 4. We shed new light on the energy spreading process in the case of a EMF-driven ring.
- 5. The semi-classical limit is not perturbative.
- 6. In order to derive the "LRT" one cannot use perturbation theory even not to the infinite order.