Semilinear response for the heating rate of cold atoms in vibrating traps

Alexander Stotland, Ben-Gurion University

Collaborations:
Doron Cohen (BGU)
Nir Davidson (WIS)

Discussions:
Itamar Sela
Yoav Etzioni
Maya Chuchem
arXiv reference:
A. Stotland, D. Cohen and N. Davidson, arXiv (2008)

\$DIP, $\$$ BSF

Diffusion and Energy absorption

Driven chaotic system with Hamiltonian $\mathcal{H}(X(t))$
$X=$ some control parameter
$\dot{X}=$ rate of the (noisy) driving
\sim diffusion in energy space:
$\boldsymbol{D}=\boldsymbol{G}_{\text {diffusion }} \overline{\dot{X}^{2}}$
$~$ energy absorption:
$\dot{\boldsymbol{E}}=\boldsymbol{G}_{\text {absorption }} \overline{\dot{X}^{2}}$
[Ott, Brown, Grebogi, Wilkinson, Jarzynski, D.C.]

There is a dissipation-diffusion relation.
In the canonical case $\dot{E}=D / T$.
Below we use for G scaled units.

Linear response theory

$$
\mathcal{H}=\left\{E_{n}\right\}-X(t)\left\{V_{n m}\right\}
$$

$\left.\boldsymbol{G}=\pi \varrho_{\mathrm{E}}\left\langle\left.\langle | V_{m n}\right|^{2}\right\rangle\right\rangle_{\text {algebraic }}$

applies if

"strong quantum chaos"
(driven transitions \ll relaxation)
otherwise
connected sequences of transitions are essential.
leading to
Semi Linear Response Theory (SLRT)

Semi Linear Response Theory

$$
\begin{aligned}
& \mathcal{H}=\left\{E_{n}\right\}-X(t)\left\{V_{n m}\right\} \\
& \left.\boldsymbol{G}=\pi \varrho_{\mathrm{E}}\left\langle\left.\langle | V_{m n}\right|^{2}\right\rangle\right\rangle_{\mathrm{SLRT}}
\end{aligned}
$$

$$
-\mathrm{J}
$$

+J
$\mathrm{g}_{n m}=2 \varrho_{\mathrm{F}}^{-3} \frac{\left|V_{n m}\right|^{2}}{\left(E_{n}-E_{m}\right)^{2}} \tilde{F}\left(E_{n}-E_{m}\right)$
$\left.\left\langle\left.\langle | V_{m n}\right|^{2}\right\rangle\right\rangle_{\text {SLAT }} \equiv$ inverse resistivity of the network
$\left.\left.\left.\left\langle\left.\langle | V_{m n}\right|^{2}\right\rangle\right\rangle_{\text {harmonic }} \ll\left\langle\left.\langle | V_{m n}\right|^{2}\right\rangle\right\rangle_{\text {SLRT }} \ll\left\langle\left.\langle | V_{m n}\right|^{2}\right\rangle\right\rangle_{\text {algebraic }}$

The model

A particle in a 2-D box with a vibrating wall.

scatterer

Deforming potential: smooth Gaussian / s-scatterer

The Hamiltonian in the $\boldsymbol{n}=\left(n_{x}, n_{y}\right)$ basis:
$\mathcal{H}=\operatorname{diag}\left\{E_{\boldsymbol{n}}\right\}+u\left\{U_{\boldsymbol{n m}}\right\}+f(t)\left\{V_{\boldsymbol{n m}}\right\}$
The matrix elements for the wall displacement:
$V_{n m}=-\delta_{n_{y}, m_{y}} \times \frac{\pi^{2}}{\mathrm{~m} L_{x}^{3}} n_{x} m_{x}$

The Hamiltonian in the E_{n} basis:
$\mathcal{H}=\operatorname{diag}\left\{E_{n}\right\}+f(t)\left\{V_{n m}\right\}$
$\left.\left\langle\left.\langle | V_{n m}\right|^{2}\right\rangle\right\rangle_{a} \approx \frac{m v_{\mathrm{E}}^{3}}{2 \pi L_{x}^{2} L_{y}}$
$\left.\left\langle\left.\langle | V_{n m}\right|^{2}\right\rangle\right\rangle_{g} \approx\left(\frac{\mathrm{~m}^{2} v_{\mathrm{E}}^{2}}{2 \pi L_{x}}\right)^{2} \exp \left[-2 \mathrm{~m}^{2} v_{\mathrm{E}}^{2}\left(\sigma_{x}^{2}+\sigma_{y}^{2}\right)\right] \times u^{2}$
$\left\{\left|V_{n m}\right|^{2}\right\}$ as a random matrix $\{X\}$

- sparsity:

$$
q=\frac{\langle\langle x\rangle\rangle_{\mathrm{g}}}{\langle\langle x\rangle\rangle_{\mathrm{a}}}
$$

- texture

Histogram of X :

Algebraic average: $\langle\langle x\rangle\rangle_{a}=\langle x\rangle$
Harmonic average: $\langle\langle x\rangle\rangle_{h}=[\langle 1 / x\rangle]^{-1}$
Geometric average: $\langle\langle x\rangle\rangle_{g}=\exp [\langle\log x\rangle]$
$\langle\langle x\rangle\rangle_{h} \ll\langle\langle x\rangle\rangle_{g} \ll\langle\langle x\rangle\rangle_{a}$

Numerical Results

$A S=1$

$A S=20$

$\left.G_{\text {ERT }}=\pi \varrho_{\mathrm{E}}\left\langle\left.\langle | V_{n m}\right|^{2}\right\rangle\right\rangle_{\text {algebraic }}$
$G_{\mathrm{SLRT}}=q \exp [2 \sqrt{-\ln q}] \times G_{\mathrm{LRT}}$

The RMT modeling and VRH

Log-normal distribution:

$$
\begin{aligned}
f(x ; \mu, \sigma) & =\frac{1}{x \sigma \sqrt{2 \pi}} \exp \left(-\frac{(\ln x-\mu)^{2}}{2 \sigma^{2}}\right) \\
\mu & =\ln \langle\langle x\rangle\rangle_{\mathrm{g}} \\
\sigma^{2} & =2 \ln \frac{\langle\langle x\rangle\rangle_{\mathrm{a}}}{\langle\langle x\rangle\rangle_{\mathrm{g}}}
\end{aligned}
$$

A typical matrix element for connected transitions:
$\left(\frac{\omega}{\Delta}\right) \operatorname{Prob}\left(x>x_{\omega}\right) \sim 1$
$x_{\omega} \approx\langle\langle x\rangle\rangle_{\mathrm{g}} \exp [2 \sqrt{-\ln q}]$

Generalized VRH estimate:
$G_{\mathrm{SLRT}}=q \exp [2 \sqrt{-\ln q}] \times G_{\mathrm{LRT}}$

Conclusions

(*) Wigner (~1955):
The perturbation is represented by a random matrix whose elements are taken from a Gaussian distribution.

Not always...

1. No "strong quantum chaos" \Longrightarrow log-normal distribution.
2. The heating process \sim a percolation problem.
3. Resistors network calculation to get $G_{\text {SLRT }}$.
4. Generalization of the VRH estimate
5. SLRT is essential whenever the distribution of matrix elements is wide ("sparsity") or if the matrix has "texture".
[1] D. Cohen, T. Kottos and H. Schanz, JPA (2006)
[2] S. Bandopadhyay, Y. Etzioni and D. Cohen, EPL (2006)
[3] M. Wilkinson, B. Mehlig and D. Cohen, EPL (2006)
[4] D. Cohen, PRB (2007)
[5] A. Stotland, R. Budoyo, T. Peer, T. Kottos and D. Cohen, JPA(FTC) (2008)
