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Information theory point of view

Shannon:

SlplA] = Zpr In(pr)

p - state of the system

A - measurement setup

What is the label r?

r labels the possible outputs of a measurement.

Definite output:
S=0

Output one of n possibilities:

S =1In(n)

Maximally mixed state:

S =1In(N)

N - dimension of Hilbert space




Quantal definition of absolute entropy

Stotal — S[»A] + Z P(A)S[p‘A]
A

Average over all possible basis sets:

SlplAl = So(N) + F(p1,p2,---)

Excess statistical entropy:

F(pl,pg,...) = —Z H Pr

r _7“/(#7‘) p?“ T pr’_

It is a measure for lack of purity.

Should be compared with:

Svon Neumann — Zp?“ lnpr
T




Derivation - part one

U

N
S = Zpr\‘lfr!2 — Zpr(mz + yg)
r r=1

We have to find P(s), and do the integral...




Derivation - part 2
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Main results

Pure state:

~? Selp] < 1—1~

Mixed state:

Srlp] = _Z

r

Mixture of two states:

Selpl = —— i - (pt In(p1) — p3 In(p2))

Uniform mixture of n states:

Sl = )~ ¢
k=2




Inequalities

Entropy of a subsystem:

Slo] < Sp]

System composed of two independent subsystems:

Slp|A® B] = S|oa|A]l + Slog|B]

Hence

Slp] = Sloal + Slow]

A particular case is:

So(NM) > So(N) + So(M)

On the other hand (generalization):
Selp] < Seloal + Splos]

As in the case with Von-Neumann:

SH[ﬂ] < SH[UA] + SH[UB]




We have found explicit expressions
for the minimum uncertainty entropy So(V),

and for the excess statistical entropy F'(p1,p2, -..).

F(p1,po,...) can be used as a measure for lack of

purity of quantum mechanical states, and it is strongly

correlated with the Von-Neumann entropy Sy|p].

F(p1,p2,...) is bounded from above by (1 — 7).

The total information entropy S|p|, unlike the
Von-Neumann entropy, has properties that do make

sense from information theory point of view.
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Problems and their classical treatment

e Step potential

V(x) A

Vstep

e Moving wall

Vx)A

|
 Velocity
ﬁ

1 -
X

5Ecl — ZMUV

EMF = Voltage

5Ecl — GV

OE., > A - semiclassical case




Step potential

Vstep

5Ecl — ‘/step

Classical energy distribution

p(E)

E,

QM energy distribution

VA

+5E

p(E)




Quantum Classical Correspondence

Energy distribution moments:

SE" — / pi(E)E"dE

r = 1 - expectation value

r = 2 - variance

Bohr QCC:
e (Gaussian wavepacket
e smooth potentials

= the same moments

But not always the wavepackets are gaussian...

LRT: the long time behavior is determined by the short

time behavior.

Second moment = Central limit theorem
e r =2 - robust QCC
o > 2 - fragile QCC

We tried to find a ”sick” problem. The worst problem for
Bohr: Step potential

Is there a QCC in this problem?7?




Step - analytical results
e Detailed QCC (r > 2) is destroyed.
e Restricted QCC (r = 2) is preserved.
Classical moments:
((p—po)") = u" x[A]*vgt

u = —Up/vg is the momentum change

QM analytical solution:

. —p1— t
Sln2 (p2 p12 U)UE

(p2 — p1)*(p2 — P1 — u)

| {p2|d|p1) [* = 4u”

2

QM moments:

o =1
(py — p1) = 2mu X vgt — 27 sin(uvgt)
o =2
((p2 — p1)?) = 2mu? X vt
o> 2
((p2 = p1)") = o0
The second moment is identical to the classical one,

and the first moment has a modulation part in
addition.




Moving Wall
A

p

| Velocity
[%

[
1 -
X

5EC1 — 2MUV
o (M picture

b, < A<= VKL % <= adiabatic behavior

Otherwise, the behavior is different:

AC driving — FGR: hw=F, — E,,
In our problem there is no AC driving!

Is there a self-generated w?:
"h'” =dE,,, = 2MvV
YES!




Moving Wall

Numerical Solution

dt

Density plots of a,(t):
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The plots are not so simple!




Ring

Description

EMF = Voltage

5Ecl — ev
A = ®)(x — x¢) - the vector potential.

= —Ld§(z — 2¢) - the electric field.

Note: Gauge Invariance
1 0A

A'=A—-VA '=U+ -
\% U +c@t

The problem was solved in the following ways:

e Analytical solution (for linear energies)
e Numerical solution (for linear energies)

e Numerical solution (for quadratic energies)




Ring
Numerics/Solution

Hamiltonian:

Periodic boundary conditions:

U(z) = U(z + L)

Schrodinger equation:

da,, ?

— = ——ap kb, — Z
at i m(#n)

Analytical solution for F,, = CI% — 20 .n:

&n(@t@wwm+&t———»

n —no+ at)?(n —no + ot — F-))?

C
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Ring
Analysis

Hamiltonian:
2
(p - —A( ))

Periodic boundary conditions:

U(z) = U(x + L)

The Schrodinger equation:

Note: Moving Wall
da,, 1 V

o - pten g

En _ h27T2 5




Ring
Derivation of the "ring” equation
Strategy:

e A=A+ VA does not change the fields.

e Find a potential which can be solved easily and

then find the gauge function A.

_ ¢
— A=

,O<x<%

+¢ ,E<z<L

e Verify that § A-dl = § A-dl.

e Find the new wave functions for our original
potential by: U = W exp (72A)

Use the standard procedure and obtain:

da,, ? d
5, — T = nEn_ m m | 7, n
dt B m%;n)“ <w ‘dt|¢ >




Ring

Numerical Solution - Evolution Matrix

The density plot of a,(t)
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The Hamiltonian depends on time explicitly.

= The evolution operator U = ¢~ 7" is meaningless.

BUT: If ®(t) > &t we may approximate ®(¢) = const.




Ring
Fourier Method

The equation:
1

n_

(4

E,a, + « Z
ah (#n)

Am
m

1 [/2nh\? D(t)\? .
En T £ ’ (:D :(:Dconst (D
( 3 ) (" @o) (t) o

If ®(t) > dt we may approximate ®(t) = const.

o0
Z a e—zkn )
n Bloch electorns in

n=——oo

5 a lattice
7T

= k basis.

1 : . "
> m(£n) —m@m is a convolution for m!!!

Omitting prefactors: E,, = n® — 2®.n + c1>3,
o £, =0, F, = CIDE — 2®.n - Analytical
o £, =®* - 2b.n, B, = (n— ®.)? - Numerical




Ring

Preliminary calculation

Initial conditions: a,(t) = dy.n,-

Y

Fourier transforms:

00
2 : ane—zkn

n=—oo

—1kn

ozie n # 0

)
n
n=-—00

Therefore:

d
— Ap(t
A

Ag(t = 0)

Solving the equation and performing the inverse

transform one can obtain:

sin ot

m(at +n —ng)




Ring

Analytical Solution

e = —ikb,a, + o Z
m(#n)

The RHS is a convolution for F, — F,,, ~ n — m.

So approximate: F, = ®2 — 20 .n.

This equation can be solved analytically using the
Fourier method (but the solution is a little bit

sin? (@t (n —no+alt — £)))

n —ng+ at)?(n —no+ ot — F-))?

C




Ring
Analytical Solution - Discussion

The solution:

(1)) = (3 sin® (@t (n —no +a(t - 3)))

./ (n—mno+at)*(n—no+alt—g))*

Compare to the "step potential”:

. —D1— t
sin2 (p2 p12 u)UE

(p2 — p1)2(p2 — D1 — U)2

[ (p2U|p1) |? = 40

e The behavior is very similar!

A
P




Ring
Numerical Solution

Write the equation

day, 1
i = —B,a, + o Z am = Pray, + Pray,
at mEn)

We saw that for a,(0) = ¢, , the solution for E, =0

sin ot

w(at +n — ng)

For the case of a,(0) = b,, the solution for E,, = 0 is:

sin wot Z b,

T mozt—l—n—m

It is a convolution!!!

The equation dg—gb = Pia, is solved analytically.




Ring

Numerical Solution - Cont.

”?Split” algorithm

C

dt

1. P, with the step At = 0.5dt

2. P> with the step At = 0.5dt and the initial
conditions which are the results of the previous
step.

Calculated using the FEF'T algorithm.

. P, with the step At = 0.5dt and the initial
conditions which are the results of the previous

step.
Advantages of this algorithm:

e has no limitations for E,, - it may depend on time

explicitly
e much faster than the ”evolution matrix method”

e uses less memory




Summary

. The theory of response requires a theory for an

energy spreading.

" =7, r=1,2,..

. Beyond the Bohr correspondence:

distinction between the restricted and detailed

QCC.
. Detailed QCC is fragile.

Examples:

e step

e moving wall
® ring

. We shed new light on the energy spreading

process in the case of a EMF-driven ring.
. The semi-classical limit is not perturbative.

. In order to derive the "LRT” one cannot use
perturbation theory - even not to the infinite

order.




