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MODELLBILDUNG IN F-THEORIE MITTELS HYPERLADUNGSFLÜSSEN:

Eine der Herausforderungen der String-Phänomenologie ist es, Kompaktifizierungen der Superstring-
theorie zu finden sodass die resultierende effektive Niedrigenergietheorie dem Minimalen Supersym-
metrischen Standardmodell der Teilchenphysik ähnelt, d.h. mit SU(3) × SU(2) × U(1) Eichgruppe,
drei Generationen von Fermionen und einem Higgs-Doublet. Eine etablierte Methode um die korrekte
Eichgruppe zu erreichen ist, eine SU(5) GUT-Theorie mit D7-Branen in Typ IIB Superstringtheorie
zu modellieren, und dann die GUT-Gruppe mittels eines Hyperladungsflusses zu brechen.
Die korrekte nicht-störungstheoretische Beschreibung von Typ IIB Superstringtheorie mit D3- und D7-
Branen ist F-Theorie. In F-Theorie wird die Geometrie der Membranen und der Kompaktifizierung
durch eine vierdimensionale elliptisch gefaserte Calabi-Yau Mannigfaltigkeit erfasst. In [1] geben die
Autoren ein einfaches Beispiel für ein realistisches Modell in diesem Zusammenhang, welches jedoch
neun Generationen von Fermionen und fünf Higgs-Doublets beinhaltet.
Das Ziel dieser Arbeit ist es, die notwendigen Voraussetzungen in der Differentialgeometrie aufzuar-
beiten, um im Detail zu erklären, wie ein solches Modell in F-Theorie aufgebaut werden kann, und
schließlich das Modell aus [1] zu verbessern. Durch das Hinzufügen eines sogenannten Gλ

4 -Flusses
konnten wir die Anzahl der Generationen in dem Modell auf den gewünschten Wert von drei zu
reduzieren.

MODEL BUILDING IN F-THEORY USING HYPERCHARGE FLUXES:

One of the challenges in string phenomenology is to find compactifications of superstring theory such
that the resulting low-energy effective theory resembles the Minimal Supersymmetric Standard Model
of particle physics with its SU(3) × SU(2) × U(1) gauge group, three generations of fermions and one
Higgs doublet. An established method that achieves the correct gauge group is to model an SU(5)
GUT theory using type IIB superstring theory with D7-branes and then to break the GUT group by
including a hypercharge flux.
The correct non-perturbative description of type IIB superstring theory with D3- and D7-branes is
F-theory. In F-theory, the geometry of the branes and of the compactification space is captured by a
four-dimensional elliptically fibered Calabi-Yau. In [1], the authors give a basic example of a realistic
model in this context, including however nine generations of fermions and five Higgs doublets.
The aim of this thesis is to review the necessary prerequisites in differential geometry, to explain in
detail how such a model in F-theory can be built, and finally to improve the model given in [1]. By
including a so-called Gλ

4 -flux, we were able to reduce the number of generations in the model to the
desired value of three.
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Chapter 1

Introduction

It has always been a goal of Physics to fundamentally understand the laws of the universe and find
one single model which is valid for all kinds of processes in it. Unification is a recurring theme along
the way, starting with Maxwell in the 19th century: He was able to describe the hitherto seperate
phenomena of electricity and magnetism in a unified framework, it is now called electromagnetism.
After further unifications, we are nowadays describing the electromagnetic, the weak and the strong
interactions between all known elementary particles in just one model, the Standard Model of particle
physics.

Still, we know that the Standard Model can not be valid for arbitrarily high energy scales, and it is
believed that it has to be unified with gravity in order to find a fundamental theory that is UV-complete,
i.e. valid on all scales. The best developed and arguably most promising candidate for this unification
is superstring theory. Superstring theory is a ten-dimensional quantum theory that necessarily predicts
gravity. The theory is unique in ten dimensions, but needs to be compactified on a six-dimensional
manifold in order to connect to the real world. The field of string phenomenology is concerned with how
the effective particle spectrum in the low-energy limit depends on the geometry of this compactification.
One of the main challenges is to find compactifications such that the low-energy effective theory resembles
the Standard Model. As superstring theory is inherently supersymmetric, it is easier to aim instead for
a supersymmetric version of the Standard Model such as the Minimal Supersymmetric Standard Model
(MSSM).

The MSSM is a non-abelian gauge theory with an SU(3)×SU(2)×U(1) gauge group, three generations
of chiral matter and one Higgs doublet. There is an established method that gives us the correct gauge
group from string compactification, it was first discovered in [2] (see also [3]). The idea is to first model
an SU(5) grand unified theory using certain 8-dimensional non-perturbative objects called D7-branes. If
one then includes a hypercharge flux, a non-zero background value for the field strength corresponding
to the hypercharge generator embedded in SU(5), the symmetry is broken down to the Standard Model
gauge group or a subgroup of it. To make sure that the full Standard Model symmetry is retained,
one has to take care that the hypercharge generator does not acquire a Stückelberg mass. This sets a
condition on the hypercharge flux, the best language to formulate this condition is in the homology of
the compactification manifold X3: The stack of D7-branes lies on a divisor S ⊂ X3 and the hypercharge
flux is a 2-form FY ∈ H2(S). FY is Poincaré dual to a 2-cycle CY ∈ H2(S) which needs to be non-trivial
in the homology of S but trivial in the homology of X3,

ι∗CY = 0 (1.1)

(where ι : S → X3 is the embedding).
In the presence of D7-branes, the string coupling varies highly as a function of spacetime. The correct

non-perturbative description of type IIB string compactifications with D3- and D7-branes is F-theory.
The F-theory conjecture [4] states that the physics of the type IIB orientifold is encoded in the geometry
of a four-dimensional elliptically fibered Calabi-Yau Y4 [5]. The location of the branes is encoded in the
singularities of the elliptic fibration, the type IIB brane fluxes and closed string fluxes can be described
as components of a 4-form flux G4 ∈ H4(Y4). The construction described above which yields the MSSM
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CHAPTER 1. INTRODUCTION

gauge group can be lifted to F-theory, where the FY -flux corresponds to a GY4 -flux (see e.g. [6–8]). By
additionally including so-called GX4 - and Gλ4 -fluxes, we can control the amount of chiral matter in the
low-energy effective theory [9].

In [1], the authors give a basic example of a realistic model in F-theory where the MSSM gauge
group is achieved in the manner discussed above. They utilize complete intersections in toric varieties
to describe a hypercharge flux satisfying the condition (1.1) and then also turn on GX4 -flux to achieve
doublet-triplet splitting of the SU(5) Higgs vectors. Being able to implement doublet-triplet splitting is
a huge advantage of this way of breaking the SU(5) GUT compared to other non-stringy approaches.
The model described in [1] has one drawback however, as it includes nine generations of chiral matter
and five Higgs doublets.

The aim of this thesis is to first review the necessary prerequisites in differential geometry, to explain
in detail how that model can be constructed in F-theory, and then to improve it.

Overview. In chapter 2, we will give a very brief overview over the most important mathematical
concepts and formulas that we will need in the rest of the thesis. They mainly belong to the fields
of differential and algebraic geometry: We explain how to work with complex manifolds, focusing on
fibrations over toric varieties and complete intersections within those. Especially, we will have to make
calculations in homology and for example calculate Chern classes of such manifolds. Further, we need
to address the theory of the Lie group SU(5) and its representations, and how the Standard Model is
embedded in this group. The mathematical appendix, chapters A through C, is meant to serve as a
much more detailed review of these topics.

We go on in chapter 3 by reviewing the motivation for considering GUT theories in particle physics
and explaining in detail how an SU(5) GUT theory can be broken to the Standard Model. The next
step is to introduce type IIB superstring theory, discussing especially the low-energy effective action of
the strings and D-branes in the theory.

In chapter 4, we realize that this description is a bit inelegant and that there is a simpler description in
terms of an elliptically fibered Calabi-Yau 4-fold, thanks to an SL(2,Z)-symmetry of type IIB theory. This
non-perturbative description is F-theory, we will mainly be interested in how the singularity structure of
the 4-fold corresponds to branes in the viewpoint of type IIB theory. Having understood this connection,
we can use F-theory to model a generic SU(5) GUT theory.

In chapter 5 we will introduce the symmetry breaking mechanism mentioned above. First we will
understand how Stückelberg masses arise in the context of string theory and then see why turning on
a hypercharge flux satisfying condition (1.1) generates a mass for precisely those gauge bosons in an
SU(5) GUT such that it will be broken to the Standard Model. Afterwards, we can lift that type
IIB hypercharge flux FY to the corresponding object in F-theory, GY4 -flux. We also give a first basic
example of a model with an SU(2) gauge group instead of SU(5) to familiarize ourselves with the kind
of calculations appearing later.

Finally, we’ll fully explain the construction of the SU(5) model outlined in [1] in chapter 6. We begin
with defining the compactification manifold X3, the brane locus S and a flux FY with (1.1). Also, we’ll
review how matter is encoded in matter surfaces in the elliptic fibration and how to use G-flux to count
the amount of matter in the effective theory. By constraining the geometry of the elliptic fibration in a
clever way, the Higgs surface splits and doublet-triplet splitting can be achieved if GX4 -flux is included
as well. This leads to the final result from [1] with nine generations and five Higgs doublets. Section 6.6
discusses our attempts to improve on this by additionally including Gλ4 -flux. In particular, we will show
that we can reduce the number of generations in the model to the desired value of three.

Chapter 7 summarizes the construction detailed in chapter 6 and the resulting spectrum.
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Chapter 2

Mathematical Foundations

This chapter introduces the most important mathematical results that will be needed for the rest of the
work. In the following sections 2.1 and 2.2, we will mainly summarize the results of the Mathematical
Appendix, chapters A through C. Then, in section 2.3, we will include some facts about the theory of
the Lie groups SU(N). Those will be needed later when we introduce Grand Unified Theories.

2.1 Differential Geometry
2.1.1 Real and Complex Manifolds
Differentiable Manifolds. We will assume that the reader is familiar with the basic definition of a
differentiable manifold M of dimension m and its (co-)tangent spaces TpM and T ∗pM for p ∈ M . An
(r, s)-tensor is an element of TpM⊗r⊗T ∗pM⊗s and a tensor field is the smooth assignment of a tensor to
each point of the manifold. The set of smooth functions fromM to R will be denoted Ω0(M) = C∞(M),
vector fields Vect(M) are just (1, 0)-tensor fields, and (0, 1)-tensor fields are called one-forms Ω1(M).
The differential of a function f is the one-form

df = ∂µf dxµ . (2.1)

Induced Maps. Consider a smooth map Φ : M → N between two manifolds. Φ induces a number of
pullback- and pushforward-maps:

• The pullback of f ∈ C∞(N) is Φ∗f ∈ C∞(M) given by Φ∗f = f ◦ Φ.

• Tangent vectors v ∈ TpM can be pushed forward to Φ∗v and cotangent vectors ω ∈ T ∗Φ(p)N can
be pulled back to Φ∗ω. Φ∗v and Φ∗ω are defined by writing down how they act on functions and
vectors, respectively (see subsection A.1.4).

• And finally, the pullback of a one-form ω ∈ Ω1(N) is (Φ∗ω)|p = Φ∗
(
ω|Φ(p)

)
.

The differential is compatible with the pullback that we have introduced: Let f ∈ C∞(N) be a function,
then

Φ∗(df) = d(Φ∗f) . (2.2)

Metrics. A metric g is a symmetric (0, 2)-tensor field that is positive definite (Riemannian metric)
or at least non-degenerate (pseudo-Riemannian metric). The inverse metric, also denoted by g, is a
(2, 0)-tensor field such that gµλgλν = δµν .

The most important metric for us will be the Minkowski metric

gµν = diag(−1,+1,+1,+1) (2.3)
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CHAPTER 2. MATHEMATICAL FOUNDATIONS

of flat spacetime. Its signature is s = 3 because three of the eigenvalues are positive.
On an orientable manifold, a metric allows us to define a canonical volume form:

vol =
√
|g|dx1 ∧ · · · ∧ dxm . (2.4)

Complex Manifolds. A complex manifold X of dimension m is defined completely analogous to a
differential manifold, but the charts now are maps to Cm and the transition functions are not only
smooth, but holomorphic. The sheaf of holomorphic functions on X is called the structure sheaf OX .

The most important example is complex projective space Pm, it can be described bym+1 homogeneous
coordinates [z0 : · · · : zm] 6= [0 : · · · : 0] with the identification

[z0 : · · · : zm] = [Λz0 : · · · : Λzm] . (2.5)

A second example is the torus T 2. Two points ω1, ω2 ∈ C with =(ω2/ω1) > 0 define a lattice
L = {n1ω1 + n2ω2 : ni ∈ Z}. The quotient T 2 = C/L is a complex torus. An important fact is that
two lattices L and L̃ define the same torus if and only if the moduli τ = ω2

ω1
are related by a PSL(2,Z)

transformation
τ̃ = aτ + b

cτ + d
(2.6)

(a, b, c, d ∈ Z and ad− bc = 1).

Kähler Manifolds. First of all, we define tangent- and cotangent spaces of a complex manifold just
like for a differential manifold. After complexifying those (TpXC = C ⊗ TpX), we can write a basis in
the form of the vectors ∂µ and ∂̄µ.

A metric of the form g = gµν̄dzµ ⊗ dz̄ν + gµ̄νdz̄µ ⊗ dzν is called a hermitian metric, and

Ω = igµν̄ dzµ ∧ dz̄ν (2.7)

is its Kähler form. The manifold is a Kähler manifold if dΩ = 0. This is an important definition because
Riemann curvature tensor of a Kähler manifold enjoys an additional symmetry, which later helps to
characterize Calabi-Yau manifolds.

As an example, all projective manifolds (i.e. submanifolds of complex projective space) are compact
Kähler manifolds.

2.1.2 Homology and Cohomology
Homology Groups. A real r-simplex is the convex hull of r + 1 affinely independent points in a real
vector space. A singular r-simplex in a differentiable manifold M is the image of a real r-simplex σr
under a smooth map f : σr →M . We are interested in Cr(M), the free R-module over the set of singular
r-simplexes in M . Elements of Cr(M) are called singular r-chains.

If M and N are differentiable manifolds and Φ : M → N is smooth, a chain c = f(σr) ∈ Cr(M) can
be pushed forward via Φ: The pushforward Φ∗c is an element of Cr(N),

Φ∗c = (Φ ◦ f)(σr) = Φ(c) . (2.8)

Next, we’ll consider the boundary operator ∂ : Cr(M) → Cr−1(M), which maps a singular simplex
to the (oriented) sum of its faces, those faces are (r − 1)-simplexes. The chains Cr(M) together with
the boundary operators ∂ form a chain complex, meaning that ∂2 = 0. For every chain complex, we can
define homology groups via the following procedure:
• The group of r-cycles Zr(M) is the kernel of ∂ : Cr(M)→ Cr−1(M).

• The group of r-boundaries Br(M) is the image of ∂ : Cr+1(M)→ Cr(M).

• The r-th singular homology group is

Hr(M) = Zr(M)/Br(M) , (2.9)

its dimension is the r-th Betti number br(M).
The pushforward Φ∗[c] of a chain class [c] is defined to be the class [Φ∗c].
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2.1. DIFFERENTIAL GEOMETRY

Differential Forms. In order to define cohomology groups, we must first introduce differential forms.
For an arbitrary vector space V with basis e1, · · · , en, the space ΛqV of q-vectors is spanned by

(
n
q

)
basis

elements
∧q
k=1 eik (1 ≤ i1 < · · · < iq ≤ n), where

∧
is the antisymmetrization of the tensor product.

We choose the normalization of the components of such a q-vector ω such that

ω = ωi1...iq

q⊗
k=1

eik = 1
q! ωi1...iq

q∧
k=1

eik . (2.10)

A differential form now is a smooth assignment of an element of ΛqT ∗pM to each point p in a manifold
M , the space of q-forms is written Ωq(M).

We will list the definitions of some basic operations on differential forms:

• The exterior product of a q-form ω and an r-form η has components

(ω ∧ η)i1...iq+r = 1
q!r!ω[i1...iqηiq+1...iq+r] . (2.11)

It has the important property ω ∧ η = (−1)qr η ∧ ω.

• The exterior derivative of a q-form ω is

dω = 1
q!
(
∂νωµ1...µq

)
dxν ∧ dxµ1 ∧ · · · ∧ dxµq . (2.12)

Also this operation is compatible with pullback, Φ∗(dω) = d(Φ∗ω).

• A differential form ω can be integrated over a chain c,
∫
c
ω =

∫
σq
f∗ω. Stokes’ theorem holds:∫

c

dω =
∫
∂c

ω . (2.13)

• If a metric is given, there is a natural inner product 〈ω, η〉 = 1
q!ω

µ1...µqην1...νq of two q-forms ω and
η. This induces a canonical isomorphism between Ωq(M) and Ωm−q(M), the Hodge star operator
with

η ∧ ∗ω = 〈η, ω〉 vol , (2.14)
that means

(∗ω)ν1...νm−q =
√
|g|
q! ωµ1...µqε

µ1...µq
ν1...νm−q . (2.15)

for its components. Note that ∗2 = (−1)q(m−q)+s for a manifold of signature s.

Cohomology Groups. Since d2 = 0, the differential forms Ωq(M) together with d form a cochain
complex. In analogy to the homology groups, we define the cohomology groups

Hq(M) = Zq(M)/Bq(M) . (2.16)

The pullback Φ∗[ω] of a cohomology class ω is defined to be the class [Φ∗ω].
There are two important dualities between the homology and cohomology groups: Firstly, the coho-

mology group Hq(M) is the dual of Hq(M), this is called de Rham duality. And secondly, Hq(M) is
also the dual space of Hm−q(M).

Therefore, Hq, Hq, Hm−q andHm−q are all isomorphic, and there is a canonical isomorphism between
Hq(M) and Hm−q(M). This canonical isomorphism is called Poincaré duality: The Poincaré dual of a
class c ∈ Hq(M) is a class γ ∈ Hm−q(M) such that∫

c

ω =
∫
M

ω ∧ γ ∀ω . (2.17)

We will often write γ = [c]M or just γ = [c].

5



CHAPTER 2. MATHEMATICAL FOUNDATIONS

Complex Cohomology. On complex manifolds, differential forms are made up of terms

ω = 1
r!s!ωµ1...µrν1...νs dzµ1 ∧ · · · ∧ dzµr ∧ dz̄ν1 ∧ · · · ∧ dz̄νs . (2.18)

Such a form is called an (r, s)-form, it is an element of Ωr,s(X). Obviously, Ωq(X)C =
⊕

r+s=q Ωr,s(X).
Accordingly, d can be written as the sum of two operators ∂ + ∂̄. For every r,

0→ Ωr,0 ∂̄→ Ωr,1 ∂̄→ · · · (2.19)

is a cochain complex with cohomology groups Hr,s(X). Their dimensions are the Hodge numbers br,s.
The Hodge numbers are usually arranged in the Hodge diamond

bm,m

. .
. ...

. . .

bm,0 · · · · · · · · · b0,m

. . .
... . .

.

b0,0

 . (2.20)

In a Kähler manifold, the Kähler diamond is symmetric about both the horizontal and the vertical axis..
For example, the Hodge diamond of P2 looks like this:

1
0 0

0 1 0
0 0

1

 . (2.21)

2.1.3 Fiber Bundles
Fiber and Vector Bundles. A fiber bundle F → E

π→M consists of the following data:

i) A differentiable manifold M , called base space.

ii) A differentiable manifold F , called the fiber.

iii) A differentiable manifold E, called total space, together with a projection π : E →M .

iv) A local trivialization: There has to be an atlas of M such that for every chart U ⊂M ,

E|U ∼= U × F . (2.22)

One example is the trivial bundle E = M × F .
A section s of a fiber bundle π : E →M is a map s : M → E with π ◦ s = idM . The space of sections

is denoted by Γ(E).
A vector bundle is a fiber bundle where the fiber F is a vector space. A vector field on a manifold

is a section of the tangent bundle TM =
⋃
p TpM , the tangent bundle is a vector bundle. Each vector

bundle admits a global section, the zero section s : M → 0 ∈ F .

Holomorphic Vector Bundles. A vector bundle is called holomorphic if π as well as all local triv-
ializations and transition functions are holomorphic. A prominent example is the holomorphic tangent
bundle TX+ of X. Its fibers are spanned by the vectors {∂µ} in a point p.

If the fiber of a holomorphic vector bundle has dimension one, it is called a holomorphic line bundle.
For example, OX is the sheaf of sections of the trivial holomorphic line bundle X ×C, it is also called O
or OX .
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2.1. DIFFERENTIAL GEOMETRY

Example for holomorphic vector bundles also include the bundles of holomorphic r-forms Ωr,0(X),
and most importantly the canonical bundle

KX = Ωm,0(X) . (2.23)

The adjunction formula reads
KY
∼= KX|Y ⊗ detNY/X , (2.24)

where NY/X is the normal bundle of Y in X.
The holomorphic line bundles over X, together with the tensor product ⊗, form a group. This group

is called the Picard group Pic(X).

Divisors of Complex Manifolds. The group of divisors of X is the free Abelian group over all
irreducible hypersurfaces of X, it is called Div(X). There is a natural homomorphism O : Div(X) →
Pic(X), essentially assigning to a hypersurface Y its normal bundle: O(Y )|Y = NY/X . This lets us
rewrite the adjunction formula,

KY
∼= (KX ⊗O(Y ))|Y . (2.25)

A divisor D with O(D) = O is called principal, we often consider divisor classes under the equivalence
relation where D and D′ are equivalent if and only if D −D′ is principal.

We can also characterize the image of O in Pic(X): If a line bundle L has a section s that is not
identically zero, its zero set (including multiplicities) ZL(s) defines a divisor such that O(ZL(s)) = L. If
L has no such section, it is not contained in the image of O.

2.1.4 Chern Classes
Definition. Let B be a matrix, then det(id +B) = 1+trB+· · · =

∑
k Pk(B), where Pk is a polynomial

of degree k. The k-th Chern class of a complex vector bundle π : E →M is

ck(E) =
[
Pk

(
i

2πF
)]
∈ H2k(M) . (2.26)

F ∈ Ω2(M)⊗End(E) is the curvature of an arbitrary connection (see section A.5) on E, ck(E) does not
depend on the choice of F . For example, c1(E) = i

2π [trF ].
We define the Chern classes of a complex manifold X to be those of the holomorphic tangent bundle:

ck(X) = ck(TX+) . (2.27)

A related concept are the Chern characters chk(E). To define those, we just have to replace det(id +B)
by tr(eB) and get chk(E) = 1

k! tr
[ i

2π F
]k.

Properties of c1.

• Let E∗ be the dual bundle of E, then

c1(E∗) = − c1(E) . (2.28)

For two bundles E1 and E2,

c1(E1 ⊕ E2) = c1(E1) + c1(E2) . (2.29)

If both are line bundles, then also

c1(E1 ⊗ E2) = c1(E1) + c1(E2) . (2.30)

7



CHAPTER 2. MATHEMATICAL FOUNDATIONS

• The first Chern class of the canonical bundle is

c1(KX) = − c1(X) , (2.31)

it is called the canonical class KX = c1(KX).

• We will later define the tautological line bundle O(1) over Pn. Chern classes are normalized:∫
Pn

c1(O(1))n = 1 . (2.32)

If now Y ⊂ X is an irreducible hypersurface and i : Y → X the inclusion, then we can rewrite the
adjunction formula again,

c1(Y ) = i∗ (c1(X)− c1(O(Y ))) . (2.33)

Also, let [Y ] be the Poincaré dual class, then

c1(O(Y )) = [Y ] . (2.34)

Calabi-Yau Manifolds. There are several different definitions of Calabi-Yau manifolds, which are
not always equivalent. The main point is that CY manifolds are compact Kähler manifolds and have a
vanishing Ricci-tensor, or equivalently a vanishing first Chern class. For a more in-depth discussion, see
subsection B.4.4 in the mathematical appendix.

The most general Hodge diamond of a CY threefold is

1
0 0

0 b1,1 0
1 b2,1 b2,1 1

0 b1,1 0
0 0

1


. (2.35)

2.2 Projective Geometry
2.2.1 Line Bundles and Divisors
The Tautological Line Bundle O(1). O(1) is a line bundle over Pn, its global sections are poly-
nomials of degree 1 in the homogeneous coordinates. We define the homomorphism O : Z → Pic(Pn)
by

O(k) = O(1)⊗k . (2.36)

The sections of O(k) are polynomials of degree k.
In fact, the line bundles O(k) are all holomorphic line bundles over Pn. For example, the canonical

bundle of projective space is
KPn ∼= O(−n− 1) . (2.37)

Divisors. Pn has only one divisor class, the hyperplane class Y . The two previously given definitions
of O are compatible: Let D be a divisor and degD its degree. The diagram

Div(Pn)/∼ Z

Pic(Pn)

................................................................................................................................................................................................................................................................. ............
deg

................................................................................................................................................................................................................................................................. ............∼
............................................................................................................. .........

...

O .............................................................................................................
...
............

O commutes. (2.38)
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Chern Classes. H2(Pn) = H1,1(Pn) has only one generator, we call it J = [Y ] = c1(O(1)). Important
Chern classes are:

c1(O(k)) = k J and (2.39)
c1(Pn) = (n+ 1) J . (2.40)

2.2.2 Constructing Calabi-Yaus
Complete Intersections. Consider the product space X = Pn1

1 × · · · × Pnmm . Such a space has m
divisor classes, the hyperplane classes of the individual Pnrr , and its first Chern class is

c1(X) =
∑
r

(nr + 1) . (2.41)

A complete intersection is the intersection of the vanishing locus of k polynomials, call the degrees of
homogeneity of the a-th such polynomial qra. Such a configuration is summarized in the matrix

[
n q

]
=

n1 q1
1 · · · q1

k
...

...
. . .

...
nm qm1 · · · qmk

 . (2.42)

The canonical bundle of the complete intersection is
⊗

rOr (
∑
a q

r
a − (nr + 1)), and accordingly its first

Chern class is

c1
[
n q

]
=
∑
r

(
nr + 1−

∑
a

qra

)
Jr . (2.43)

When we want to compute the Hodge numbers of this kind of manifolds, the Lefshetz hyperplane
theorem is often extremely useful: Let X be a compact complex manifold and Y ⊂ X a smooth hyper-
surface with ample normal bundle O(Y ). Then, i∗ : Hq(X)→ Hq(Y ) is an isomorphism for q < dimC Y
and injective for q = dimC Y .

Weighted Projective Spaces. In the definition (2.5) of ordinary projective space Pn, all the coor-
dinates scale with the same weight. We’ll now modify this and let the quasi-homogeneous coordinates
scale with weights

z0 z1 · · · zn
w0 w1 · · · wn

, (2.44)

i.e. [z0 : · · · : zn] = [Λw0z0 : · · · : Λwnzn]. The locus where all of 〈z0 · · · zn〉 is still excluded from the
manifold. The so-defined manifold is called weighted projective space Pn(w0:···:wn).

Weighted projective spaces are projective manifolds. There is only one divisor class and the quasi-
homogeneous coordinates zi are sections of O(wi). The canonical bundle of weighted projective space is
K = O(−

∑
i wi) and the first Chern class is

c1

(
Pn(w0:···:wn)

)
=
∑
i

wi J . (2.45)

A polynomial in the quasi-homogeneous coordinates is said to have degree qa if it is a section of O(qa),
i.e. if it scales with Λqa . The first Chern class of the complete intersection V of polynomials with degrees
qa is

c1(V ) =
(∑

i

wi −
∑
a

qa

)
J . (2.46)

9



CHAPTER 2. MATHEMATICAL FOUNDATIONS

2.2.3 Blowing Up
Singularities. In many cases, we will be working with singular varieties. Singularities can arise in
different ways:

• The embedding space can have singularities to begin with. For example, weighted projective spaces
are singular in general.

• A complete intersection defined by some polynomials Fa becomes singular in a locus where the
defining equations are not regular, i.e. Fa = 0 and dFa = 0 at the same time.

• Often, we like to take quotient manifolds under some group action. The resulting orbifold has
singularities in those points that are fixed under the group action.

Blow-Up. Singularities can usually be resolved by blowing them up. Blowing up an n-dimensional
manifold in a point x ∈ X essentially means to replace that point with Pn−1. More precisely, there is a
holomorphic map σ from the blow-up X̂ to X such that

i) the exceptional divisor E = σ−1(x) is isomorphic to Pn−1, and

ii) X̂\E and X\{x} are isomorphic.

For example, the blow-up of Cn in 0 is OPn−1(−1) viewed as a projective manifold (see subsection
C.2.2). That also how we can construct the blow-up in general: Blowing up is a local operation and the
complex manifold X always looks like Cn in a neighborhood of x.

The canonical bundle changes under blow-up:

KX̂
∼= σ∗KX ⊗OX̂ ((n− 1)E) . (2.47)

2.2.4 Toric Varieties
Basic Idea. Let us consider, for example, the product X of two weighted projective spaces. X can be
described using quasi-homogeneous coordinates scaling as

z1 · · · zm z′1 · · · zn
w1 · · · wm 0 · · · 0
0 · · · 0 w′1 · · · w′n

. (2.48)

The sets of coordinates which are not allowed to vanish at the same time can be represented as a
monomial ideal 〈z1 · · · zm, z′1 · · · z′n〉. X has two divisor classes A and B corresponding two the two rows,
we easily get the first Chern class by summing up the entries of the table:

c1(X) =
(∑

i

wi

)
[A] +

∑
j

w′j

 [B] . (2.49)

Note that in homology, [A]m = 0 = [B]n.
We generalize this concept and let coordinates scale in more than one relation, expressed by the

general table
z1 · · · zk · · · zn
w1

1 · · · w1
k · · · w1

n
...

...
...

wm1 · · · wmk · · · wmn

. (2.50)

Again, a monomial ideal called the SR ideal defines the sets of quasi-homogeneous coordinates that can
not vanish simultaneously. The resulting space is a toric variety T .
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T has m divisor classes A1, . . . , Am corresponding to the rows of the table. The first Chern class
is just c1(T ) =

∑
i,k w

i
k [Ai]. The vanishing locus of a coordinate zk defines a divisor {zk} of the class∑

i w
iAi, its Poincaré dual is

[zk] =
∑
i

wi [Ai] . (2.51)

The SR ideal induces additional relations in homology: If the ideal contains the monomial zk1 · · · zk` ,
then

∧`
a=1[zka ] = 0.

Blow-Up of Projective Space. This gives us an easier way of describing the blow-up of P2, say. Let
x, y and z be the homogeneous coordinates of P2, then the blow-up in y = z = 0 has a new coordinate
λ scaling

x y z λ
1 1 1 0
0 1 1 −1

(2.52)

and the SR ideal 〈xyz, yz, xλ〉 = 〈yz, xλ〉. The blow-up map σ is given by σ(x, y, z, λ) = [x : λy : λz].
In general, we can write down the blow-up of a toric variety T in the locus where a set of coordinates

{ζk} vanishes. See section D.1 to see the algorithm written out in actual code, in short: We add a new
coordinate λ and a new row in the scaling relations containing 1 for all ζk, −1 for λ and zeros otherwise.
We take the old SR ideal and add the following generators:

• The singular locus ζ1 · · · ζN .

• For each old generator containing one or more ζk, we remove all ζk and add λ.

Actual Definition. Our viewpoint so far has been very basic. In mathematical literature, one usually
considers the toric variety of a fan. We will quickly describe what that means, following [10, Ch. A.2].

We start with a finite set of vectors {v1, . . . ,vn} in RN , called rays. The convex span of a subset
of linear independent rays defines a strongly convex rational polyhedral cone c if −c ∪ c = {0}. A set of
cones is a fan if all faces of each cone are contained in the fan as well, and if every intersection of two
cones is a common face of both. The fan is defined uniquely by listing the rays and the maximal cones
(which are not faces of other cones).

We get the toric variety T corresponding to a fan in the following way: The quasi-homogeneous
coordinates correspond to the rays of the fan. Each linear relation

∑
k wkvk = 0 between the rays

corresponds to a scaling relation with weights (w1 : · · · : wn). There are m = n−N such relations and
the dimension of T is therefore N . Finally, a monomial is contained in the SR ideal of T if and only if
the corresponding rays do not form a cone in the fan.

2.3 Theory of SU(N)
We will follow [11] to recap some properties of SU(N) Lie groups and their associated Lie algebras.

2.3.1 Definitions
We define the special unitary group SU(N) to be the set of unitary matrices with determinant one. It is a
simply connected compact Lie group of dimension N2 − 1. As such, every U ∈ SU(N) can be written as
U = exp(ih) for an element h ∈ su(N) of its Lie algebra. By plugging U(t) = exp(iht) into the defining
relations UU† = 1 and detU = 1, and differentiating at t = 0, we get

su(N) =
{
h ∈ CN×N : h = h†, trh = 0

}
. (2.53)

We choose the following basis of su(N): Let 1ab be the matrix which is zero except for the element
in the a-th row and b-th column, which is one: (1ab)ij = δaiδbj . Then we define the generators

E
(1)
ab = 1

2 (1ab + 1ba) , E
(2)
ab = − i

2 (1ab − 1ba) and Ha = 1aa −
1
n
1 . (2.54)
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Since we can restrict to 1 ≤ a < b ≤ N for the Eab and since HN = −
∑N−1
a=1 Ha, this makes N(N − 1) +

(N − 1) = N2 − 1 independent generators.
Note that in the familiar su(2) case, σ1 = 2E(1)

12 , σ2 = 2E(2)
12 and σ3 = 2H1.

Alternative Choices of Basis. The subalgebra spanned by the Ha is of special interest. It is a
Cartan subalgebra, that is a maximal toral1 Lie subalgebra of su(N), and hence Abelian. We will come
back to the significance of this subalgebra later, here we only mention some alternative choices of basis.

One such choice that sometimes is preferred is

H ′a = 1√
2(a+ a2)

(
a∑
k=1

1kk − a1(a+1)(a+1)

)
. (2.55)

With this choice, the set of all generators {T a} = {E(1)
ab } ∪ {E

(2)
ab } ∪ {H ′a} satisfies the normalization

relation
tr(T a · T b) = 1

2δ
ab . (2.56)

Another possibility is
Tαi = 1ii − 1(i+1)(i+1) (2.57)

for i = 1, . . . , (N − 1), this one is useful because the scalar products

tr (Tαi · Tαj ) = Cij (2.58)

form the Cartan matrix Cij of su(N). We will later see that the Cartan matrix is given by the scalar
products Cij = 〈αi, αj〉 of the simple roots αi of the Lie algebra. Note that we can add Tα0 and
tr (Tαi · Tαj ) forms the extended Cartan matrix C̃ij .

The Cartan matrix of su(N) has 2 on its diagonal and −1 next to the diagonal, for example for su(5)

Cij =


2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

 and C̃ij =


2 −1 0 0 −1
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
−1 0 0 −1 2

 . (2.59)

2.3.2 Irreducible Representations
By definition, SU(N) acts in the fundamental representation on V = CN . This immediately gives us
representations of SU(N) on V ⊗k by U(v ⊗ w) = Uv ⊗ Uw.

Let us take a slightly different viewpoint and choose a basis in V : A vector v ∈ V is then given by
its components vi and the action of U ∈ SU(N) is given by a matrix U ij : vi 7→ U ijv

j . In general, a tensor
in V ⊗k has k indices, e.g. T i1···ik and the action of U is

T i1···ik 7→ U i1···ikj1···jkT
j1···jk (2.60)

with U i1···ikj1···jk = U i1j1
· · ·U ikjk .

These representations are not irreducible. For example, the representation V ⊗ V decomposes into a
symmetric and an antisymmetric part:

V ⊗ V = (V � V )⊕ (V ∧ V ) . (2.61)

Those representations are irreducible. In general, we get irreducible representations by symmetrizing
and antisymmetrizing indices. Which pairs of indices are symmetric and which are antisymmetric can
be visualized with Young tableaux.
Theorem (Fundamental Theorem). There is a one-to-one correspondence between irreducible represen-
tations of SU(N) and Young tableaux of no more than (N − 1) rows.

1 A subalgebra is toral if all of its elements are semi-simple. An element x of a Lie algebra g is semi-simple if the
endomorphism [x, ·] of the vector space g is semi-simple. An endomorphism of a vector space is semi-simple if the orthogonal
complement of every invariant subspace is again invariant.
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⇒ ⇒

Figure 2.1: Visualization of a dual tableau in SU(6).

Young Tableaux. Young tableaux consist of a number of boxes arranged in rows, where the amount
of boxes in the rows is non-increasing from top to bottom. Indices corresponding to boxes in the same
row have to be symmetric, indices in the same column are antisymmetric. Let’s consider some examples,
taken from [12]:

• The empty Young tableau · stands for the trivial representation V ⊗0 = C.

• denotes the fundamental representation V = CN , i.e. vectors vi.

• = V � V are symmetric matrices, Tij = Tji.

• = V ∧ V are antisymmetric matrices, Tij = −Tji.

• i j
k stands for objects Tijk with three indices, Tijk = Tjik and Tijk = −Tkji.

• The adjoint representation is the representation on su(N) given by the action U.h = UhU−1. It
corresponds to the tableau with (N − 1) rows of lengths (2, 1, . . . , 1).

• The dual representation (see definition A.69) of a given tableau with row lengths (f1, f2, . . . , fn = 0)
has row lengths (f1 − fn = f1, f1 − fn−1, . . . , f1 − f1 = 0). For a visualization see figure 2.1.

Note. The classification of SO(N) works in almost the same way, except for one problem: One can
further reduce representations by taking the trace. For example, = traceless ⊕ C.
Note. In Physics, a representation is usually denoted by its dimension, e.g. = N.

2.3.3 Algebra Representations
Representations of su(2). In su(2) we can classify the irreducible representations easily using a
different approach, which should be familiar (see e.g. [13]): Let H = H1, E = E

(1)
12 and F = E

(2)
12 be the

generators, their commutation relations are

[H,E] = iF, [H,F ] = −iE and [E,F ] = iH . (2.62)

We define raising and lowering operators J± = E ± iF such that [H,J±] = ±J±, they change the
eigenvalue of a state with respect to H by ±1.

We choose an eigenbasis of H and define the weight of a state to be its eigenvalue. After a bit of
thinking, we see that an irreducible representation is uniquely characterized by its heighest weight w,
which has to be integer or half-integer. The dimension of this representation is (2w + 1) spanned by
vectors with weights −w,−w + 1, . . . , w − 1, w.

Representations of su(N). In the general case we can do something similar.
Let us first talk about the commutation relations of su(N). First of all, all of the Ha commute with

each other. We want to use raising and lowering operators like above, define

J±ab = E
(1)
ab ± iE(2)

ab (2.63)
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An
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F4 G2
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E 7

E 8

Figure 2.2: Finite connected Dynkin diagrams [15].

for a < b. Calculation shows that

[H, J+
ab] =

(
e(a) − e(b)

)
J+
ab and [H, J−ab] = −

(
e(a) − e(b)

)
J−ab (2.64)

where e(i) are the unit vectors in RN . The vectors e(a) − e(b) are called the roots of su(N).
In a given irreducible representation, we can simultaneously diagonalize H. A state in this repre-

sentation is characterized by its vector of eigenvalues, called its weight. Note that all those weights
(w1, . . . , wn) satisfy

∑
a wa = 0, they lie in an RN−1 subspace.

The raising and lowering operators change the weight of a state by the corresponding root. It turns
out that an irreducible representation is uniquely characterized by its highest weight: The highest weight
is the weight of that state u where J+

abu = 0 for all a < b. In [11] there are some examples for highest
weights of representations corresponding to Young tableaux.

Note on Semi-Simple Lie Algebras [14]. This procedure is much more general and powerful: Let
g be a Lie algebra and H the Cartan subalgebra (i.e. a maximal toral one, see subsection 2.3.1), which
is abelian. We let H act on g in the adjoint representation, g decomposes in simultaneous eigenspaces:

g = L0 ⊕
⊕
α∈Φ

Lα . (2.65)

Here α ∈ H∗ are the eigenvalues and Lα = {x ∈ g : [h, x] = α(h)x} the eigenspaces. The elements of
Φ are called the roots of g. The classification of semi-simple Lie algebras is achieved by analysing all
possible root systems in the following way:

There is a special choice of basis for the root system called the simple roots of g. The number of
simple roots of g is called the rank rk g of the algebra, we’ll call the simple roots α1, . . . , αrk g. Define
〈αi, αj〉 = 2x·yx·x , the matrix Cij = 〈αi, αj〉 is the Cartan matrix of the algebra. Its entries are highly
constrained: For example, the diagonal elements are always 2 and the off-diagonal elements can only
take on the values −1, −2 or −3.

In fact, all possible Cartan matrices are classified by the Dynkin diagrams, see figure 2.2: The nodes
correspond to the simple roots of the algebra, and if Cij = −k we draw k lines between two nodes. (If
the Cartan matrix is not symmetric, we draw an an arrow on the line.) Since the Cartan matrix uniquely
determines the Lie algebra, this is a classification of Lie algebras as well. As we have seen before, the
algebras su(N) have rank rk su(N) = N − 1 and correspond to the AN−1 Dynkin diagrams. Note that
figure 2.2 only contains connected Dynkin diagrams corresponding to simple Lie algebras, diagrams of
semi-simple Lie algebras can be disconnected.

Representations of semi-simple Lie algebras can be classified similarly: Every given representation V
decomposes into simultaneous eigenspaces under the action of H:

V =
⊕
χ

Vχ (2.66)
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for some χ ∈ H∗ called the weights of the representation and Vχ = {v ∈ V : h.v = χ(h) v}. We sort the
roots in positive and negative ones (Φ+ and Φ−) and define highest weight vectors to be v ∈ V where
Lα.v = 0 for α ∈ Φ+. Continuing in this direction leads to a general classification of representations of
semi-simple Lie algebras.

2.3.4 Advanced Topics
One important question arising quite often is: The tensor product of two irreducible representations is
in general not irreducible any more. How does it decompose into irreducible representations?

The answer to this questions can be worked out using Young tableaux in full generality. The process
is quite tedious, however, and can be looked up in [11, Ch. V].

Another important topic is subduction: If a representation of SU(N) is given, then it is also a
representation of a subgroup G < SU(N). The question we will be asking quite often in the following is:
Which representation?

Unfortunately, answering this question can be quite difficult in general. However, in [11, Ch. VI] this
is worked out for the subgroup SU(N) × SU(M) of SU(NM) or of SU(N + M) which covers the most
important cases for us.

In simple cases it is quite clear though: Take the subgroup SU(N) × SU(M) of SU(N + M) and
consider the fundamental representation of SU(N +M). Choose the basis such that SU(N) acts on the
upper N components and SU(M) on the lower M components of the vector. Then we obviously get

N+M → (N,1)⊕ (1,M) . (2.67)
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Chapter 3

Basics of Physics

3.1 Particle Physics
3.1.1 The Standard Model
The Standard Model of particle physics is a Yang-Mills theory as described in subsection A.5.4. Its gauge
group is G = SU(3) × SU(2) × U(1)Y , the subscript Y stands for the hypercharge. Note that there
are three a priori different coupling constants associated to the three factors: The strong coupling gs of
SU(3), the weak coupling g of SU(2) and the hypercharge coupling g′ corresponding to U(1)Y .

The Standard Model has the following particle content [16, Ch. 22.4] [17, Ch. 6]:

Fermionic matter: There are three generations of
Symbol Name SU(3)-rep. SU(2)-rep. U(1)Y -charge
QL Left-handed quark 3 2 = (uL, dL) 1/6
uR Right-handed up-type quark 3 1 2/3
dR Right-handed down-type quark 3 1 −1/3
LL Left-handed lepton 1 2 = (eL, νL) −1/2
eR Right-handed lepton 1 1 −1

Note: If the fermion ψ has a charge Y under U(1)Y , that means that we take Y ∈ R = u(1) as the
generator T in gauge transformations.

Gauge bosons: For each factor in G we have gauge bosons, which are the components of the vector
potential. The gauge bosons of SU(3) are called gluons Gaµ (a = 1, . . . , 8), meaning that we write
the gauge potential G of SU(3) as G = Gaµ

λa

2 dxµ.1

The gauge bosons of SU(2) are namedW = W a
µ
σa

2 dxµ and the gauge boson of U(1)Y is B = Bµdxµ.
Summarizing:
Symbol Name SU(3)-rep. SU(2)-rep. Transformation under U(1)Y 2

G Gluon 8 1 trivial
W W -Bosons 1 3 trivial
B B-Boson 1 1 given by (A.84)

Higgs field: Additionally, there is one complex scalar field:
Symbol Name SU(3)-rep. SU(2)-rep. U(1)Y -charge
H Higgs 1 2 = (H+, H0) 1/2
H acquires a non-zero vacuum expectation value because of how its potential is shaped. This has the
consequence that the SU(2)×U(1)Y symmetry is spontaneously broken down to the electromagnetic
U(1)em.

1 λa are the Gell-Mann matrices, a basis of su(3). The λa

2 are the basis defined in (2.55).
2 The actual U(1)Y charge of all those fields is zero.
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According to general theory, this makes one of the four real degrees of freedom of H massive. By
choosing a suitable gauge, the other three degrees of freedom vanish and make three of the vector
bosons massive. The massive ones are the W±-bosons W± = 1√

2 (W 1 ∓ iW 2) and the Z-boson
Z = cos θWW 3 − sin θWB. θW is called the Weinberg angle and can be calculated to be

cos θW = g√
g2 + g′2

. (3.1)

The photon A = sin ΘwW
3 + cos ΘwB remains massless. At low energies this looks effectively

like a U(1) gauge theory, called the electromagnetic gauge theory U(1)em. Its coupling constant
is the electric charge e = gg′√

g2+g′2
and the charge of a particle under U(1)em can be calculated as

Q = T3 + Y .
Now we understand the reasoning behind defining W±: We use this basis instead of W 1,2 because
W± are eigenstates of T3 with defined charge Q = ±1.

3.1.2 Supersymmetry
There are good theoretical reasons to expect that nature exhibits supersymmetry (SUSY): It solves the
hierarchy / naturalness problem of the electroweak theory, it provides us with a natural candidate for
what dark matter could be, and it improves gauge coupling unification (see subsection 3.2.1 below). In
a supersymmetric theory, there is a bosonic superpartner for every fermion and vice versa. With the
following particle content (in addition to the particles listed above) we get the Minimal Supersymmetric
Standard Model (MSSM ):

Sfermions: Sfermions are the spin-0-superpartners of fermions. There are three generations of
Symbol Name SU(3)-rep. SU(2)-rep. U(1)Y -charge
Q̃L Squark doublet 3 2 = (uL, dL) 1/6
ũR Sup singlet 3 1 2/3
d̃R Sdown singlet 3 1 −1/3
L̃L Slepton doublet 1 2 = (eL, νL) −1/2
ẽR Selectron singlet 1 1 −1

Gauginos: Gauginos are the spin- 1
2 -superpartners of gauge bosons. We have

Symbol Name SU(3)-rep. SU(2)-rep. Transformation under U(1)Y
G̃ Gluino 8 1 trivial
W Winos 1 3 trivial
B Bino 1 1 1

Higgsinos: With just one Higgs doublet, we cannot make the Yukawa terms of the Standard Model
supersymmetry invariant. We need at least two different types of Higgs bosons to give mass to
up-type and down-type quarks seperately. In the MSSM, we have two Higgs doublets and their
superpartners, the Higgsinos:
Symbol Name SU(3)-rep. SU(2)-rep. U(1)Y -charge
Hd Higgs 1 2 = (H0

d , H
−
d ) −1/2

H̃d Higgsino 1 2 = (H̃0
d , H̃

−
d ) −1/2

Hu Higgs 1 2 = (H+
u , H

0
u) 1/2

H̃u Higgsino 1 2 = (H̃+
u , H̃

0
u) 1/2

Note that there can be different amounts of supersymmetry in a theory. In d = 4 spacetime dimen-
sions, a spinor has four degrees of freedom and therefore there are at least four SUSY generators. This
minimal case where every particle has only one superpartner is called N = 1 supersymmetry – a theory
with e.g. 32 SUSY generators would be N = 8 SUSY. With extended supersymmetry, particles arrange
in supermultiplets with more than 2 particles in one multiplet.
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3.2 Grand Unified Theories

3.2.1 Motivation
Charge Quantization. As evident from the tables in section 3.1, the charge of particles under U(1)Y
appears to be quantized. Unfortunately, our discussion so far has not given us a theoretical reason for
why it should be. The reason is ultimately that the groups U(1) and (R,+) (sometimes called “non-
compact U(1)”) have the same Lie algebra and we don’t know which of those options is meant by “U(1)”
in the gauge group.

If we have a compact U(1), then the charge is quantized, because there needs to be some n such that
e2πnY = 1 for all particle types. In the non-compact case, all values for Y are possible though. The
suggested solution to this problem is to embed the Standard Model gauge group in a larger group, called
the GUT group:

SU(3)× SU(2)×U(1)Y ⊂ GGUT . (3.2)

If the U(1) subgroup is embedded in a non-abelian semi-simple Lie group, it is automatically compact [18].
This explains charge quantization. The larger symmetry must then be spontaneously broken down to
the symmetry of the Standard Model at low energies.

Gauge Coupling Unification. If the GUT group is simple, having a grand unified theory explains
the phenomenon of gauge coupling unification as well: A simple gauge group has only one coupling
constant, hence we expect that physics at high energies can be described by only one coupling constant.
At lower energies, the symmetry is broken and the three coupling constants of the Standard Model run
individually according to the renormalization group equation, which reads

1
α(Q2) = 1

α(M2
Z) + b

4π ln Q2

M2
Z

(3.3)

at one-loop order. Here, α = g2

4π where g is one of the coupling constants, Q2 is the energy scale, M2
Z is

the squared mass of the Z-boson and b is a constant (see below).
Therefore a GUT predicts that if we take the measured values gi(M2

Z) for our three coupling constants
g1 =

√
5/3g′3, g2 = g and g3 = gs and run them to higher energies, they will eventually all agree. The

scale where this happens is called the GUT scale.

Running Couplings in the Standard Model. Let’s check whether gauge coupling unification hap-
pens in the Standard Model and in the MSSM. We need to calculate the constants bi for all of the
couplings and input the measured values gi(M2

Z).
The constants are calculated from loop diagrams, the result is [17, 19]

b = 11
3 C2(AdG)−

∑
particle
type p

C(Rp) ·


4/3 Dirac fermion
2/3 Chiral fermion
1/3 Complex scalar field

(3.4)

where C is the Casimir and C2 the second Casimir of a representation, AdG is the adjoint representation
of the gauge group and Rp the representation of the particle type p.

In the special case of G = SU(N) we know that C2(AdSU(N)) = N . Furthermore, the Casimir of the
fundamental representation is 1

2 and that of the adjoint representation is N . We can summarize this as

bN = 11N
3 − 1

3nf −
1
6ns −

2N
3 nAd (3.5)

3 The factor of
√

5/3 will become clear later: We have to include it because the hypercharge generator Y1 embedded
in SU(5) is normalized differently, precisely Y1 =

√
3/5Y .
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Figure 3.1: Running of the gauge couplings according to (3.3) and (3.7).

where nf is the number of chiral fermions in the fundamental representation, ns is the number of complex
scalars and nAd is the number of fermions in the adjoint representation. Now we look the numbers up
in section 3.1 and calculate for example

bMSSM
2 = 11 · 2

3 − 1
3(3 · 4 + 2)− 1

6(2 + 3 · 4)− 2 · 2
3 1 = −1 .

Finally, we quote the result that for the U(1)Y -case:

b1 = 3
5

−2
3
∑
f

y2
f −

1
3
∑
s

y2
s

 , (3.6)

where yf are the hypercharges of the fermions and ys those of the scalars. For example,

bSM
1 = 3

5

[
−2
(

6 1
62 + 322

32 + 3 1
32 + 2 1

22 + 1
)
− 1

3

(
2 1

22

)]
= −41

10 .

All the values are:
bSM
1 = −41

10 , bSM
2 = 19

6 , bSM
3 = 7

bMSSM
1 = −33

5 , bMSSM
2 = −1, bMSSM

3 = 3
(3.7)

Plugging in the experimental values α−1
1 (M2

Z) = 59.2, α−1
2 (M2

Z) = 29.6 and α−1
3 (M2

Z) = 8.5 we get figure
3.1. Already in the Standard Model, the curves almost meet – but in the MSSM, the curves meet within
measure uncertainty. That is a strong argument in favour of supersymmetry as well as grand unification.

Note that calculations at higher loop order don’t change this picture.

3.2.2 Overview: Possible GUTs
Georgi-Glashow Model (SU(5)): SU(5) is the smallest simple Lie group containing the Standard

Model. All SM gauge fields are contained in the adjoint representation 24 of SU(5), under sub-
duction

24→ (8,1)0︸ ︷︷ ︸
G

⊕ (1,3)0︸ ︷︷ ︸
W

⊕ (1,1)0︸ ︷︷ ︸
B

⊕(3, 2̄)−5/6 ⊕ (3̄,2)+5/6 (3.8)

(with the usual notation that the parentheses contain the SU(3) × SU(2) representation and the
subscript gives the hypercharge).
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One generation of fermions fits into a 5̄ and a 10:

5̄→

dcR︷ ︸︸ ︷
(3̄,1)1/3⊕

LL︷ ︸︸ ︷
(1,2)−1/2

10→ (3,2)1/6︸ ︷︷ ︸
QL

⊕ (3̄,1)−2/3︸ ︷︷ ︸
uc
R

⊕ (1,1)1︸ ︷︷ ︸
ec
R

(3.9)

In the first line we would expect (3̄,1)⊕ (1, 2̄) but remember that 2 = 2̄ in SU(2).
For now, we’ll assume that the GUT is broken to the Standard Model by a conventional symmetry
breaking mechanism like a Lorentz-scalar field that takes a vacuum expectation value. In that
case, the Georgi-Glashow model is already ruled out because the 12 extra gauge bosons in the
24 would lead to a proton lifetime too short to be compatible with experimental observations.
Nevertheless, it is a good toy model for studying grand unification and we will have a closer look
at it in subsection 3.2.3 for that reason. Also, in chapters 5 and 6 we will see that the mentioned
problem can actually be avoided with a “stringy” breaking mechanism.

Pati-Salam Model (SU(4)× SU(2)L × SU(2)R): This was an earlier idea, appealing because it has
left-right symmetry (at the GUT scale) and it doesn’t predict proton decay. The gauge group is
not simple, however, so that the model does not explain gauge coupling unification.
A family of fermions, including a right-handed neutrino4 νcR in representation (1,1)0, fits as follows:

(4,2,1)→ (3,2)1/6 ⊕ (1,2)−1/2

(4̄,1,2)→ (3̄,1)1/3 ⊕ (3̄,1)−2/3 ⊕ (1,1)1 ⊕ (1,1)0 .
(3.10)

In this theory, the SU(4) is broken to SU(3)× U(1)B−L and then SU(2)L × SU(2)R × U(1)B−L is
broken down to SU(2)×U(1)Y .

SO(10): SO(10) is the largest simple gauge group which doesn’t predict exotic fermions (i.e. fermions
that are not in the Standard Model and not a right-handed neutrino). It contains SU(5) as a
subgroup and all matter fits into a single irreducible representation, the spinorial 16:

16→ 10⊕ 5̄⊕ 1 . (3.11)

The gauge bosons are contained in the adjoint representation 45.
Note that this model predicts proton decay just like the Georgi-Glashow model, but it is not
necessarily experimentally ruled out so far (it allows for a higher proton lifetime).
Note further that SO(10) contains the Pati-Salam model as well and

16→ (4,2,1)⊕ (4̄,1,2) . (3.12)

Others: There is a large amount of other models with different gauge groups. For example, SU(6)
contains SU(5) and one generation of fermionic matter is inside 15⊕ 6̄⊕ 6̄. In SU(8), we can put
all fermionic matter into a single 64, but then we get four generations of fermions. The exceptional
Lie groups E6, E7 and E8 are also often used.
However, there are a lot of problems with those theories (in fact, some of the problems already
appear in the models mentioned above): Those theories predict generically objects like monopoles,
domain walls or cosmic strings. They have a lot of extra gauge bosons and extra Higgs particles
which have not been detected in nature. Often there is also a so-called doublet-triplet splitting
problem (see below). A “simpler” GUT group would be much preferred from this point of view.

4 Those are not included in the Standard Model but likely exist because of measured neutrino oscillations.
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3.2.3 SU(5) GUT
Definitions. Let’s have a closer look at how SU(5) is broken down to the Standard Model. We
choose the Standard Model subgroup to be embedded in SU(5) in such a way that the SU(3) subgroup
corresponds to the upper left 3×3 block and SU(2) to the lower right 2×2 block. In other words, the su(3)
subalgebra is generated by E(1,2)

ab for 1 ≤ a < b ≤ 3 and two diagonal generators, e.g. H̃1 = 1
2 (111 − 133)

and H̃2 = 1
2 (122 − 133). The su(2) subalgebra is generated by E

(1,2)
45 and a third diagonal generator

H̃3 = 1
2 (144 − 155).

There is one more diagonal generator, commuting with both the su(3) and the su(2) subalgebras,
this is the hypercharge generator. In proper normalization it is

Y1 = diag(−2,−2,−2, 3, 3)/
√

60 , (3.13)

because in Yang-Mills theory we want generators {T a} with tr
(
T a · T b

)
= δab/2 (see (2.56)).

We already mentioned in subsection 3.2.1 that this hypercharge generator differs from the definition
of the Standard Model one by a factor

Y =
√

5
3Y1 . (3.14)

To make this clear, we look again at the subduction 5→ (3,1)−1/3 ⊕ · · · claimed above. The represen-
tation (3,1) obviously corresponds to the first three components of the 5. Y1 acts on this subspace by
multiplication with −2√

60 , therefore Y/Y1 = −1
3

√
60
−2 =

√
5
3 .

Exotic Gauge Bosons. We have already seen above that the 24 of SU(5) contains additional bosons in
representations (3, 2̄)−5/6⊕(3̄,2)+5/6. They correspond to the generators E(1,2)

a4 and E(1,2)
a5 for 1 ≤ a ≤ 3,

let’s call them X
(1,2)
a and Y (1,2)

a .
Similar to how we defined W± = 1√

2

(
W 1 ∓ iW 2), let

X±a = 1√
2

(
X(1)
a ±X(2)

a

)
and Y ±a = 1√

2

(
Y (1)
a ± Y (2)

a

)
. (3.15)

X±a and Y ±a are charge eigenstates with charge ± 4
3 and ± 1

3 , respectively. If we write the 24 gauge field
as a matrix, it looks like this:

1√
2


√

2G− 2B√
30 13×3 X− Y −

(X+)T W 3
√

2 + 3B√
30 W+

(Y +)T W− W 3
√

2 + 3B√
30

 . (3.16)

Writing down the complete Lagrangian one finds that X and Y mediate additional gauge interactions:
There are leptoquark vertices coupling leptons and quarks and also diquark vertices coupling quarks and
antiquarks. Those make proton decay possible, as can be seen for example in the following Feynman
diagrams:

X

d

u

u

e+

uc

u

Y
d

u

u

e+

uc

u

(3.17)

Symmetry Breaking. During the process of symmetry breaking, we will find that we have to introduce
even more exotic particle content.

First, we have to break the symmetry down from SU(5) to the Standard Model. For this, one
introduces a Lorentz-scalar Higgs field in the 24 that acquires a vacuum expectation value. 12 of the
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degrees of freedom are Goldstone bosons which are eaten by the X and Y bosons, those acquire GUT
scale masses in the process. The remaining 12 degrees of freedom are massive, this doesn’t contradict
observations because they do not couple to fermions.

To further break down the symmetry to SU(3) × U(1)em we know that we need a (1,2)1/2 Higgs
doublet. To get it, we include another Higgs field in the fundamental representation 5 because

5H → (1,2)1/2 ⊕ (3,1)−1/3 . (3.18)

This results in a new problem: The new Higgs triplet could also mediate proton decay and therefore
has to have a GUT scale mass. The parameters have to be incredibly fine-tuned in order to allow the Higgs
doublet and the Higgs triplet to have such different masses. Not even the introduction of supersymmetry
(which explains the Hierarchy problem in the Standard Model) solves this problem. This is called the
doublet-triplet splitting problem and persists in a lot of other GUT theories as well. Another similar
problem is that we need the 24 Higgs and the 5 to take vacuum expectation values which differ by more
than 10 orders of magnitude.

Note that in the MSSM there are two Higgs doublets (see subsection 3.1.2). They are organized into
two SU(5) multiplets 5 and 5̄ and there are two additional triplets Tu and Td. Summarizing, this is how
all MSSM matter arises from SU(5) representations:

10→ (QL, ucR, ecR), 5̄M → (dcR, LL), 1→ νcR

5H → (Tu, Hu), 5̄H → (Td, Hd) ,
(3.19)

Further Implications. As discussed above, at the GUT scale we have gauge coupling unification,√
5/3g′ = g = gs. This leads to a prediction of the Weinberg angle (3.1) at the GUT scale:

cos2 ΘW = g2

g2 + g′2
= 1

1 + 3
5

= 5
8 . (3.20)

Also, because of the requirement of SU(5) symmetry, there is less freedom in the Yukawa mass terms
for the fermions. This leads to another prodiction: At the GUT scale,

me = md, ms = mµ, mb = mτ , (3.21)

but since the masses run differently as functions of the energy scale, those relations do not need to
hold at our electroweak scale. However, this simple model predicts that even for the running couplings
mµ/me ≈ ms/md, conflicting strongly with observations. This problem can be fixed by making the
Higgs sector more complicated.

3.3 String Theory
Note. Taken from: [12,20]. Another good review is [21].

3.3.1 Introduction
The (supersymmetric) Standard Model is only an effective theory valid at our low energy scales. We
know this because we have to take this fact into consideration whenever we calculate physical quantities
in particle physics, by the procedure of regularization and renormalization. Also, the Standard Model
does not incorporate gravity, it contains some features that are considered unnatural, and there are
several other questions it does not answer.

String theory is a UV completion of Yang-Mills theory in the sense that string theory is consistent
and produces Yang-Mills theory in the low-energy limit. An appealing fact is that the particle spectrum
of this low-energy limit necessarily includes gravitons, therefore string theory is a unification of gauge
theory and gravity.
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Quantizing the string action. The way it works is that we write down an action for a string prop-
agating through spacetime. Just like the action for a point particle is given by the length of its world
line, the action of the string is given by the area of its world sheet Σ: We describe a propagating string
in D-dimensional spacetime with a parametrization Xµ(σa) (for a ∈ {0, 1} and 0 ≤ µ < D), then

S = −T
∫

Σ
vol = −T

∫ √
−det

(
ηµν

∂Xµ

∂σa
∂Xν

∂σb

)
d2σ . (3.22)

The constant T is called the string tension. Related quantities are the Regge slope α′ = 1
2πT and the

string length `s =
√
α′. This can be viewed as a theory of D fields Xµ on the world sheet and we can

quantize it, generally speaking, by the usual procedure.
Quantization is difficult, however, as we have a high amount of gauge freedom. Like in Yang-Mills

theory we deal with it using BRST quantization, but it turns out that the BRST algebra becomes anoma-
lous except if D = 26. In superstring theory where we add fermions as well, the critical dimension changes
and becomes D = 10. Therefore superstring theory is only consistent in ten spacetime dimensions.

Emergent spacetime. The viewpoint that was just presented is quite basic from a modern point
of view. It is more sophisticated to consider general conformal field theories on the world sheet. The
X theory above is an example for a CFT, other examples are the world sheet fermions introduced in
superstring theory and the Faddeev-Popov ghost systems we need for BRST quantization. One way to
think about string theory is that we can in principle take an arbitrary CFT on the world sheet and
quantize it, BRST quantization works as long as the CFT’s total central charge is zero. The CFT with
10 bosons, 10 fermions and some Faddeev-Popov ghosts is just one example for a CFT with zero central
charge, in principle we could use completely different CFTs as well. In this description, spacetime is an
emergent feature, and not necessarily equal to R1,9.

This is a good thing because we want to get (3 + 1)-dimensional spacetime as a low-energy limit
from string theory if it is to be a fundamental description of nature. In general, the spacetime structure
emerging in this manner can be weird and it might not be possible to describe it in terms of classical
geometry. We assume, however, that a large volume limit exists where classical geometry is applicable:
In the following we simply talk about strings propagating in a 10-dimensional manifoldM10. This is a
useful picture, but there are some caveats [22, Ch. 14.3].

String compactification. We will follow [22], see also [20, Ch. 7.6]. In order to describe reality, we
take

M10 = R1,3 ×M6 (3.23)
withM6 compact. The background metric G of the total spaceM10 needs to factor into a Minkowski
metric η on R1,3 and some other metric g onM6:

GMN (x, y) =
(
ηµν 0
0 gmn(y)

)
. (3.24)

A necessary condition for unbroken supersymmetry is the existence of a covariantly constant spinor
ε onM6,

∇ε = 0 (3.25)
(where ∇ is the background covariant derivative on spinors). One shows that this implies RMNΓN ε =
(RµνΓν ⊕RmnΓn) ε = 0 (where Γ are Gamma matrices and R the Ricci tensors). Since R1,3 is flat we
need RmnΓnε = 0 which is only possible for non-zero ε if

Rmn = 0 . (3.26)
Thus, our necessary condition is that the internal manifoldM6 admits a Ricci-flat metric.

As discussed in subsection 2.1.4, Calabi-Yau manifolds satisfy this necessary condition. But not every
Ricci-flat compact Kähler mainfold is Calabi-Yau (see subsection B.4.4 in the appendix for more details).
It turns out, however, thatM6 being Calabi-Yau according to definition B.94 is a sufficient condition for
having exactly the same amount of supersymmetry in the 4-dimensional theory as in the original theory
before compactification (N4 = N10).
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The string landscape. If we want to define a theory in order to arrive at a low-energy limit, speci-
fying the internal manifold M6 is not enough. We have to generalize compactifications and also allow
background fluxes, this is called flux compactification [22, Ch. 17.3] and will be crucial for us later on.
Background fluxes are non-zero vacuum expectation values of the field strengths of certain form fields
that appear in the particle spectrum (see below).

This leads to a huge number of possible compactifications (called flux vacua) of the so far almost5

unique string theory in 10 dimensions. Each of those flux vacua has a different resulting particle spectrum
in 4 dimensions, the set of all those vacua is called the string landscape. To date, it is not known which
– if any – compactification is realized in nature. A commonly quoted ballpark figure for the amount of
possible flux compactifications is 10500 [23].

3.3.2 Type IIB Superstring Theory
Let us go back to superstring theory before compactification. After quantization we find a spectrum
of vibrational states of the superstring, having different masses and transformation behaviors under
SO(1, 9). We are not interested in those states with m2 > 0 because they are not relevant for the
low-energy limit.

Open string spectrum: Consider the open string with free endpoints (NN boundary conditions).
There is still a choice to be made about the boundary conditions of the fermionic CFT: The Ra-
mond (R) sector contains strings with periodic boundary conditions while the Neveu-Schwarz (NS)
sector contains strings with anti-periodic boundary conditions. The spectrum can be summarized
as follows [20]:
Sector Statistics Little Group Representation m2 (units of 2πT )
NS− boson SO(9) 1 −1/2
NS+ boson SO(8) 8v 0
R− fermion SO(8) 8c 0
R+ fermion SO(8) 8s 0

The index ± denotes G-parity, see [20]. 8s and 8c are Weyl spinors with positive and negative
chirality, respectively. Note that this still contains an unphysical tachyon.

Closed string spectrum: A closed string excitation can be described as the tensor product of a left-
moving and a right-moving state, both of which can be independently NS± or R± (but not all
pairings are possible). We find the following spectrum (up to interchange of left- and right-movers)
[20]:
Sector Statistics Little Group Representation m2 (units of 2πT )
(NS−,NS−) boson SO(9) 1 −2
(NS+,NS+) boson SO(8) 8v ⊗ 8v 0
(R−,R−) boson SO(8) 8c ⊗ 8c 0
(R+,R+) boson SO(8) 8s ⊗ 8s 0
(R−,R+) boson SO(8) 8c ⊗ 8s 0
(NS+,R+) fermion SO(8) 8v ⊗ 8s 0
(NS+,R−) fermion SO(8) 8v ⊗ 8c 0

It is interesting how those product representations decompose under the group action (see also
subsection 2.3.4). For example, the (NS+,NS+) boson decomposes as

8v ⊗ 8v = 1︸︷︷︸
Dilaton Φ

⊕ 28︸︷︷︸
Bµν (antisym.)

⊕ 35v︸︷︷︸
Graviton Gµν (sym. traceless)

. (3.27)

In the (R,R)-sector, we get p-form fields Cp and in the mixed sector we get spacetime fermions,
dilatinos and gravitinos.

5 We will see later that there are five consistent superstring theories. They are connected through certain dualities.
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Digression: String coupling, gravity etc. Now that we have found the particle spectrum, we need
to go back to the action (3.22) and rewrite it including our new fields. For example, if we want to
describe strings propagating in a curved background, we should replace the appearing Minkowski metric
ηµν with Gµν . We also add for example a term

∼
∫

Σ
RΦ(X) vol ∼ χ(Σ) Φ (3.28)

where R is the Ricci scalar on the world sheet, Φ the dilaton and χ(Σ) the Euler characteristic (for a
rigorous treatment see [20]). Putting this into the path integral shows that the string coupling strength
gs is dynamical and

gs = eΦ . (3.29)

The graviton appearing in the closed string spectrum is the justification for the claim made above
that string theory contains general relativity in the low-energy limit. It is interesting that we can also
derive the Einstein equation for it: As mentioned before, string theory is a conformal field theory and
therefore scale invariant. Hence, its beta functions must all be zero. Explicitly calculating the beta
function for the background metric and setting it to zero yields exactly the Einstein equation to first
order, and therefore string theory reduces to GR in the low-energy limit. Fascinatingly, we are forced to
a fluctuating dynamical background even if we started out from a fixed metric.

The GSO projection. In order to get a consistent theory, we cannot simply combine all the sectors
listed above – we can only keep some of them. This is called the GSO projection. There are only
two consistent6 theories of closed strings. They are called type II theories because they have N = 2
supersymmetry:

• In type IIB theory we keep the sectors (NS+,NS+), (R+,R+), (NS+,R+) and (R+,NS+).

• In type IIA theory we keep the sectors (NS+,NS+), (R+,R−), (NS+,R−) and (R+,NS+).

We just mention that there are three more consistent string theories:

• Type I theory consists of open strings. We can construct it from an orientifold projection of IIB,
but then we still have to add the open string NS+ and R+ sectors and also 32 spacetime-filling
D9-branes. This has N = 1 supersymmetry.

• In heterotic string theory one combines left-moving superstrings with right-moving bosonic strings
compactified on 16 of their 26 dimensions. There are two types, the SO(32) heterotic string and
the E8 × E8 heterotic string.

From now on we will be mainly concerned with type IIB theory.

Type IIB supergravity action. All in all we have the following bosonic states in type IIB:

• The scalar dilaton Φ and the graviton Gµν which were already discussed above.

• The 2-form field Bµν called the Kalb-Ramond field. The corresponding field strength is named

H3 = dB2 . (3.30)

• Cp form fields for p ∈ {0, 2, 4} with field strengths usually defined as

Fp+1 = dCp − Cp−2 ∧H3 (F1 = dC0) (3.31)

where C4 is self-dual in the sense that F5 = ∗F5 (this is a constraint which has to be implemented
at the level of the equations of motion).
The Bianchi identity for those field strengths reads dFp+1 = H3 ∧ Fp−1 (dF1 = 0).

6 Meaning that they don’t have monodromies, don’t contain tachyons and are modular invariant.
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The string frame type IIB low-energy effective action is given by [24]:

SIIB = SNS + SR + SCS

SNS = 1
2κ2

10

{∫
d10x
√
−G e−2ΦR+

∫
e−2Φ

(
4 dΦ ∧ ∗dΦ− 1

2H3 ∧ ∗H3

)}
SR = − 1

4κ2
10

∫ (
F1 ∧ ∗F1 + F3 ∧ ∗F3 + 1

2F5 ∧ ∗F5

)
SCS = − 1

4κ2
10

∫ (
C4 −

1
2B2 ∧ C2

)
∧H3 ∧ F3 .

(3.32)

We have split the action in one part containing only NS-NS fields, one part containing only R-R fields
and the Chern-Simons interaction part SCS. κ2

10 is the physical gravitational coupling and 1
2κ2

10
= 2π

`8
s
.

There is a number of different ways of writing this action. Quite often (e.g. [20, 25]) people use
C̃4 = C4 − 1

2B2 ∧ C2 instead of C4, this simplifies the Chern-Simons term. Expressing F5 in those new
variables gives

F5 = dC̃4 −
1
2C2 ∧H3 + 1

2B2 ∧ dC2 . (3.33)

Democratic Formulation. Yet another way is the so-called democratic formulation [26, 27]. It uses
Cp form fields for p ∈ {0, 2, 4, 6, 8} with field strengths as in (3.31), imposing the constraint

Fp = (−1)(p−1)/2 ∗F10−p (3.34)

on the level of the equations of motion. The complete action is

SIIB = 1
2κ2

10

∫
e−2Φ (R vol +4 dΦ ∧ ∗dΦ)− 1

4κ2
10

∫ {
e−2Φ (H3 ∧ ∗H3) + 1

2

4∑
p=0

F2p+1 ∧ ∗F2p+1

}
.

(3.35)
Note that the Chern-Simons term is absent. But, after imposing the constraints and eliminating C6 and
C8, this action leads to the same equations of motion like the action in (3.32). For an overview, see [24].

3.3.3 Dp-Branes
Once more we go back to bosonic strings propagating in flat spacetime, those strings can be open or
closed. For each end of an open string, for each spacetime dimension, there are two possible boundary
conditions: We can have either Neumann boundary conditions where ∂σ1Xµ = 0 at the end point, this
means that no momentum can flow off the string in that direction. The other option is ∂σ0Xµ = 0
meaning that the string end point is fixed in this direction.

We get the picture that each end of the string can move freely in some directions and is fixed in the
others. More generally, the end of the string can be confined to a hypersurface. We define: A Dp-brane
is a (p+ 1)-dimensional hypersurface on which open strings can end.

When we quantize the open string with Dp-branes present, we make the following observations: On
strings that begin and end on the same brane, parallel and normal excitations transform differently
from the perspective of the brane (under SO(p, 1)). The parallel excitations form a massless vector,
transforming in the fundamental of SO(p − 1), showing that the Dp-brane hosts a U(1) gauge theory.
If we have a “stack of N branes”, the end points of the strings have to be marked with “Chan-Paton
factors” indicating to which brane they belong. This gives a U(N) gauge theory. (This can be made
mathematically rigorous using coherent sheaf models.)

More complicated setups like several intersecting stacks of branes can be very interesting. There
are strings propagating along one of the brane stacks, they correspond to the gauge bosons of that
stack’s gauge group. Strings stretching between such stacks are fermions transforming in bifundamental
representations of the product group. Because of the string tension, they are confined to the intersection
of the brane stacks. With these ingredients we can model something similar to the Standard Model [20,
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Ch. 7.5]. Several generations of fermions can be modeled easily be having a more complicated geometry
in which there are several intersection points. Gravity is mediated by closed strings, they are not bound
to the branes.

Branes as Dynamical Objects. In subsection 3.3.1 we found that the terms in the action containing
the dilaton and the graviton make the string coupling and the background geometry into dynamical
objects. Something similar happens for branes: Through their coupling to the different kinds of strings,
a Dp-brane can not be static, but it is fluctuating. The coupling consists of two terms:

• The Dirac-Born-Infeld action couples the brane to the NS-NS sector. It is a generalization of
(3.22) where we now integrate over the world volume of the Dp-brane: Let ι : Dp →M10 be the
embedding of the brane into spacetime, then

SDBI = − 2π
`p+1
s

∫
Dp

e−ι
∗Φ
√
−det (ι∗G+ 2πl2sF) dp+1ξ . (3.36)

Here F = F + T ι∗B, F is the field strength of the gauge theory over the brane and B the Kalb-
Ramond field.

• The Chern-Simons action expresses that D-branes are sources of the R-R Cp form fields: To lowest
order it is

SCS = − 2π
`p+1
s

∫
Dp

ι∗Cp+1 , (3.37)

we will write it down completely in (5.22).
Note the similarity to electrodynamics: Let A be the electromagnetic four potential and F = dA. If
there is a current along a 1-dimensional current string J ∈ Z1 (definition A.41), the action contains
one term ∼

∫
F ∧ ∗F (like in (3.35)) and a term ∼

∫
J
A like here.

If the action of a brane does not have a Chern-Simons term, the brane is uncharged and dynamically
unstable. This means a theory can only contain Dp-branes if there are Cp+1 form fields. The
following table (taken from [21]) summarized which branes are contained in which theory:

Theory p
Type I 1, 5, 9 (strings moving freely)
Type IIA 0, 2, 4, 6, 8
Type IIB −1 (Instanton), 1, 3, 5, 7

String Theory. We see that string theory has much more content than what we initially thought.
The fundamental string (F1-string or F-string) is just one part of the spectrum of string theory, we also
have:

• The D-branes that were discussed above, among them the D-string in type IIB theory. The D-
string and the F-string are fundamentally different: An F-string ends on D-branes, but not vice
versa.
Further, the coupling of the D-branes is ∼ e−Φ = g−1

s . This shows that D-branes are non-
perturbative objects in string theory. They are also called BPS-states or the BPS spectrum of
the theory.

• The F -string sources the Kalb-Ramond field B2 (just like the D-string sources C2). There is a
6-form dual to B2 (with H7 = ∗H3 = ∗dB2), it couples to a 5-brane. This is, however, not a
D-brane (meaning that open strings do not end there) – it is called the NS5-brane. Its coupling
goes ∼ g−2

s [21].

• Later we will encounter more exotic objects like (pq)-strings ending on [p, q]-branes [5, Ch. 2.1].
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p-form Fields with Source Terms. We have seen above that Dp-branes are sources of Cp+1 form
fields. It will be important to understand how such source terms influence the behavior of the fields.
As mentioned above, we have the same situation in electrodynamics. We will now have a quick look at
electro- and magnetostatics in order to develop an intuition.

The action of electrodynamics is S = − 1
4
∫
F ∧∗F−

∫
A∧∗J . When we consider static configurations,

this splits up into an electric and a magnetic part. The electrostatics action for a point source ρ =
Qδ(3)(x) vol ∈ Ω3 is

1
4

∫
E ∧ ∗E −

∫
ρ

Φ (3.38)

where E = dΦ, this is like a 0-form coupling to a D(−1)-brane in 3 dimensions. Note that we have
identified ρ ∈ Ω3 with its Poincaré dual ρ = Q {x = y = z = 0} ∈ Z0.

The equations of motion derived from this action are d∗dΦ = ρ, equivalent to ∆Φ = Qδ(3)(x). The
well-known solution is

Φ = Q

4π
1
r
. (3.39)

Consider now a static electric current, e.g. ∗j = J δ(x)δ(y) dz. The magnetic part of the action is

− 1
4

∫
B ∧ ∗B +

∫
j

A (3.40)

where B = dA and we have again identified j with its Poincaré dual. This is like a 1-form coupling to a
D0-brane in 3 dimensions.

The equations of motion here are similarly d∗dA = j. Since this is something like a Poisson equation
in the x and y directions only, we expect a logarithmic behavior. What makes this a bit more tricky is that
A is a 1-form and d∗d 6= ∆. The situation becomes easier if we work with the dual field dC0 = F1 = ∗B.
Integrating over a circle in the x-y-plane, we see

J =
∫
B1

d∗dA =
∮
S1
∗dA =

∮
S1

dC0 (3.41)

with the known solution
C0 = J

2π arctan y
x

= J

2π= (ln(x+ iy)) (3.42)

(up to terms regular in x+ iy).
What will be important for us is the following:

• When we have a D(n − 3)-brane in n dimensions, the situation will always be as in (3.42): The
coupling

∫
D(n−3) Cn−2 leads to an equation of motion d∗dCn−2 = δ(x)δ(y) (where x and y are the

normal directions). Integrating this gives
∮
S1 dC0 = 1, solved by (3.42). This solution can not be

globally defined.

• If we have a Dp-brane with p < (n− 3) we will always get a solution like (3.39), without a branch
cut.

3.3.4 Dualities
The five consistent string theories we have been talking about so far are actually all linked through
different dualities. A duality between weakly and strongly coupled theories, perturbative in `s but not
in gs, is called an S-duality. If the situation is reversed and the duality is perturbative in gs, it is called
a T-duality. The case where the duality is perturbative neither in `s nor in gs is called U-duality.

S-Duality. Proving S-duality is difficult, but after our previous discussion we can already understand
S-duality in type IIB theory. It interchanges gs with g−1

s and simultaneously swaps the F-string with
the D-string and the NS5-brane with the D5-brane. Another example for S-duality exists between type
I theory and the SO(32) heterotic string. Here, the D-string of type I is mapped to the fundamental
heterotic string. [21]
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I HO HE IIA IIBS T T
S

Figure 3.2: Dualities among the different superstring theories. [28]

T-Duality. T-duality can already be understood when considering the most simple type of compact-
ification: So-called Kaluza-Klein compactification where one of the dimensions is replaced with a circle
S1. Already in ordinary point particle theory, applying this compactification to e.g. a massless scalar
gives a tower of massive states with mass squares

m2
n = n2

R2 (3.43)

where R is the radius of the S1.
When we consider K-K compactification of a closed bosonic string, something new happens: The

string can be wrapped around the S1 with winding number ω. The previously massless excitations of
the string acquire a mass, depending on n and ω:

m2
nω = n2

R2 + ω2R2

α′
(3.44)

This is dual under n ↔ ω and R ↔ R′ = α′

R . It is also important to know that the string coupling
transforms as [22, Ch. 14.2]

g′s = `s
R
gs . (3.45)

When doing this in superstring theory, we have to carefully analyze the chiralities of the spinors.
The result is that type IIB theory compactified on an S1 with radius R is equivalent to type IIA theory
compactified on an S1 with radius R′. Dp-branes are mapped to D(p± 1)-branes, depending on whether
the S1 is in the direction of the brane (−) or perpendicular to it (+).

There is still T-duality if we perform Calabi-Yau compactifications instead of these simple compact-
ifications on S1, it then is called “mirror symmetry”. T-duality also exists between the SO(32) and the
E8×E8 heterotic theories. All dualities encountered so far are summed up in figure 3.2, we are going to
talk more about dualities in section 4.2.
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Chapter 4

F-Theory

Note. In this chapter we will mainly follow [5, 28, 29] and the end of [22]. Also, [30] provides a good
introduction to elliptic fibrations.

4.1 Introduction
We now want to start to work in type II superstring theory with D-branes. A problem we haven’t
mentioned before is that type II compactifications with D-branes are often inconsistent or unstable,
because the branes carry charge as mentioned in subsection 3.3.3 (see also [31, Ch. 2.2]). From the
point of view of string theory, absence of charges is equivalent to tadpole cancellation conditions, which
guarantee that there are no anomalies.

The solution is to perform an orientifold compactification instead. Orientifolds are a generalization
of orbifolds, quotientsM/G of manifolds under a group action (see subsection C.2.3). In an orientifold
additional states are projected out according to their world sheet parity (M/(G1 ∩ΩG2) where Ω is the
world sheet parity operator). More specifically, we want to act with

Z2,O = Z2,g P (−1)FL (4.1)

on the manifold. Z2,g is a holomorphic involution of the Calabi-Yau,

P : σ1 → (2π − σ1) (4.2)

is the parity transformation of the world sheet and FL the left-moving fermion number. The first
advantage of this is that it removes half of the supersymmetry generators such that we get an N = 1
theory.

Furthermore, the action of Z2,g will typically leave certain subvarieties fixed, those become the loca-
tion of O-planes. Such O-planes carry negative charge, hence we can build consistent models containing
D-branes. More precisely, an Op-plane has charge [22, Ch. 10.6]

QOp = −2p−4QDp , (4.3)

hence we need for example four1 D7-branes for each O7-plane to exactly cancel the charges. Note however
that the location of an O-plane is fixed, they do not carry dynamical degrees of freedom.

From now on we will concern ourselves with orientifold compactifications of type IIB superstring
theory containing D7-/D3-branes and O7-/O3-planes, those give consistent configurations.

1 Because QO7 = −8QD7 one would expect eight D7-branes, but equation (4.3) counts the charge in the double cover
Calabi-Yau. After orbifolding, we count half as many branes with twice the charge.
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SL(2,Z) Invariance. We discussed in subsection 3.3.3 what the C0 field looks like close to a D7-brane:
C0 ∼ = ln(z) (where z = x+ iy and x, y are the directions normal to the brane). Let us now define the
axio-dilaton

τ = C0 + i
gs
, (4.4)

due to constraints from supersymmetry it must be a holomorphic function in z. Therefore,

τ(z) = τ0 + 1
2πi ln(z − z0) + (regular terms) (4.5)

if the D7-brane is located at z = z0. We see that the brane introduces a monodromy, meaning that if we
go in a circle around it,

τ → τ + 1 . (4.6)
This seems like an inconsistency of the theory at first, but actually the theory is invariant under τ → τ+1
(if the other fields also transform accordingly, see below).

The solution (4.5) also shows us that the backreaction of D7-branes on the geometry is strong: In
their presence, there will always be areas where gs is very small as well as areas where gs is very large
(since g−1

s ∼ − ln| z−z0
λ | for some λ) so that perturbation theory is not applicable. On the other hand,

we know from subsection 3.3.4 that type IIB theory has invariance under S-duality where

τ → −τ−1 . (4.7)

Equations (4.6) and (4.7) are only two examples of a more general symmetry of type IIB string theory:
It is invariant under the SL(2,Z)-symmetry

τ → aτ + b

cτ + d
,

(
C2
B2

)
→M

(
C2
B2

)
=
(
a b
c d

)(
C2
B2

)
. (4.8)

The fields F5 and G are unchanged. (On the classical level, the action is even invariant under SL(2,R)
transformations, but this symmetry is reduced to SL(2,Z) through quantum effects.) Going around

a D7-brane corresponds to the action of T =
(

1 1
0 1

)
and S-duality corresponds to S =

(
0 1
−1 0

)
.

Incidentally, those two elements already generate the whole group SL(2,Z). Going around an O7-plane
corresponds to the element −T−4.

We finally notice that this symmetry exchanges the C2 and B2 fields which couple to the D-string
and the F-string, respectively. Therefore we should also combine the D-string and the F-string to an
SL(2,Z) multiplet: The (pq)-string which has p units of B2-charge and q units of C2-charge. Then, we
need to introduce [p, q]-branes as the object on which (pq)-strings can end. The monodromy induced by

a [p, q]-brane is
(

1− pq p2

−q2 1 + pq

)
. Note that locally, using an SL(2,Z) transformation, every brane can

be made to look like a D7-brane (which is a [1, 0]-brane).

Geometric Description. The idea of F-theory [4] is to make these invariances an intrinsic part of
the theory. The axio-dilaton τ is interpreted as the complex structure modulus of a complex torus T 2

which has the same SL(2,Z) symmetry, as discussed in subsection 2.1.1. Since τ varies over the complex
3-dimensional internal manifold B3, we get a smoothly varying torus over B3, in other words an elliptic
fibration

T 2 → Y4 → B3 (4.9)
(see section 4.3). The two extra dimensions introduced here are not physical though, they just provide
a bookkeeping tool for the SL(2,Z) symmetry. F3 and H3 can be interpreted as components of a 12-
dimensional 4-form F̂4.

The F-theory conjecture states that the physics of a type IIB orientifold compactified on Bn is encoded
in the geometry of the elliptically fibered Yn+1. We will later see that Yn+1 has to be Calabi-Yau, and
that the singularities of it encode the locations of the D7-branes and O7-planes, and the gauge groups
living there. In this way, F-theory gives a non-perturbative description of type IIB string theory.
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As a summary, F-theory is the natural language to talk about how type IIB backgrounds with
varying coupling are patched together in the presence of D-branes. Because of the corresponding SL(2,Z)
invariances of IIB theory and of the torus, the fibrations over the different patches can always be put
together. More explicitly, the monodromy (4.6) we have encountered above is not a problem any more
because the torus does not change as we encircle the brane. (4.6) only tells us that we can’t describe the
whole fibration with a single chart.

4.2 F/M-Theory Duality
M-Theory. The strong coupling limit of IIB theory is again IIB theory because of S-duality. What is
the strong coupling limit of IIA theory?

The spectrum of type IIA theory contains bound states of D0-branes with mass

mn = n

gs`s
(4.10)

for every n ∈ N+ [22, Ch. 18.7]. This looks like the Kaluza-Klein spectrum of an 11-dimensional theory
which was compactified on a circle of radius

R11 = gs`s . (4.11)

Hence, the low-energy effective action of the strong coupling limit seems to be the unique supergravity
theory in 11 dimensions. The field content of 11D SUGRA is one graviton, one gravitino, and a three-
form field A3. We can perform a dimensional reduction to 10 dimensions and see explicitly that this
leads to the field content and action of type IIA SUGRA. For example, the A3 field encapsulates both
the C3 and the B2 fields of type IIA via

A3 = C3 +B2 ∧ dx10 . (4.12)

As we have seen, the compactification radius is inversely proportional to the string coupling gs. This
makes sense: at weak coupling, the eleventh dimension is very small and perturbative type IIA theory
is valid. At strong coupling, the appropriate description is 11D supergravity.

Up to now, we have only been talking about the low-energy effective field theories. Since string theory
is not just its low-energy limit, there must exist an 11-dimensional quantum theory with 11D SUGRA
as its low-energy limit . This theory can not be a string theory, it is so far unknown. It has been dubbed
M-theory.

Moduli of the Torus. We want to compactify M-theory on a torus T 2 = S1
A × S1

B . Let us remember
some basic facts about T 2: We can write a metric down as

ds2
T 2 = v

τ2

[
(dx+ τ1 dy)2 + (τ2 dy)2] , (4.13)

where x and y are the coordinates along S1
A and S1

B , respectively. The parameter v is the Kähler modulus
of the torus, that is its volume v =

∫∫
[0,1]2

√
g dxdy. τ = τ1 + iτ2 is the complex structure modulus we

already discussed above. From similar integrations, we easily see that RA =
∫ 1

0 ds|dy=0 =
√
v/τ2 and

analogously RB = |τ |RA. In the special case of a rectangular torus (τ1 = 0), we get

τ = iRB
RA

and v = RARB . (4.14)

Duality. Let us now consider M-theory on

R1,8 × S1
A × S1

B︸ ︷︷ ︸
T 2

. (4.15)
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M
R1,8 × T 2

IIA
R1,8 × S1

B

IIB
R1,8 × S̃1

B

IIB
R1,9

RA → 0

T

RB → 0

Figure 4.1: Graphical depiction of the limit of vanishing torus volume of M-theory.

If we let one of the radii, RA say, go to zero, we know that we will get type IIA theory on R1,8 × S1
B .

After that we perform T-duality in the direction of S1
B , the result is type IIB theory on R1,8 × S̃1

B with
radius R̃B = `2

s

RB
. The limit of RB → 0 corresponds to R̃B → ∞, therefore we get IIB theory on a flat

Minkowski spacetime R1,9 in this limit. This procedure is depicted in figure 4.1; for some more detail,
see [22, Ch. 18.7] or [5].

We are taking the limit of RA and RB going to zero at the same time. According to (4.14), this
means taking the limit of vanishing torus volume of M-theory. Crucially, the complex structure modulus
is found to become the axio-dilaton of type IIB theory, on the other hand.

To see this, remember from (4.11) that the string coupling of the IIA theory is given by gIIA = RA
`s

.
According to (3.45) and (4.14), the coupling of the IIB theory after performing T-duality is then

gIIB = `s
RB

gIIA = RA
RB

= =(τ)−1 , (4.16)

that is what we needed to show. (The discussion can be generalized to non-rectangular tori [5].)
In order to see what happens with the real part of τ , we write out the M-theory metric in the form

ds2
M = ds2

T 2 + ds2
1,8 = v

τ2
(dx+ C1)2 + e−

2χ
3 ds2

IIA . (4.17)

The IIA one-form field C1 is identified with τ1 dy. Calculation shows that after T-duality, C0 = (C1)y =
τ1, quod erat demonstrandum. (More details: [28].)

F-theory can be understood as being dual to M-theory on R1,8 × T 2, in the limit of vanishing torus
volume. This completes our net of dualities (figure 4.2), we will not elaborate on the duality between
F-theory and heterotic theories. We have been only talking about direct products R1,8 × T 2, but the
construction generalizes to elliptic fibrations as well. Precisely, we are interested in M-theory on a space
of the structure (

T 2 → Y4 → B3
)
× R1,2 , (4.18)

where Y4 needs to be Calabi-Yau for N = 1 SUSY in the low-energy effective theory [5]. This finally
explains why the F-theory elliptic fibration is Calabi-Yau.

4.3 Elliptic Fibrations
Elliptic Curves. As we mentioned above, a fiber bundle where every fiber is a torus T 2 is called an
elliptic fibration. The reason is that a torus is the same thing as an elliptic curve: It is a complex-one
dimensional flat space, in other words a Calabi-Yau 1-fold.
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Figure 4.2: Dualities among the superstring theories, F- and M-theory. [28]

The most convenient way to describe an elliptic curve is as a complete intersection in a weighted
projective space. Consider P2

(2:3:1) (see subsection 2.2.2). According to (2.46), a flat hypersurface is given
as the zero locus of a polynomial with scaling degree 6. One can show that such a polynomial can always
be brought into the so-called Weierstrass form,

PW = y2 − x3 − f xz4 − g z6 = 0 (4.19)

for some f, g ∈ C unique up to scaling (f, g) ∼ (λ4 f, λ6 g) [32, Ch. II.2].
Going back to equation (4.5) we see that the axio-dilaton and therefore the complex structure modulus

of the F-theory torus diverges at the location of the D7-branes. This leads us to the question of when
an elliptic curve described by (4.19) is degenerate. For that to happen PW and dPW need to be zero at
the same time. An easy calculation (see e.g. [5] or [28]) proves the following simple criterion: An elliptic
curve is degenerate if and only if the discriminant

∆ = 27 g2 + 4 f3 (4.20)

vanishes.
The relation between the structure of the torus and the parameters f and g of the elliptic curve can

be made more explicit: A classical mathematical result states [33]

j(τ) = 4(24 f)3

∆ (4.21)

where j : H/PSL(2,Z)→ C is Klein’s j-invariant.

Elliptic Fibrations. We obtain an elliptic fibration if we now let f and g be functions of the coordinates
of the base Bn. This is called a Weierstrass model of the elliptic fibration (or an E8-fibration) and –
crucially – every elliptic fibration with a section can be represented by a Weierstrass model [32, Ch. II.5].
To be more specific, f and g will be sections of L4 and L6, respectively, for some suitable line bundle L
over Bn. Note that then ∆ is a section of L12. Next, we will figure out which bundle L we need to use.
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We can exploit our knowledge that the total space Yn+1 has to be Calabi-Yau in the following way: It
is known from the general theory of elliptic fibrations that the chern classes of Bn and Yn+1 are related
in the following way:

c1 (Yn+1) ' π∗
(
c1 (Bn)−

∑
i

δi
12 [Γi]

)
(4.22)

where π : Yn+1 → Bn is the fibration and the discriminant ∆ vanishes along the divisors Γi to order
δi. [Γi] is the Poincaré dual of the divisor Γi as usual. This equation holds up to terms involving
degenerations of higher codimension which are irrelevant for the following [5].

Since c1(Yn+1) needs to be zero, we immediately get

12c1 (Bn) =
∑
i

δi [Γi] = [∆] ; (4.23)

by customary abuse of notation we have written [∆] for the Poincaré dual of the zero locus ZL12(∆) of
the section ∆ ∈ H0(Bn,L12). This result reminds us of the charge cancellation condition in perturbative
type IIB theory,

∑
iNi [Γi] = 4 [O7]: That condition is now automatically incorporated in the F-theory

geometry!
The condition (4.23) is solved by taking L to be the anticanonical bundle K∗Bn . The reason is that

O(∆) = L12 and thus, using (2.34),

[∆] = c1(O(∆)) = c1(L12) = 12 c1(L) .

Plugging in L = K∗Bn proves the claim [∆] = −12 c1(KBn) = 12 c1(Bn). Let us summarize:

f ∈ H0(Bn,K−4
Bn

) and g ∈ H0(Bn,K−6
Bn

) (4.24)

and because of homogeneity of (4.19) also the coordinates transform as sections of the base,

x ∈ H0(Bn,K−2
Bn

) , y ∈ H0(Bn,K−3
Bn

) and z ∈ H0(Bn,O) . (4.25)

(Of course, they additionally transform as sections of the respective line bundles O(wi) over P2
(2:3:1).)

D7-Branes. After the discussion above, we expect a zero locus Γi where the discriminant vanishes to
order δi to describe a stack of δi D7-branes. Let us do one more sanity check and see how the complex
structure of the torus looks close to Γi. Let w be the coordinates normal to Γi, then ∆ ∼ wδi close to
the zero locus. Using (4.21) we see that

j(τ) ∼ w−δi .

We haven’t given a rigorous definition of the j-invariant, for us it will suffice to know that it has the
expansion

j(z) = e−2πi z + 744 + 196 884 e2πi z + · · · . (4.26)

Taking only the first term of the expansion this results in

τ ∼ δi
2πi lnw , (4.27)

which is what we expected. This works not only for D7-branes but in general also for [p, q]-branes, see [5]
on how their location is encoded in the vanishing loci of (p, q)-cycles of the torus. The fact that every
[p, q]-brane locally looks like a D7-brane corresponds to the fact that we can always locally choose a basis
of H2(T 2,Z) so that the degenerate cycle corresponds to the (1, 0)-fiber.
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ord(f) ord(g) ord(∆) Fiber Type Surface Singularity Monodromy
≥ 0 ≥ 0 0 smooth none

(
1 0
0 1

)
0 0 n In An−1

(
1 n
0 1

)
2 ≥ 3 n+ 6

I∗n Dn+4 −
(

1 n
0 1

)
≥ 2 3 n+ 6
≥ 1 1 2 II none

(
1 1
−1 0

)
≥ 4 5 10 II∗ E8

(
0 −1
1 1

)
1 ≥ 2 3 III A1

(
0 1
−1 0

)
3 ≥ 5 9 III∗ E7

(
0 −1
1 0

)
≥ 2 2 4 IV A2

(
0 1
−1 −1

)
≥ 3 4 8 IV ∗ E6

(
−1 −1
1 0

)
Table 4.1: The classification of singular fibers of an elliptic surface in dependency of the vanishing

degrees of f , g and ∆. Also given is the corresponding monodromy and the type of surface
singularity. Taken in this form from [10, Table 2.2].

Example: K3. As an example we consider an elliptic K3 surface, i.e. a Calabi-Yau total space Y2
together with an elliptic fibration π : Y2 → B1 = P1. Let {u0, u1} be homogeneous coordinates of P1,
the total space Y2 can then be described by the Weierstrass equation in an ambient space with the
coordinates

u0 u1 x y z
0 0 2 3 1
1 1 4 6 0

. (4.28)

We learned above that because of the Calabi-Yau requirement the discriminant transforms as a section
of K−12

P1 = O(−2)−12 = O(24) with respect to the base. We know from subsection 2.2.1 that it therefore
is a polynomial of degree 24 in u0 and u1 having 24 zeroes.

4.4 Singularities and Gauge Groups
As we have seen, the locus of the fiber degeneration corresponds to the position of stacks of D7-branes
and the vanishing order of the discriminant gives the amount of branes. We already know that a stack
of N D7-branes leads to a U(N) gauge theory in the low energy limit via Chan-Paton factors. The
appearance of [p, q]-branes adds something new to this picture: The fact that a (pq)-string can only end
on a [p, q]-brane can obviously change the gauge group.

We hence have to study singularities of the elliptic fibration. [5, Ch. 2.5-3.3] and [10, Ch. 2.3] provide
excellent write-ups, we are only going to summarize the most important points here.

Gauge Symmetry from Degenerations. The first step is to classify the possible singularities that
can occur. This was done by Kodaira in 1963 for the case of elliptic surfaces (fibrations Y2 → B1) [34].
The type of the fiber singularity depends only on the vanishing degrees of f , g and ∆ and one can also
directly read off the surface singularity type and the induced monodromy, see table 4.1.

The general idea about what the connection between a singularity of the surface over the divisor
S ⊂ Bn and the gauge group G is, is as follows: We need to resolve the singularity, for example with a
split-simultaneous resolution Ȳn+1. In this process, the singular fiber is replaced by a tree of P1s which
we will call P1

i (i ∈ {1, . . . , rkG). Those P1
i intersect one another like the simple roots of the Lie algebra

corresponding to G:

37



CHAPTER 4. F-THEORY

Let P1
i → Ei → S be P1

i fibered over the divisor S, Ei is a divisor of Ȳn+1 and let E0 = Ŝ −
∑
i aiEi

(where Ŝ is the elliptic fibration over S). Then∫
Ȳn+1

[Ei] ∧ [Ej ] ∧ π∗ω̃ = C̃ij

∫
S

ω̃ (4.29)

for any ω̃ ∈ H2n−2(Bn), where C̃ is the (extended) Cartan matrix of G, see section 2.3.
The actual manifold Yn has to be seen as the limit of zero volume of the P1

i . We can understand the
appearance of the gauge bosons of the group G from the F/M-theory duality: The M-theory 3-form C3
and the M2-brane are reduced along the P1

i , giving exactly dimG states corresponding to the algebra
generators.

The non-Abelian part of the gauge group in F-theory compactifications is identical to the singularities
of the elliptic fibration as indicated in table 4.2 below [10].

Tate Models. Note that the classification in table 4.1 which is only valid for elliptic surfaces contains
only singularity types A, D and E corresponding to simply laced Dynkin diagrams (see figure 2.2). (It
is called ADE classification for that reason.) Once we go to elliptic fibrations of higher dimension, this
situation changes: Monodromies along the brane can “fold” the Dynkin diagram such that non-simply
laced Lie algebras emerge.

There is an algorithm [35], called Tate’s algorithm, which allows to read off the type of fiber in the
general case. It was actually derived for elliptic CY 3-folds only, but no complete classification of the
more general situation exists as of yet [5]. In Tate’s formalism, we bring equation (4.19) into Tate form

PW = x3 − y2 + a1 xyz + a2 x
2z2 + a3 yz

3 + a4 xz
4 + a6 z

6 = 0 . (4.30)

This is always possible locally, but not necessarily globally, in other words the ai might be only local
sections of K−iBn . We will see that global Tate models are especially convenient. Obviously, every global
Tate model defines a Weierstrass model, but the converse is not true.

For later use, let us quickly state the relationship between the ai and f and g:

f = − 1
48
(
β2

2 − 24β4
)
, g = − 1

864
(
−β3

2 + 36β2β4 − 216β6
)
,

β2 = a2
1 + 4 a2, β4 = a1a3 + 2 a4, β6 = a2

3 + 4 a6 .
(4.31)

From the vanishing degrees of the ai and of ∆ we can read off the singularity type and the gauge
group, see table 4.2. In the table, we can see the important distinction between “non-split” configurations
(ns), where monodromies occur and fold the Dynkin diagrams, and “split” configurations (s) where this
does not happen. Another special case is the “semi-split” configuration I∗ss

2k , for details see [35]. Using
Tate’s algorithm, we can conveniently just look at the vanishing degrees of the different sections and
read off which configuration we are in.

Example: SU(5) Gauge Group. For example, if we want a SU(5) gauge group along the divisor
S : w = 0, the vanishing orders in w can be read off in the Is

2k+1 line of the table for k = 2. This
corresponds to

a1 = b5, a2 = b4 w, a3 = b3 w
2, a4 = b2 w

3, a6 = b0 w
5 , (4.32)

where the sections bi do not contain global factors of w. Using equations (4.20) and (4.31), we find [5]

∆ = −w5 (b4
5P + w b2

5(8b4P + b5R) +O(w2)
)︸ ︷︷ ︸

S1

(4.33)

for some polynomials P (b0 . . . b5) and R(b0 . . . b5). The expression S1 describes the locus of an I1
singularity, in cohomology [∆] = 5[S] + [S1].
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Singularity Gauge Dynkin Vanishing degrees
type group diagram a1 a2 a3 a4 a6 ∆
I0 — 0 0 0 0 0 0
I1 — 0 0 1 1 1 1
I2 SU(2) A1 0 0 1 1 2 2
Ins
2k SP(2k) C2k 0 0 k k 2k 2k
Is
2k SU(2k) A2k−1 0 1 k k 2k 2k

Ins
2k+1 [unconv.] 0 0 k + 1 k + 1 2k + 1 2k + 1
Is
2k+1 SU(2k + 1) A2k 0 1 k k + 1 2k + 1 2k + 1
II — 1 1 1 1 1 2
III SU(2) A1 1 1 1 1 2 3
IV ns [unconv.] 1 1 1 2 2 4
IV s SU(3) A2 1 1 1 2 3 4
I∗ns
0 G2 G2 1 1 2 2 3 6
I∗ss
0 SO(7) B3 1 1 2 2 4 6
I∗s0 SO(8) D4 1 1 2 2 4 6
I∗ns
1 SO(9) B4 1 1 2 3 4 7
I∗s1 SO(10) D5 1 1 2 3 5 7
I∗ns
2 SO(11) B5 1 1 3 3 5 8
I∗s2 SO(12) D6 1 1 3 3 5 8
I∗ns
2k−3 SO(4k + 1) B2k 1 1 k k + 1 2k 2k + 3
I∗s2k−3 SO(4k + 2) D2k+1 1 1 k k + 1 2k + 1 2k + 3
I∗ns
2k−2 SO(4k + 3) B2k+1 1 1 k + 1 k + 1 2k + 1 2k + 4
I∗s2k−2 SO(4k + 4) D2k+2 1 1 k + 1 k + 1 2k + 1 2k + 4
IV ∗ns F4 F4 1 2 2 3 4 8
IV ∗s E6 E6 1 2 2 3 5 8
III∗ E7 E7 1 2 3 3 5 9
II∗ E8 E8 1 2 3 4 5 10

non-min — 1 2 3 4 6 12

Table 4.2: Refined Kodaira classification resulting from Tate’s algorithm [35].

Matter Curves. There are two ways how chiral charged matter can arise in F-theory: The first are
so-called bulk states that propagate along the whole divisor. Bulk states will be irrelevant for what
follows, for a discussion we refer to [5].

The second possibility comes up at the loci where two singular divisors Da and Db intersect. If we
do F-theory on an elliptic CY 4-fold fibered over B3, a divisor is a two-dimensional subvariety of B3 and
the intersection Cab = Da ∩Db of two divisors is a curve, such curves are called matter curves.

Matter comes into play in the following way: Along the matter curve, the two sets of P1s intersect
and the gauge symmetry is enhanced to a new gauge group Gab with

rkGab = rkGa + rkGb . (4.34)

If we look at how the M-theory C3 and the M2-brane can be reduced along the P1s we see that there
is matter transforming in the adjoint of Gab. Considering how this decomposes under the subduction
Gab → Ga ×Gb, we generically get

adGab → (adGa ,1)⊕ (1,adGb)⊕
⊕
x

(Rx,Ux) (4.35)

for some representations Rx and Ux. We see that there are extra states appearing at the intersection of
the divisors.

Matter in our SU(5) Example. Let’s go back to our example (4.33). At the intersection locus of
the Is

5 singularity S (with gauge group A4 of rank 4) and the I1 singularity S1, the singularity can be
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Sing. Vanishing degrees Gauge enh. Object
type a1 a2 a3 a4 a6 ∆ Type Group equation

GUT: Is
5 0 1 2 3 5 5 A4 SU(5) S : w = 0

Matter: Is
6 0 1 3 3 6 6 A5 SU(6) P5 : P = 0
I∗s1 1 1 2 3 5 7 D5 SO(10) P10 : b5 = 0

Yukawa: I∗s2 1 1 3 3 5 8 D6 SO(12) b3 = 0 = b5
IV ∗s 1 2 2 3 5 8 E6 E6 b4 = 0 = b5

Extra: Is
7 0 1 3 4 7 7 A6 SU(7) P = 0 = R,

(b4, b5) 6= (0, 0)

Table 4.3: Relevant gauge enhancements in an SU(5) GUT geometry. Taken in this form from [5, Table
2].

enhanced either to Is
6 with gauge group A5 or to I∗s1 with gauge group D5 [36, Ch. 2.2].

• The enhancement A4 → A5 corresponds to SU(5)→ SU(6) with branching rule

35→ 240 + 10 + 51 + 5̄−1 . (4.36)

The matter curve hosts matter in the 5 = . According to table 4.2, it occurs when the vanishing
degree of ∆ is 6 which happens when P = 0.

P5 : w = 0 ∩ P = 0 . (4.37)

• The enhancement A4 → D5 corresponds to SU(5)→ SO(10) with branching rule

45→ 240 + 10 + 102 + 1̄0−2 . (4.38)

The matter curve hosts matter in the 10 = , it occurs when b5 = 0 such that the discriminant
scales as w7:

P10 : w = 0 ∩ b5 = 0 . (4.39)

Yukawa Points. At a point where two matter curves intersect, there is a further gauge enhancement.
This realizes a Yukawa interaction between the matter states living on the matter curves.

In our SU(5) example there are three possibilities:

• An E6 enhancement b4 = 0 = b5 gives a 10 10 5 coupling.

• An F6 enhancement b3 = 0 = b5 gives a 10 5̄ 5̄ coupling.

• An A6 enhancement happens where P = 0 = R but (b4, b5) 6= (0, 0). This gives a 5 5̄ 1 coupling
with an extra GUT singlet.

The various gauge enhancement we have discussed in our SU(5) model are summarized in table 4.3.

4.5 The Sen Limit
Sen’s Weak Coupling Limit (following [10]). To connect F-theory to type IIB orientifolds, one
needs to find configurations where the imaginary part of τ is large almost everywhere. (This automatically
gives us an SL(2,Z)-frame where all monodromies are the ones of D-branes or O-planes, see the discussion
in [10, Ch. 2.4].) A procedure giving us exactly such a limit was presented by Sen in [37].

We start from the Weierstrass form (4.19), putting the polynomial PW into a similar form like in
the first line of (4.31). It is however customary2 to rename the sections, let b2 = − 1

4 β2, b4 = 1
4 β4 and

2 We’ll follow the conventions of [1]. Other authors also use h = − 1
3 b2, η = 2 b4 and χ = −12 b6.
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b6 = − 1
48 β6, then f = − 1

3 b
2
2 + 2 b4 and g = 2

27 b
3
2 − 2

3 b2b4 + b6. Now we rescale those sections with a
parameter t,

b2 → t0 b2, b4 → t1 b4, b6 → t2 b6 , (4.40)
such that

f = −1
3 b

2
2 + 2t b4, g = 2

27 b
3
2 −

2
3 t b2b4 + t2 b6 and ∆ = −4t2 b22

(
b24 − b2b6

)
+O(t3) . (4.41)

Remembering from (4.21) that j(τ) = 4(24 f)3

∆ we see that in the limit t→ 0, |j| goes to infinity and
therefore the coupling becomes weak as desired. The fibration degenerates at the loci

b2 = 0 and (4.42)
b24 = b2b6 . (4.43)

Closer inspection shows that the monodromy around b2 = 0 is −T−4 so that this is an O-plane. Further,
we can choose a frame where the monodromies around the b24 = b2b6 branes are all equal to T , so that
(4.43) describes the positions of D-branes.

We can finally construct the type IIB Calabi-Yau by building a double cover of the base B3 which is
branched over the locus of the O-plane. Concretely, we consider the equation

ξ2 = b2 (4.44)

where ξ is a section of K∗Bn . The complete intersection described by the equation (4.44) in this line
bundle is a Calabi-Yau 3-fold B̂3, it is the one the type IIB theory is defined on. The D-branes are
located at

b24 = ξ2 b6 . (4.45)

The Stable Version. A refined version of this procedure was recently published [38], we’ll follow [1,39].
Let us plug (4.41) into the Weierstrass equation (4.19) again, with the slight change that we replace x
by the coordinate s = x+ h z2. That gives the equation

W5 : y2 = s3 + b2 s
2z2 + 2b4 tsz4 + b6 t

2z6 . (4.46)

This is a family of CY 4-folds parametrized by t, which can also be seen as a 5-fold W5 given by
equation (4.46) in the ambient 6-fold. The 6-fold is described by the three coordinates ui of the base
and the four coordinates s, y, z, t together with the scaling relation

s y z t
2 3 1 0

K−2
B K−3

B O O

and the SR ideal 〈syz〉. (In the last line we also list how the coordinates transform as sections of the
base B.)

At t = 0, the fiber of the 4-fold degenerates everywhere. This is not a stable singularity since also
W5 becomes singular at s = y = t = 0. If we do not want to lose information in the limit t→ 0, we need
to blow up this singular locus. This can be done exactly as described in subsection 2.2.3: We introduce
one additional coordinate λ to describe the blown up 6-fold, with scaling relations

s y z t λ
2 3 1 0 0
1 1 0 1 −1

K−2
B K−3

B O O O

and SR ideal 〈syz, syt, zλ〉. The blow-up map is

σ(s : y : z : t : λ) = (sλ : yλ : z : tλ) (4.47)

showing that equation (4.46) now reads (after dividing by λ2)

W̃5 : y2 = λs3 + b2 s
2z2 + 2b4 tsz4 + b6 t

2z6 . (4.48)
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IIB Data from W̃5. We are interested in the central fiber, σ−1(t = 0). This is a 4-fold consisting of
two components, because either t or λ can be set to zero in the resolved W̃5. Those two components are

WT : W̃5 ∩ {t = 0} : y2 = s2 (λs+ b2 z
2) , (4.49)

WE : W̃5 ∩ {λ = 0} : y2 = b2 s
2z2 + 2b4 tsz4 + b6 t

2z6 . (4.50)

The intersection WT ∩WE is a 3-fold where t = 0 = λ and therefore given by the equation

X3 : W̃5 ∩ {t = 0 = λ} : y2 = b2 s
2z2 . (4.51)

Due to the SR ideal, the divisors {z = 0} and {s = 0} do not meet X3 and we can define ξ = y/(zs).
Now the equation reads ξ2 = b2, we already know this type of equation from (4.44): It describes the CY
3-fold on which the type IIB theory is defined!

We continue and analyze WE a bit more. Since λ = 0, we can set z = 1 and then WE is described by

WE : y2 = b2 s
2 + 2b4 ts+ b6 t

2 . (4.52)

This is an equation in an ambient 5-fold described by the coordinates of the base and the coordinates
s, y, t of equal weights

s y t
1 1 1

K−2
B K−3

B O

with SR ideal 〈syt〉. In other words, WE is a fibration over B3 and each fiber of it is described by a
quadratic equation in a P2. This is called a conic bundle. Generically, those fibers are P1s, except at the
singularity where the discriminant

∆E = b2b6 − b24 (4.53)

vanishes and the fiber consists of two P1s. We recognize this to be the locus of the D7-brane like in
(4.45).

The Cylinder. For future reference, we define the cylinder

R3 = WE ∩ {∆E = 0} , (4.54)

it is a 3-fold which consists of the two P1s fibered over the D7-brane.
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Chapter 5

Hypercharge Flux

5.1 Interlude: Stückelberg Mass Terms
Massive U(1) Gauge Bosons. Let us quickly recap the theory of a free massless spin-1 boson Aµ [17]:
It is described by the Lagrangian

L = −1
4FµνF

µν (5.1)

which is invariant under the gauge symmetry

Aµ → Aµ + 1
g
∂µα . (5.2)

This is a special case of (A.84), but here α simply takes values in u(1) = R.
We can eliminate the gauge symmetry by adding a gauge fixing term −λ2 (∂A)2 such that the field is

in Lorenz gauge ∂A = 0. For λ = 1 (Feynman gauge), the gauge-fixed Lagrangian reads

L = −1
2∂µAν∂

µAν . (5.3)

When we quantize the theory, we still have to impose the constraint 〈∂A〉 = 0 after quantization (Gupta-
Bleuler condition). This gives us a well-defined quantum theory of two degrees of freedom (one ghost
mode is removed by the Gupta-Bleuler condition, another spurious mode decouples from all physical
processes).

A mass term m2

2 A
µAµ destroys gauge symmetry, adding it yields the Proca Lagrangian

L = −1
4FµνF

µν + m2

2 AµAµ . (5.4)

The absence of gauge symmetry does not hurt since the constraint ∂A = 0 follows from the equation of
motion ∂µFµν + m2Aν = 0. After quantization and imposing that constraint, we arrive at a theory of
three positive-norm degrees of freedom.

There are however mechanisms than can realize a massive gauge boson with U(1) gauge symmetry if
we add interactions with other degrees of freedom (see [40] for a review).

The Higgs Mechanism. The most well-known one (realized in the Standard Model, see subsection
3.1.1) is the Higgs mechanism: We add a complex scalar field Φ with a potential V exhibiting spontaneous
symmetry breaking 〈Φ〉 = v 6= 0. Φ transforms in the fundamental representation

Φ→ e−iα Φ (5.5)

of U(1) with the covariant derivative DµΦ = (∂µ + ig Aµ) Φ. Writing down the Lagrangian

L = −1
4FµνF

µν + (DµΦ)∗(DµΦ)− V (|Φ|2) (5.6)

43



CHAPTER 5. HYPERCHARGE FLUX

and expanding Φ = v + ϕ, we immediately see that there is a mass term L ⊃ −g2v2 Φ2.
To make this more explicit, we expand Φ in terms of amplitude and phase,

Φ = 1√
2

(v + f) e−iΘ/v , (5.7)

and we get [17]

L = −1
4F

2 + 1
2(∂f)2 + g2v2

2

(
A− ∂Θ

gv

)2
− gv2

2 f2 +O(f3) . (5.8)

Choosing the gauge Θ ≡ 0 this is the theory of a massive real scalar f and a massive vector field A. One
says that A has “eaten” one of the degrees of freedom of Φ so that it could become a massive field with
three real degrees of freedom.

The Classical Stückelberg Mechanism. Another perspective is this one: Consider again (5.8) and
take g → 0 and v →∞ such that gv = m stays constant. The mass m2

f = gv2 of the scalar field f goes
to infinity, we can leave it out and are left with

L = −1
4FµνF

µν + m2

2

(
Aµ −

1
m
∂µΘ

)2
. (5.9)

This is the Stückelberg Lagrangian. Since we are still free to choose a gauge, Θ ≡ 0 say, this describes
only the three degrees of freedom of the massive vector boson.

We could have written down this Lagrangian just as well without any prior reference to the Higgs
mechanism: Just take an axion Θ with shift symmetry Θ → Θ + m

g α, then Aµ − 1
m∂µΘ is invariant

under the combined gauge symmetry. The transformation behavior of Θ is called a nonlinear (affine)
representation of U(1).

Note that in the case of non-Abelian gauge symmetries, gauge symmetry is necessary for Faddeev-
Popov quantization. Further, the Stückelberg mechanism does not give a well-defined quantum theory:
The resulting theory is either not unitary or not renormalizable [41]. The only possibility that is left is
the Higgs mechanism.

The Stückelberg Mechanism in String Theory. We are interested in one particular instance in
which Stückelberg masses play a role: Consider again a vector boson with F = dA, and additionally a
2-form field B with field strength h = dB. A coupling ∼

∫
B ∧ F in R1,3 will give the vector boson a

Stückelberg mass [42, Ch. 9.5.2].
Toward proving this fact, we will write down the relevant parts of the action. It consists of the kinetic

terms for A and B and of the interaction
∫
B ∧ F :

S[A,B] = −1
2

∫
R1,3

(
h ∧ ∗h+ 1

g2F ∧ ∗F + 2cB ∧ F
)
, (5.10)

in components (using (2.14))

S[A,B] =
∫
R1,3

(
− 1

12h
µνρhµνρ −

1
4g2F

µνFµν + c

4ε
µνρσBµνFρσ

)
vol . (5.11)

A common trick when working with a 2-form field in four dimensions is to write the action completely
in terms of its field strength while enforcing dh = 0 with a Lagrange multiplier η. More explicitly, we
perform a partial integration B ∧ F = B ∧ dA = d(B ∧A)− h ∧A and arrive at

S[A,B] = −1
2

∫ (
h ∧ ∗h+ 1

g2F ∧ ∗F − 2c h ∧A
)

assuming that the boundary terms vanish. Introducing the Lagrange multiplier we get the equivalent
action

S[A, h, η] = −1
2

∫ (
h ∧ ∗h+ 1

g2F ∧ ∗F
)

+ c

∫
h ∧A−

∫
η ∧ dh , (5.12)
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in components

S[A, h, η] =
∫ (
− 1

12h
µνρhµνρ −

1
4g2F

µνFµν −
c

6ε
µνρσhµνρAσ + 1

6η ε
µνρσ∂µhνρσ

)
vol . (5.13)

We perform another partial integration η ∧ dh = d(η ∧ h) + h ∧ dη eliminating the only appearing
derivative of h. In the resulting action,

S[A, h, η] = −1
2

∫ (
h ∧ ∗h+ 1

g2F ∧ ∗F
)

+
∫
h ∧ (cA− dη) , (5.14)

h acts as a Lagrange multiplier enforcing the constraint δS
δh = 0. As

δhS =
∫
δh ∧ (−∗h+ cA− dη) ,

that constraint reads h = ∗(cA− dη) or hµνρ = −εµνρσ (cAσ − ∂ση).
Plugging this result back into (5.12) finally yields the classical Stückelberg action:

S[A, η] =
∫ [
− 1

2g2F ∧ ∗F + 1
2 (cA− dη) ∧ ∗ (cA− dη)

]
, (5.15)

in components

S[A, η] =
∫ [
− 1

4g2F
µνFµν + 1

2 (cAµ − ∂µη)2
]

vol . (5.16)

We already know that this gives a mass to the vector boson A, this concludes our proof.

5.2 SU(5) GUT Breaking via Hypercharge Flux
We have seen in section 4.4 how we can build an SU(5) GUT model using F-theory. In order to build
a realistic model, this GUT group still has to be broken down to the Standard Model gauge group.
One idea for how to achieve this would be to include a GUT Higgs in the 24 of SU(5) as discussed
in subsection 3.2.3. We end up with a traditional four-dimensional GUT model which has the same
problems (like proton decay or doublet-triplet splitting) that are outlined at the same place, though.

It would be better to look for an intrinsically stringy mechanism so that no low-energy SU(5) GUT
theory ever arises and those problems can be circumvented. In fact, there are several possible approaches
to do so. In this text, we will pursue the following appealing option: We already mentioned in subsection
3.3.1 that we can include background fluxes in our compactification, that is vacuum expectation values
of certain field strengths. In the language of type IIB string theory, it is intuitively clear that turning on
a background flux

su(5) ⊃ 〈Aµ〉 = cµ, c2 6= 0 (5.17)

will reduce the gauge symmetry to those transformations that leave the background flux unchanged: The
symmetry is broken to the commutant of 〈Aµ〉 in su(5). In the following we will prove this fact explicitly
and then use it to build a realistic model: The commutant of the hypercharge generator in su(5) is
exactly the Standard Model, this is obvious from the definitions in subsection 3.2.3. When we turn on
a hypercharge flux, we will have to take great care that the hypercharge generator remains massless,
though.

For a more detailed discussion on how GUTs can be broken in string theory see [5, Ch. 4.2] or [43, Ch.
2]. The phenomenon of GUT breaking via hypercharge flux was first discovered in [2]. One can find a
good treatment of this mechanism in [3,8], see also the introduction in [1]. For example [43,44] describe
how to implement this directly in F-theory.
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Symmetry Breaking via Background Fluxes. We want to prove the claim that a Yang-Mills
background flux (5.17) breaks the symmetry to the commutant of the flux, but need to introduce some
standard notation first. Let {T a} be the generators of SU(5) like in subsection 2.3.1 such that [T a, T b] =
fabcT c and tr(T aT b) = 1

2δ
ab. Then we can expand Aµ = AaµT

a as well as Fµν = F aµνT
a in this basis and

(A.86) becomes
F aµν = ∂µA

a
ν − ∂νAaµ + igfabcAbµAcν . (5.18)

We now go back to the DBI action given in (3.36) for a single brane. For a stack of D-branes we need
to add a trace over the internal indices, to lowest order in F it reads1 (see e.g. [22, Ch. 16.5])

SDBI = −κ
∫
D7

tr
(

1
4FµνF

µν

)
d8ξ + · · · = −κ

∫
D7

1
8F

a
µνF

µν a d8ξ + · · · (5.19)

(with κ = (2π)3

`4
s

a constant). For definiteness we will directly assume a flux in the hypercharge direction,

〈Aµ〉 = cµ = cYµ T
Y (5.20)

(where TY is the matrix that was called Y1 in subsection 3.2.3).
The background value leads to mass terms, the only relevant term in the Lagrangian is the one with

no derivatives,

κ
g2

8 f
abdAbµA

d
ν f

adeAµ cAν e .

The mass matrix is

M bc = ∂2L
∂Abµ∂A

µ c

∣∣∣∣
A=〈A〉

= κ

2 g
2c2 fabY facY = g2c2 tr

(
[T b, TY ] · [T c, TY ]

)
. (5.21)

Note that in particular terms of the form ∼ (∂νAaρ)fadeAν dAρ e do not lead to masses because ∂2

∂Abµ∂A
µ c

gives zero (the structure constants fabc are antisymmetric).
The gauge bosons remaining massless are exactly the ones in the kernel of the mass matrix, which is

precisely the commutant of TY in su(5).

Approaching the Standard Model Gauge Group. We already discussed above that the commu-
tant of TY in su(5) is the Standard Model su(3)⊕ su(2)⊕ u(1)Y . We have thus learned: By turning on
a hypercharge flux, the SU(5) GUT is broken down at least to the Standard Model.

But we still need to make sure that the generators of the Standard Model gauge group do not acquire
a mass from the Chern-Simons coupling (3.37). In the following we will see that the method we have
used generically makes the hypercharge generator massive, but we can get around that by choosing the
value of the hypercharge flux in a clever way.

Stückelberg Mass Terms for the Hypercharge Generator. In (3.37), we only wrote down a part
of the Chern-Simons action of a D-brane. The complete expression is

SCS = − 2π
`p+1
s

∫
Dp

tr e2π`2
s F ∧

∑
p

ι∗Cp ∧

√
Â(T )
Â(N)

, (5.22)

Â(T ) and Â(N) are the A-roof-genus of the tangent and the normal bundle of the brane, respectively
(see e.g. [22]). Those geometric terms are not of interest for us here, we approximate them to zeroth
order as 1.

1 We make a simplification here: In type IIB theory, the field strength F actually belongs to a U(5) gauge theory and
the physical Yang-Mills field strength F has a component (F 0 + T ι∗B)T 0 in the direction of the additional generator
T 0 ∼ 1. This leads just to a breaking U(5) → SU(5) × U(1) – we are only interested in the SU(5) part and will continue
with just the field strength F of SU(5). In [3], this is covered in detail.
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That leaves (in addition to the
∫
D7
ι∗C8 term which doesn’t contain the Yang-Mills field strength) a

term ∼
∫
D7

tr(F ) ∧ ι∗C6 coupling F to C6, a term ∼
∫
D7

tr(F ∧ F ) ∧ ι∗C4 coupling F to C4 and further
terms containing C2 and C0. The C6 term is immediately equal to zero as tr(F ) = 0 for F ∈ su(5). The
C2 and C0 terms do not lead to mass terms for non-trivial reasons, see footnote 4 in [43]. Hence we only
need to consider the term

− κ
∫
D7

tr(F ∧ F ) ∧ ι∗C4 (5.23)

(with κ the same constant like in (5.19)).
The integral (5.23) has to be split into an integration over R1,3 and one over the GUT divisor

S = D7 ∩X3. Because we still assume a product structureM10 = R1,3 ×X3 of spacetime like in (3.23),
the field strength F can necessarily be written as a sum

F a = F a4D(xi) + F aint(xI) (5.24)

where xi are coordinates of Minkowski space and xI those of the internal space, and

F a4D ∈ H2(R1,3) and F a4D ∈ H2(S) . (5.25)

The flux in external space should vanish such that only FYint acquires a background value. (Note that
F aint for a 6= Y cannot get an expectation value because of the definition (5.18).)

Some notation: Let CY be the cycle in S which is Poincaré dual to 〈FYint〉 (with respect to S) and
LY = OS(CY ) the corresponding line bundle over S. Then, using once more (2.34),

〈FYint〉 = [CY ]S = c1(OS(CY )) = c1(LY ) . (5.26)

We can at most get a Stückelberg mass term from (5.23). We expand that action using (5.24) and
see that only the cross term

−2κ
∫
D7

tr(F4D ∧ Fint) ∧ ι∗C4

can give us a Stückelberg mass term like in (5.10). We now expand C4 in terms of harmonic forms on
the Calabi-Yau, this expansion is well known (see e.g. [45, Ch. 5.1] or [46, Ch. 2.3]):

C4 =
b1,1(X3)∑
i=1

(
c
(i)
2 (xi) ∧ ωi + ρi(xi) ω̃i

)
+
b1,2(X3)∑
K̂=0

(
V K̂(xi) ∧ αK̂ − UK̂(xi) ∧ βK̂

)
. (5.27)

Here ωi ∈ H1,1(X3), ω̃i ∈ H2,2(X3) and αK̂ , βK̂ ∈ H3(X3). For simplicity we ignored the fact that X3

is actually not a manifold but an orientifold. Plugging the expansion into the action, only the c(i)2 ∧ ωi
part survives and we finally see that a mass term can only arise from the term

− 2κ tr(T aT b)
∫
D7

F a4D ∧ 〈F bint〉 ∧ c
(i)
2 ∧ ι∗ωi = −κ

(∫
S

c1(LY ) ∧ ι∗ωi
)∫

R1,3
FY4D ∧ c

(i)
2 . (5.28)

Summarizing, we need ∫
S

c1(LY ) ∧ ι∗ω = 0 ∀ω ∈ H1,1(X3) . (5.29)

A Geometric Solution to the Problem. We use Poincaré duality to rewrite (5.29) to

0 =
∫
CY
ι∗ω =

∫
ι∗CY

ω ∀ω ∈ H1,1(X3) , (5.30)

the second equality is just the definition A.43 of the integral. ι∗ : H2(S) → H2(X3) is the pushforward
of homology classes, defined in subsection 2.1.2. This condition is equivalent to requiring that

ι∗CY = 0 , (5.31)
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Figure 5.1: A curve [FY ] which is non-trivial in H2(S) but trivial in H2(B) because [FY ] = ∂Σ3. Taken
from [42].

but obviously CY 6= 0. Figure 5.1 shows an illustration of such a curve.
An easy way to achieve (5.31) is to take two chains C1 ∈ H2(S) and C2 ∈ H2(S) which are non-

homologous in S but homologous as curves in X3. That means that ι∗(C1) = ι∗(C2) or, geometrically
speaking, there is a 3-chain Γ in X3 such that ∂Γ = C2 − C1. Then we just define

CY = C1 − C2 (5.32)

and we are done.

Rewriting the Condition. There is another way to write (5.30) which is used often. We define the
pushforward in cohomology

ι! : H2(S)→ H4(B) (5.33)

as the Poincaré dual of the pushforward ι∗CY in homology. Obviously, in general
∫

Ω ∧ ι∗ω =
∫
ι!Ω ∧ ω,

therefore we can rewrite the condition to∫
X3

ι! c1(LY ) ∧ ω = 0 ∀ω ∈ H1,1(X3) . (5.34)

This condition is equivalent to
ι! c1(LY ) = 0 (5.35)

in H4(X3).

5.3 Lifting Type IIB 2-form Fluxes to F-Theory 4-form Fluxes
When we compactified M-theory on an S1 in section 4.2, we already saw how different kinds of fields in
one theory can be encapsulated in just one field in a dual theory: Dimensional reduction of the M-theory
A3 form field yields the type IIA C3 and B2 fields, see (4.12).

The same thing happens with the fluxes: Two types of fluxes in type IIB theory, namely closed string
three-form fluxes G3 = F3− τH3 and brane fluxes F2, arise from the M-theory (2, 2)-form flux G4 [5,44].
Those G4 fluxes can be constructed in quite generality, for details see [44, Ch. 5.4] or [47].

G4-Fluxes and Brane Fluxes. We are mainly interested in the brane fluxes. In principle, they arise
from G4 by the reduction

G4 =
∑
i

F (i) ∧ ωi + · · · . (5.36)

For example, for a flux along a Cartan generator of the gauge group G, ωi is the Poincaré dual of the
respective resolution divisor Ei from (4.29) (with respect to Ȳ4) [5].

We will elaborate how to determine the respective resolution divisor E [8, Ch. 4]: The idea is that
since the resolution divisors Ei intersect like the simple roots of the Lie algebra (equation (4.29)), they
correspond to the Cartan generators Tαi defined in (2.57).
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For example, let us say we have an SU(5) gauge group with a hypercharge flux along the curve CY ,
like discussed above. We can use any of the resolution divisors Ei to lift [CY ]S to a 4-form flux: Fibering
the P1

i over the curve CY gives 4-cycles

CY,i = P1
i → CY = Ei|CY ,

their Poincaré duals in Ȳ4 are 4-form fluxes G4,i. Since taking the exterior product in cohomology is
Poincaré dual to taking the intersection in homology, we can simplify the fluxes:

G4,i = [CY,i]Ȳ4
=
[
Ei|CY

]
Ȳ4

= [CY ]S ∧ [Ei]Ȳ4
= FY ∧ ωi . (5.37)

The hypercharge generator TY ' diag(−2,−2,−2, 3, 3) is the following combination of the basis
(2.57) corresponding to the simple roots:

TY = −2Tα1 − 4Tα2 − 6Tα3 − 3Tα4 . (5.38)

This tells us that we have to use the following 4-flux:

G4 = −2G4,1 − 4G4,2 − 6G4,3 − 3G4,4 . (5.39)

G4-Fluxes in the Family W5. The technique we have just discussed is what we will use later on.
Let us mention, however, that it is also possible to first lift the flux to a four-form flux in WE using
the cylinder (4.54), and then write down a flux in any fourfold of the family W5. Following [1], we will
illustrate this technique with a simple example.

We first construct the threefold X3 as a hypersurface in affine complex space C4 with coordinates z1,
z2, z3 and ξ:

X3 : ξ2 = x3 + 1 . (5.40)

This X3 is not a Calabi-Yau manifold and not even compact, but it will suffice for this example.
X3 is a double cover of the base B3 = C3

(x1,x2,x3) like in section 4.5, we can read off b2 = x3 + 1. The
orientifold plane is located at the branch point b2 = 0, i.e. x3 = −1 in B3. We want to put an SU(2)
stack of branes on the divisor S : x3 = 0. Looking this up in table 4.2, we can achieve it with an Is2
singularity

b2 = x3 + 1 , b4 = x3 , b6 = 0 . (5.41)

Plugging (5.41) back into the defining equation of the conic bundle WE (4.52) and rewriting that
equation, we get

WE : (y + s)(y − s) = x3s (s+ 2t) . (5.42)

This has still a singularity at s = y = x3 = 0. We can resolve the singularity after introducing an
auxiliary coordinate σ with the equation x3 = σ such that WE is given by

WE :
{

(y + s)(y − s) = σs (s+ 2t)
x3 = σ

,

where the coordinates of the fiber have the scaling relation

s y t σ
1 1 1 0 .

We know how to blow such a space up in s = y = σ = 0: We introduce a new coordinate v with scaling
relations

s y t σ v
1 1 1 0 0
1 1 0 1 −1
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and SR ideal 〈syt, syσ, vt〉. The resolved conic bundle is given by the equations

W̃E :
{

(y + s)(y − s) = σs (vs+ 2t)
x3 = σv

. (5.43)

The cylinder R3 = W̃E ∩ {∆E = 0} = W̃E ∩ {x3 = 0} now has three components

R+
σ :


x3 = 0
σ = 0
y + s = 0

R−σ :


x3 = 0
σ = 0
y − s = 0

Rv :


x3 = 0
v = 0
y2 − s2 = 2tσs

, (5.44)

each fiber consisting of three P1s intersecting like P+
σ ∪p+ Pv ∪p− P−σ in the points p± : x3 = v = σ =

y ± s = 0. P+
σ and P−σ do not intersect since syσ is in the SR ideal.

Let us now consider fluxes F1 and F2 along the two branes. We can lift them to W̃E in a similar
fashion to the one described above, by fibering the exceptional P1s over the dual 2-cycles. As discussed,
this is equivalent to taking the exterior product of Fi with the two-form dual to the cylinder component.
It turns out that, due to the requirement of Poincaré invariance, the correct linear combinations are

G4,1 = 1
2F1 ∧ ([R+

σ ]− [R−σ ]− [Rv])

G4,2 = 1
2F2 ∧ ([R+

σ ] + [Rv]− [R−σ ]) .

The Poincaré duals are understood with respect to W̃E . For a Cartan flux with F2 = F = −F1, the
result is

G4 = F ∧ [Rv] . (5.45)

Now that we have lifted the two-form flux F to a four-form G4 in W̃E , we’d usually have to put in a
bit more work in order to define a flux in a four-fold of the family W̃5. In this case it is easy, however,
because we can write

G4 = F ∧ [E] (5.46)

with the exceptional divisor E = {v = 0}, this is well defined in a generic four-fold of the family W̃5.

5.4 A First SU(2) Example
We already constructed a model giving an SU(2) gauge group in section 5.3, but it didn’t satisfy all of
our requirements. In the following, we will construct another such model with a compact Calabi-Yau Y4,
where the D-brane divisor is rigid2. This example is taken from [1].

The Ambient Variety T4. We start from a P4 with homogeneous coordinates z0, . . . , z4 and SR ideal
〈z0 · · · z4〉. Blowing this up in (0 : · · · : 0 : 1) gives a toric variety T4 described by the coordinates

z0 z1 z2 z3 z4 w
1 1 1 1 1 0
0 0 0 0 1 1

(5.47)

and the SR ideal 〈z0z1z2z3, z4w〉. This variety has two divisor classes [z] and [w], corresponding to the
two rows, and [z0] = · · · = [z3] = [z] and [z4] = [z] + [w]. Since the wedge product of cohomology classes
corresponds to intersection in homology, the SR ideal tells us that3

[z]4 = 0 and [w] ([z] + [w]) = 0 (5.48)
2 A Calabi-Yau 3-fold is rigid if it has no complex structure moduli, i.e. b2,1 = 0.
3 In this context, the exterior product [z1] ∧ [z2] is usually written as multiplication [z]2. It is also commutative since

we are only using forms of even degree.
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as discussed in subsection 2.2.4.
The product of four classes is dual to the intersection of four hypersurfaces, consisting only of discrete

points. The number of points in the intersection is called the intersection number. By Poincaré duality,
it can be calculated as

#([z]n[w]4−n) =
∫
T4

[z]n[w]4−n . (5.49)

In P4, there is only one class [z]P4 and the normalized volume form is volP4 = [z]4P4 meaning that∫
P4 volP4 = 1. Let σ : T4 → P4 be the blow-up map, then the volume form vol of the blow-up T4 with∫
T4

vol = 1 is given by vol = σ∗ volP4 because∫
T4

σ∗ volP4 =
∫
σ∗T4=P4

volP4 = 1 .

This can be explicitly calculated:

vol = (σ∗[z]P4)4 = ([z] + [w])4 = [z]4 + 4 [z]3[w] + 6 [z]2[w]2 + 4 [z][w]3 + [w]4 = −[w]4 . (5.50)

The pullback of [z]P4 is [z] + [w] because the pre-image of such a hypersurface in P4 is either of the type
{z4 = 0} or of the type {z0 = 0} ∪ {w = 0}, both are Poincaré dual to [z] + [w].

All of this shows us that #([w]4) = −1 and using (5.48) we get the intersection ring

[z]4 [z]3[w] [z]2[w]2 [z][w]3 [w]4
# 0 1 −1 1 −1 . (5.51)

The Base B3. We choose to take B3 to be a hypersurface in T4 with class [B3] = 3 [z] + [w]. In other
words, it is given by a polynomial of degree (3, 1), such a polynomial has the form

B3 : P2(z0, . . . , z3) z4 + P3(z0, . . . , z3)w = 0 (5.52)

in general (the polynomials Pi are of degree i).
We are interested in the cohomology of B3. In fact, the class [B3] was chosen like this because that

makes O(B3) ample and we can use the Lefshetz hyperplane theorem (see subsection 2.2.2 or theorem
C.30). Ampleness can easily be checked with a computer algebra system, see section D.2. The hyperplane
theorem directly shows that i∗[z] and i∗[w] are a basis for H2(B3) if i : B3 → T4 is the embedding. We
will mostly omit the i∗ in the following.

The intersection ring on B3 can be easily calculated, for example
∫
B3
i∗[z]3 =

∫
i∗B3

[z]3 =
∫
T4

[B3] ∧
[z]3 = 3

∫
T4

[z]4 +
∫
T4

[z]3[w] = 1. The result is

[z]3 [z]2[w] [z][w]2 [w]3
# 1 2 −2 2 . (5.53)

Finally, we are interested in the first Chern class of B3. We begin our calculation with remembering
KP4 = O(−5) from (2.37). Using (2.47) we find that

KT4 = σ∗OP4(−5)⊗O(3[w]) (5.54)

with first Chern class c1(T4) = − c1(KT4) = 5σ∗[z]P4−3 [w] = 5 [z]+2 [w]. This confirms the claim made
in subsection 2.2.4: In toric varieties, we generally only have to sum the entries of the scaling relation
table in order to read off the first Chern class. Using the adjunction formula (2.33), we get

c1(B3) = i∗
(

c1(T4)− c1(O(B3))
)

= 5 [z] + 2 [w]− [B3] = 2 [z] + [w] . (5.55)
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Placing the Branes. We choose
S = B3 ∩ {w = 0} (5.56)

as the divisor of B3 on which we will put the D-branes. When w is set to zero, we can set z4 = 1 due to
the SR ideal. The defining equations of S are thus

S : w = 0 and P2(z0, . . . , z3) = 0 (5.57)

in T4, this is a rigid surface in B3 [1].
S is given as a quadric P2 = 0 in the P3 spanned by z0, z1, z2 and z3. Any smooth quadric surface

in P3 is isomorphic to P1 × P1, we will prove this quickly [48, Ch. 4.1]: The Segré map(
(s0 : s1), (t0 : t1)

)
7→ (z0 : z1 : z2 : z3) = (s0t0 : s0t1 : s1t0 : s1t1) (5.58)

is an embedding of P1×P1 into P3 with the image given by z0z3− z1z2 = 0 – a quadric in P3. According
to Bertini’s theorem C.37, all smooth quadric surfaces in P3 look the same.

Given our quadric P2 = 0 we can now use the Segré map (5.58) to redefine the coordinates z0 to z3
such that

P2(z0, . . . , z3) = z0z3 − z1z2 (5.59)

and the embedding of P1 × P1 is given by the Segré map.
We want to write down a fibration with an Is2 singularity along the divisor S : w = 0 in B3, giving an

SU(2) gauge group like in the previous section. According to table 4.2, b4 and b6 need to scale as w and
w2, respectively – we will put b4 = b4,1w and b6 = b6,2w

2 – and b2 = a2
1 + a2,1w. In order to describe

the F-theory 4-fold Y4 using the definition of the base (5.52) and the Weierstrass equation (4.19), we
consider the bundle P2

(2:3:1) →W6 → T4 with s, y and u being the fiber coordinates4. We know that they
have to transform as the sections of certain powers of the anticanonical bundle over B3, for example s is
a section of K−2

Bn
= 2O(2 [z] + [w]).

We summarize that bundle using the table

W6 :

z0 z1 z2 z3 z4 w s y u
1 1 1 1 1 0 4 6 0
0 0 0 0 1 1 2 3 0
0 0 0 0 0 0 2 3 1

(5.60)

with the SR ideal generated by 〈z0z1z2z3, z4w, syu〉. Y4 is given as a complete intersection in W6:

Y4 :
{

(z0z3 − z1z2) z4 + P3(z0, . . . , z3)w = 0
y2 = s3 + (a2

1 + a2,1w) s2u2 + 2b4,1wsu4 + b6,2w
2u6 . (5.61)

Note that (by construction)

c1(Y4) = (15 [z] + 7 [w] + 6 [u])− (3 [z] + [w])− (12 [z] + 6 [w] + 6 [u]) = 0 .

Turning on a Cartan Flux. As discussed in section 5.2, we are now looking for two 2-cycles C1 and
C2 that are homologous in S = P1

s × P1
t but non-homologous in B3. Then we can turn on a Cartan flux

Poincaré dual to CF = C1 − C2 and lift it to F-theory.
We claim that the following cycles satisfy that condition:

C1 = T4 ∩ {z0 = z1 = w = 0} = S ∩ {s0 = 0} and (5.62)
C2 = T4 ∩ {z0 = z2 = w = 0} = S ∩ {t0 = 0} . (5.63)

4 Where we use the name “u” instead of “z” to avoid confusion, and s = x− 1
3 b2u2 like in section 4.5.
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• Let’s first prove that they are non-homologous in S. As we know, S is isomorphic to P1
s × P1

t with
coordinates

s0 s1 t0 t1
1 1 0 0
0 0 1 1

and H2 spanned by the divisor classes [s] and [t].
C1 as a cycle of S is dual to [s] and C2 is dual to [t], they are not equal. More explicitly we can
even show that ∫

S

[CF ]2 =
∫
P1
s×P1

t

([s]− [t])2 = −2
(∫

P1
s

[s]
)(∫

P1
t

[t]
)

= −2 6= 0 .

• In T4 on the other hand, the cycles are both dual to the class

[z]2[w] ∈ H6(T4)

and therefore homologous. The Lefshetz hyperplane theorem finally shows that the cycles are also
homologous in B3, that concludes the proof.

Lifting the Cartan Flux to F-Theory. We continue like in section 5.3 and resolve the singularity
at s = y = w = 0 in Y4. Blowing up the 6-fold in that point gives

W̃6 :

z0 z1 z2 z3 z4 w s y u v
1 1 1 1 1 0 4 6 0 0
0 0 0 0 1 1 2 3 0 0
0 0 0 0 0 0 2 3 1 0
0 0 0 0 0 1 1 1 0 −1

. (5.64)

the SR ideal is generated by the old generators 〈z0z1z2z3, z4w, syu〉, by the previously singular 〈syw〉
and finally by 〈z4v, tv〉 making the blow-up map

(z0 : z1 : z2 : z3 : z4 : w : s : y : t : v) 7→ (z0 : z1 : z2 : z3 : z4 : wv : sv : yv : t)

well-defined. The resolved Ỹ4 is a total intersection in W̃6, namely

Ỹ4 :
{

(z0z3 − z1z2) z4 + P3(z0, . . . , z3)wv = 0
y2 = s3v + (a2

1 + a2,1wv) s2u2 + 2b4,1wsu4 + b6,2w
2u6 . (5.65)

We already know that we have to lift the curves along the exceptional divisor if the flux is along the
Cartan of SU(2): We restrict the exceptional divisor v = 0 to the curves C1 = {z0 = z1 = vw = 0} and
C2 = {z0 = z2 = vw = 0}. This gives the H4-cycles

Θ1 :


v = 0
z0 = 0
z1 = 0
y2 = a2

1s
2u2 + 2b4,1wsu4 + b6,2w

2u6

Θ2 :


v = 0
z0 = 0
z2 = 0
y2 = a2

1s
2u2 + 2b4,1wsu4 + b6,2w

2u6

in T̃6 (lying in Ỹ4) and the Cartan flux is

G4 = [Θ1 −Θ2]Ỹ4
. (5.66)
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Chapter 6

Constructing a Realistic Model

We continue with a more realistic model, where an SU(5) GUT is broken to the MSSM using a hyper-
charge flux. Also this example was taken from [1].

6.1 Geometry of the 4-fold
Setting the Stage. We start with a toric variety T4 described by the coordinates

T4 :
z1 z2 z3 z4 z5 z6
1 1 1 2 0 1
0 0 0 1 1 1

(6.1)

with SR ideal 〈z1z2z3, z4z5z6〉. The base manifold B3 is defined as the vanishing locus of a degree (5, 2)
polynomial which has the following form in general:

B3 : P(5,2)(z1, . . . , z6) = z2
4 P1 + z4z5R3 + z4z6 P2 + z2

5 Q5 + z5z6R4 + z2
6P3

= z5 (z5Q5 + z4R3 + z6R4) +
[
z2

4 P1 + z4z6 P2 + z2
6P3
]

= 0 .
(6.2)

Pi, Qi and Ri are polynomials in (z1, z2, z3) of degree i.
The surface S on which we will put the branes is

S : B3 ∩ {z5 = 0} . (6.3)

By setting z5 = 0 in T4 we see that we can alternatively describe S as the vanishing locus of

S : z2
4 P1 + z4z6 P2 + z2

6 P3 = 0 (6.4)

in the ambient space

T3 :
z1 z2 z3 z4 z6
1 1 1 2 1
0 0 0 1 1

=
z1 z2 z3 z4 z6
1 1 1 1 0
0 0 0 1 1

. (6.5)

with SR ideal 〈z1z2z3, z4z6〉. We recognize T3 to be the blow-up of the P3 spanned by z1, . . . , z4 in a
point. Furthermore, S arises as the blow-up of a cubic z2

4P1 + z4P2 +P3 = 0 in that P3. This shows that
S is a del Pezzo surface:

Del Pezzo surfaces are surfaces X with ample anticanonical bundle K̄X . The degree of a del Pezzo
surface is defined as the self-intersection number K2

X =
∫
X

c1(KX)2 of the canonical class KX = c1(KX).
A classical theorem [49, Cor. V.4.7] states that the only del Pezzo surfaces are P1 × P1 of degree 8 and
dPn, the blow-up of P2 in n ∈ {0, 1, . . . , 8} generic points, of degree (9 − n). Only P1 × P1 and dP0
through dP3 are toric varieties.

S is a dP7 surface since, generically, a cubic in P3 is a dP6 surface [49].
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Non-Trivial Curve on S which is Trivial on B3. We need to find curves which are homologous in
B3 but non-homologous in S. Remember our previous example (section 5.4): S was given as a quadric
in P3 which is isomorphic to P1 × P1, a del Pezzo surface of degree 8. By appropriately restricting the
defining equation to (5.59) we were able to figure out that the curves C1 and C2 satisfy the requirement.

In the present case, S = dP7 is given by a polynomial of degree (5, 2) in the ambient space T3. We
restrict the defining equation to

Q(5,2) = z1z2z6 F1(z1z6, z2z6, z3z6, z4) + z3z4 F̃1(z1z6, z2z6, z3z6, z4) = 0 (6.6)

(where F1 and F̃1 are linear combinations of their arguments) and define the curves

C13 : {z1 = z3 = z5 = 0} ,
C24 : {z2 = z4 = z5 = 0} and
C63 : {z6 = z3 = z5 = 0} .

(6.7)

Those curves lie in S because of how we restricted the defining equation.
The curves satisfy the relation C13 + C63 = C24 in T4 (because [z1][z3][z5] + [z6][z3][z5] = [z2][z4][z5]).

This relation also holds on B3 because O(B3) is ample. This shows that the curve

CY = C24 − C13 − C63 (6.8)

is trivial in B3, we claim that it is non-trivial in S. To prove this, we will calculate the self-intersection
product CY · CY in S and show that it is non-zero.

In general, for a curve C in a surface S,

2gC − 2 = C · (C +KS) ,

where gC is the genus of the curve. This follows from the adjunction formula, see [49, Prop. V.1.5]. In
our case, S = dP7 and it is clear from the definition that all 2-cycles of a dPn are P1s with genus gP1 = 0.
Thus,

C2 = −2− C · KS .
Next, we will calculate KS using the adjunction formula (2.33). We see that

KS = (KT3 + c1(O(S)))|S = (−4 [z1]− 2 [z6] + 3 [z1] + 2 [z6])|S = − [z1]|S .

Finally, using Poincaré duality we can calculate

C2 = −2 +
∫
S

[C]S ∧ [z1]|S = −2 +
∫
C

[z1]|C = −2 +
∫
T3

[C] ∧ [z1]

(where the Poincaré duals are with respect to T3 in the last term).
Because [z1]3 = 0 as well as ([z1] + [z6])∧ [z6] = 0 (from the SR ideal), and because the volume form

on T3 is ([z1] + [z6])3, the intersection ring of T3 is

[z1]3 [z1]2[z6] [z1][z6]2 [z6]3
# 0 1 −1 1 .

With this knowledge, we can directly calculate

C2
13 = −2 +

∫
[z1]3 = −2 ,

C2
24 = −2 +

∫
[z1]2 ∧ ([z1] + [z6]) = −1 and

C2
63 = −2 +

∫
[z1]2[z6] = −1 .

Also, we can easily read off the other intersection numbers,

C13 · C24 = 0 , C13 · C63 = 1 and C24 · C63 = 0

from the definition of T3. This proves that

C2
Y = (C24 − C13 − C63)2 = −2 6= 0 . (6.9)
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Placing the Branes. We let ourselves be guided by the example given in section 4.4 on how to model
an SU(5) gauge group in F-theory. We make the ansatz (4.32) with the additional constraint b0 = 0
(“U(1)-restricted Tate model”). This simplifies the expression S1 describing the I1 singularity along
which the symmetry is enhanced and gives us an additional massless U(1)X symmetry which does not
arise as the Cartan of a non-abelian gauge group [29]. (This was first described in [50].) Summarized:

a1 = b5, a2 = b4 z5, a3 = b3 z
2
5 , a4 = b2 z

3
5 , a6 = 0 , (6.10)

∆ = z5
5 ·
(
b4

5P +Qz5 +R′ z2
5 + S z3

5 + T z4
5
)︸ ︷︷ ︸

S1

. (6.11)

P , Q, R′, S and T are polynomials1 in the bi, we quote from [29]:

P = b3 (b3b4 − b2b5) ,
Q = b2

5
(
8 b2

3b
2
4 − b2

2b
2
5 − 8 b2b3b4b5 − b3

3b5
)
,

R′ = 16 b2
3b

3
4 − 36 b3

3b4b5 − 16 b2b3b
2
4b5 + 30b2b

2
3b

2
5 − 8 b2

2b4b
2
5 ,

S = 96 b2
2b3b5 − 16 b2

2b
2
4 − 72 b2b

3
3b4 + 27 b4

3 ,

T = 64 b3
2 .

The resulting elliptically fibered Y4 will therefore have a split SU(5) singularity along S = {z5 = 0}
and a conifold singularity along the vanishing locus of S1, which is

S1 : b2 = b3 = 0 (6.12)

as we can see. Y4 is given by the Weierstraß equation in Tate form (4.30),

y2 = x3 + b5 xyz + b4 z5 x
2z2 + b3 z

2
5 yz

3 + b2 z
3
5 xz

4 , (6.13)

together with (6.2) in an ambient six-fold T6 which is P2
(2:3:1) fibered over T4:

T6 :

z1 z2 z3 z4 z5 z6 x y z
1 1 1 2 0 1 2 3 0
0 0 0 1 1 1 2 3 0
0 0 0 0 0 0 2 3 1

. (6.14)

The SR ideal is 〈z1z2z3, z4z5z6, xyz〉.

6.2 Singularity Resolution
Equation (6.13) is highly singular, we will perform a series of 5 blow-ups to resolve the singularities. A
similar calculation can be found in [51, Ch. 2.2].

Note that there are different blow-up routes, we can perform the blow-ups in different order. Of
course, each route leads to the same scaling relation, but the SR ideals can be different. In fact, this can
lead to six different Calabi-Yau 4-folds, corresponding to six different triangulations of the underlying
polytope of the toric variety. This is discussed in detail in [29]. Here we will simply describe a route
leading to the result in [1].

First Blow-Up: The singularity x = y = z5 = 0 is immediately obvious from (6.13) (because all terms
are at least quadratic in these variables). We perform the blow-up introducing a new coordinate
v1 and write the defining equations (6.2) and (6.13) as

Y
(1)
4 :

{
0 = v1z5 (v1z5Q5 + z4R3 + z6R4) +Q(5,2)

y2 = v1x
3 + b5 xyz + b4 z5 v1x

2z2 + b3 z
2
5 v1yz

3 + b2 z
3
5 v

2
1xz

4

1 This definition ensures that the polynomials P here and in (4.33) are equal. R and R′ are different, though.
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in terms of the new coordinates of

T
(1)
6 :

z1 z2 z3 z4 z5 z6 x y z v1
1 1 1 2 0 1 2 3 0 0
0 0 0 1 1 1 2 3 0 0
0 0 0 0 0 0 2 3 1 0
0 0 0 0 1 0 1 1 0 −1

with SR ideal 〈123, 456, xyz, xy5, z1̄, 461̄〉. To improve readability we have written k instead of zk
and k̄ instead of vk.

Second Blow-Up: This new equation has an obvious singularity at x = y = v1 = 0. By the same
procedure,

Y
(2)
4 :

{
0 = v1v2z5 (v1v2z5Q5 + z4R3 + z6R4) +Q(5,2)

y2 = v1v
2
2x

3 + b5 xyz + b4 z5 v1v2x
2z2 + b3 z

2
5 v1yz

3 + b2 z
3
5 v

2
1v2xz

4

in the ambient toric variety

T
(2)
6 :

z1 z2 z3 z4 z5 z6 x y z v1 v2
1 1 1 2 0 1 2 3 0 0 0
0 0 0 1 1 1 2 3 0 0 0
0 0 0 0 0 0 2 3 1 0 0
0 0 0 0 1 0 1 1 0 −1 0
0 0 0 0 0 0 1 1 0 1 −1

with SR ideal 〈123, 456, xyz, xy5, z1̄, 461̄, xy1̄, z2̄, 52̄, 462̄〉.

There are no obvious singularities any more. Let us rewrite the Weierstrass equation in the following
form:

y
(
y − b3 z

2
5 v1z

3 − b5 xz
)

= xv1v2
(
v2x

2 + b4 z5 xz
2 + b2 z

3
5 v1z

4) . (6.15)

This is a so-called binomial equation [52, Ch. 5]. It has codimension 2 singularities at the loci where
one of the factors on each side is zero. We have to perform blow-ups in y = v1 = 0, y = v2 = 0 and
y = x = 0. The blow-up of y = x = 0 resolves the conifold singularity.

Third Blow-Up: The next blow-up we do is the one in y = v1 = 0, we’ll call the new coordinate v4.
What we get is

Y
(3)
4 :

{
0 = v1v2v4z5 (v1v2v4z5Q5 + z4R3 + z6R4) +Q(5,2)

v4y
2 = v1v

2
2x

3 + b5 xyz + b4 z5 v1v2x
2z2 + b3 z

2
5 v1v4yz

3 + b2 z
3
5 v

2
1v2v4xz

4

in the ambient toric variety

T
(3)
6 :

z1 z2 z3 z4 z5 z6 x y z v1 v2 v4
1 1 1 2 0 1 2 3 0 0 0 0
0 0 0 1 1 1 2 3 0 0 0 0
0 0 0 0 0 0 2 3 1 0 0 0
0 0 0 0 1 0 1 1 0 −1 0 0
0 0 0 0 0 0 1 0 0 0 −1 1
0 0 0 0 0 0 0 1 0 1 0 −1

.

We subtracted the last line of the table from the second-to last in accordance with [1]. The SR
ideal is 〈123, 456, xyz, xy5, z1̄, 461̄, z2̄, 52̄, 462̄, y1̄, z4̄, 464̄, x4̄〉.
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Fourth Blow-Up: At this point we will resolve the conifold singularity by blowing up x = y = 0. The
new coordinate will be called `:

Y
(4)
4 :

{
0 = v1v2v4z5 (v1v2v4z5Q5 + z4R3 + z6R4) +Q(5,2)

v4`y
2 = v1v

2
2`

2x3 + b5 `xyz + b4 z5 v1v2`x
2z2 + b3 z

2
5 v1v4yz

3 + b2 z
3
5 v

2
1v2v4xz

4

in T (4)
6 :

z1 z2 z3 z4 z5 z6 x y z v1 v2 v4 `
1 1 1 2 0 1 2 3 0 0 0 0 0
0 0 0 1 1 1 2 3 0 0 0 0 0
0 0 0 0 0 0 2 3 1 0 0 0 0
0 0 0 0 1 0 1 1 0 −1 0 0 0
0 0 0 0 0 0 1 0 0 0 −1 1 0
0 0 0 0 0 0 0 1 0 1 0 −1 0
0 0 0 0 0 0 1 1 0 0 0 0 −1

with SR ideal 〈123, 456, z1̄, 461̄, z2̄, 52̄, 462̄, y1̄, z4̄, 464̄, x4̄, xy, z`, 5`, 1̄`, 4̄`〉.

Final Blow-Up: Finally, it remains to resolve the singularity y = v2 = 0. The result is given by the
equations

Ỹ4 :
{

0 = v1v2v3v4z5 (v1v2v3v4z5Q5 + z4R3 + z6R4) +Q(5,2)

v3v4`y
2 = v1v

2
2v3`

2x3 + b5 `xyz + b4 z5 v1v2`x
2z2 + b3 z

2
5 v1v4yz

3 + b2 z
3
5 v

2
1v2v4xz

4

(6.16)
in the ambient toric variety T̃6 described by

T̃6 :

z1 z2 z3 z4 z5 z6 x y z v1 v2 v3 v4 `
1 1 1 2 0 1 2 3 0 0 0 0 0 0
0 0 0 1 1 1 2 3 0 0 0 0 0 0
0 0 0 0 0 0 2 3 1 0 0 0 0 0
0 0 0 0 1 0 1 1 0 −1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 −1 0 1 0
0 0 0 0 0 0 0 1 0 0 1 −1 0 0
0 0 0 0 0 0 0 1 0 1 0 0 −1 0
0 0 0 0 0 0 1 1 0 0 0 0 0 −1

(6.17)

with SR ideal

〈123, 456, 461̄, 462̄, 463̄, 464̄, xy, z1̄, z2̄, z3̄, z4̄, z`, y1̄, y2̄, x3̄, x4̄, 52̄, 53̄, 5`, 1̄`, 4̄`, 1̄3̄〉 . (6.18)

6.3 Fiber Structure
We are interested in the fiber structure over the brane, that is in the fiber structure of the divisor

z5v1v2v3v4 = 0 (6.19)

in Ỹ4.2 For now, we will consider a generic point of the brane, where none of the bi vanish.
We claim that each fiber has 5 irreducible components P1

0, . . . ,P1
4, where P1

0 = {z5 = 0} and P1
i =

{vi = 0} over a point in S̃. Those fibers intersect like the extended Dynkin diagram of SU(5) (figure
6.1), see also [29, App. A]. In the following, we will clarify what we mean by that, and prove these
statements.

2 We made a short-cut in our notation compared to the one used in section 5.3: There we introduced the auxiliary
coordinate σ together with the equation x3 = σ, in the present context that would be z5 = σ. If we had done this, we would
get (6.16) with all z5 replaced by σ together with the third equation z5 = σv1v2v3v4. This explains why the location of
the brane, which was previously given as z5 = 0, now is at σv1v2v3v4 = 0 – or rather, in our notation, at z5v1v2v3v4 = 0.
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P1
1 P1

2 P1
3 P1

4

P1
0

Figure 6.1: Extended Dynkin diagram Ã4. A line between two points in the diagram means that the
respective fibers intersect in exactly one point.

First, let us have a look at what exactly is meant by for example P1
1. In the 6-dimensional T̃6, the

Weierstrass equation and the equation defining the base, see (6.16), together with v1 = 0 define a 3-fold
which we claim is P1

1 fibered over S̃. Consequently, P1
1 is given by those three equations together with

two equations eqa and eqb defining generic divisors corresponding to the base coordinates. (This means
that these divisors are neither the GUT divisor nor one of the enhancement loci, and their intersection
number inside the GUT surface is 1.) Writing all this down, using v1 = 0 to simplify (6.16), gives

P1
1 :


v1 = 0

`y (v3v4y − b5 xz) = 0
Q(5,2) = eqa = eqb = 0

(6.20)

(where Q(5,2) still describes the base, see (6.4) and (6.6)). Crucially for us, this does not split for generic
b5: ` = 0 or y = 0 are not solutions to the Weierstrass equation, as `v1 and yv1 are both in the SR ideal
– the Weierstrass equation can be rewritten to the irreducible v3v4y = b5 xz. We will prove later that
this object is, in fact, a P1.

Before we come to that, let us for example check that P1
2 and P1

3 intersect in exactly one point. The
intersection is given by the following set of equations in T̃6:

P1
2 ∩ P1

3 :


v2 = v3 = 0

yz
(
b5 `x+ b3 z

2
5 v1v4z

2) = 0
Q(5,2) = eqa = eqb = 0

This describes in fact only one point: If v2 = 0 = v3, neither y nor z can be zero.
Next, we need to check those intersections that should be empty. In some cases, this is easy: Inter-

sections P1
1 ∩ P1

3, P1
0 ∩ P1

2 and P1
0 ∩ P1

3 are directly excluded from the SR ideal. More scrutiny is needed
for example for the intersection P1

2 ∩ P1
4, it is given by

P1
2 ∩ P1

4 :


v2 = v4 = 0
b5 `xyz = 0

Q(5,2) = eqa = eqb = 0

This intersection is empty as well, as all of `, x, y and z are not allowed to be zero.
Finally, we come back to the proof that the fiber of e.g. the fibration P1

1 → S̃ is, in fact, a P1. After
setting v1 to zero, we see from the SR ideal that the coordinates y, z, v3 and ` all can not be zero. We
can use the scaling relations to set those coordinates to one. In the case of z, v3 and ` this is easy: We
just delete, for every coordinate, the only relation containing that coordinate. In the case of y, we’ll
first subtract the second-to-last line of (6.17) from all the others in such a way that all other lines don’t
contain y any more, after that we delete that line.

This leaves us with the equations {
Q(5,2) = 0

v4 − b5x = 0
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in the variety
z1 z2 z3 z4 z6 z5 x v2 v4
1 1 1 2 1 0 2 0 3
0 0 0 1 1 1 2 0 3
0 0 0 0 0 1 1 0 1
0 0 0 0 0 0 1 −1 1

with SR ideal 〈123, 46, x4̄, 52̄〉. Now we note that x can not be zero because then v4 would have to be
zero as well. We set x to one using the procedure described above, afterwards v4 is fixed by v4 = b5 and
can be removed from the list of coordinates as well.

We are left with only the equation Q(5,2) = 0 in the variety

z1 z2 z3 z4 z6 z5 v2
1 1 1 2 1 0 2
0 0 0 1 1 1 2
0 0 0 0 0 1 1

with SR ideal 〈123, 46, 52̄〉. This is a P1 spanned by the homogeneous coordinates z5 and v2 fibered over
T3, together with the defining equation of S in T3.

Conclusion. Let P1
i be defined as above and let Ei = {vi = 0} as a divisor of Ỹ4 like in (4.29) (with

E0 = {z5 = 0}). Note that
[P1
i ] = [Ei] ∧ [eqa] ∧ [eqb] (6.21)

(with Poincaré duals taken in Ỹ4). We have shown that the intersection numbers give the Cartan matrix,

P1
i · Ej =

∫
Ỹ4

[P1
i ] ∧ [Ej ] = C̃ij . (6.22)

Note that ∫
Ỹ4

[P1
i ] ∧ [Ej ] =

∫
Ỹ4

[Ei] ∧ [Ej ] ∧ [eqa] ∧ [eqb] ,

and that
∫
S

[eqa] ∧ [eqb] = 1 by definition. In general, we get∫
Ỹ4

[Ei] ∧ [Ej ] ∧ π∗ ([Ba] ∧ [Bb]) = C̃ij

∫
ι∗S

[Ba] ∧ [Bb] (6.23)

for arbitrary divisors of the base Bi, as described in (4.29).

Intersection Products of Exceptional Classes. Equation (6.23) can also be proven more formally
by considering the products of the exceptional divisor classes in general: Such an intersection can be
expressed as

[Ei] ∧ [Ej ] = C̃ij
(
[z] + K̄

)
∧ S + wmij [Em] ∧ S + kmij [Em] ∧ K̄ + bij [E2] ∧ [E4] . (6.24)

S = i∗[z5] +
∑4
i=1[Ei] is the class of S in B3 (in the resolved space, remember from (6.19) that S is the

locus of z5v1 · · · v4 = 0). Also, K̄ is the anticanonical class of B3. Since b5 is a section of K̄, K̄ can easily
be read off from (6.16):

K̄ = [v3v4`y
2]− [`xyz] = [z1] + [z5] +

4∑
i=1

[Ei] .

Note that c1(B3) = [z1] + [z5] in the space T4 before resolving the singularities.
The coefficients wmij , kmij and bij in (6.24) are tabulated in [9, Tab. 10]. The analysis there is

applicable to our example because we can compare our SR ideal (6.18) to [9, Tab. 6] and see that our
case is called triangulation T1 there. Note that (6.18) is the SR ideal of T̃6, the one of Ỹ4 contains in
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addition generators like z5x, z5y or v2` (because the Weierstrass equation does not have a solution with
z5 = x = 0, z5 = y = 0 or v2 = ` = 0).

The right hand side of (6.23) comes from the ([z] ∧ S)-term in (6.24). We can understand the
derivation in detail using the following basic intersection properties (see [29, App. B.1]):∫

Ỹ4

[z] ∧ π∗ ([Ba] ∧ [Bb] ∧ [Bc]) =
∫
B3

[Ba] ∧ [Bb] ∧ [Bc] (6.25)∫
Ỹ4

[Ei] ∧ π∗ ([Ba] ∧ [Bb] ∧ [Bc]) = 0 (i ∈ {1, . . . , 4}) . (6.26)

The first of these equations comes from the fact that, in every fiber of the fibration, z = 0 together with
the Weierstraß equation (4.19) has exactly one solution. The second one is obvious because [Ei] has one
leg in the fiber and one in the base.

6.4 Hypercharge Flux and Chiral Matter
Hypercharge Flux. We already understood that the curve (6.8)

CY = C24 − C13 − C63

is trivial on the base B3 but non-trivial on the brane S.
Using section 5.3, we can now write down the G4 flux in F-theory: Fibering the exceptional P1s over

the three curves gives the 4-cycles

Θi
13 : z1 = 0, z3 = 0, vi = 0, eqW = 0

Θi
24 : z2 = 0, z4 = 0, vi = 0, eqW = 0

Θi
63 : z6 = 0, z3 = 0, vi = 0, eqW = 0

(6.27)

in T̃6. (eqW denotes the Weierstrass equation, i.e. the second line of (6.16).) Then, as we know from
(5.39),

ΘY
C = −2 Θ1

C − 4 Θ2
C − 6 Θ3

C − 3 Θ4
C (6.28)

and
GY4 =

[
ΘY

24 −ΘY
13 −ΘY

63
]
Ỹ4

. (6.29)

Matter Curves and Matter Surfaces. We know from section 4.4 that matter lives on matter curves
on the brane where the A4 singularity is enhanced to A5 or D5. According to (4.39), the matter curve
10 is

C10 : z5 = b5 = 0 (6.30)
in B3, for example.

Since P in (6.11) factorizes, the 5 matter curve splits in two components:

C5M : z5 = b3 = 0 and (6.31)
C5H : z5 = b3b4 − b2b5 = 0 . (6.32)

Let us have a closer look at how the fiber structure changes over those curves:

• Over the C5M curve, the exceptional P1
2 splits: Consider the Weierstrass equation (6.16) for v2 =

0 = b3. It reads
`y (v3v4y − b5 xz) = 0 . (6.33)

y can not be zero because yv2 is in the SR ideal, but ` can be set to zero. Thus P1
2 = P1

2` + P1
2E

where P1
2` is the component with ` = 0 and P1

2E the other one. Examining the intersection structure
gives the Ã5 Dynkin diagram shown in figure 6.2 [29].3

3 Comparing with [29, App. A], we see that our resolved space corresponds to one of the triangulations which are called
T2j there. It is actually the triangulation T21 as we will learn from figure 6.4.
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P1
1 P1

2E P1
2` P1

3 P1
4

P1
0

Figure 6.2: Extended Dynkin diagram Ã5 over C5M .

P1
1 P1

2 P1
3G P1

3H P1
4

P1
0

Figure 6.3: Extended Dynkin diagram Ã5 over C5H .

Fibered over the matter curve C5M this gives the matter surfaces Σ2`
5M and Σ2E

5M ,

Σ2`
5M :


v2 = b3 = 0

` = 0
Q(5,2) = 0

and Σ2E
5M :


v2 = b3 = 0

v3v4y − b5 xz = 0
Q(5,2) = 0

(6.34)

in T̃6.

• Over the C5H curve, the exceptional P1
3 splits. To see this, take again the Weierstrass equation

(6.16), set v3 = 0 and multiply both sides with b5. After using b2b5 = b3b4, the result can be
written as (

b5 `xz + b3 z
2
5 v1v4z

3) · (b5 y + b4 z5 v1v2xz) = 0 . (6.35)

We will call the two components P1
3 = P1

3G + P1
3H , the corresponding matter surfaces are

Σ3G
5H :


v3 = b3b4 − b2b5 = 0

b5 `xz + b3 z
2
5 v1v4z

3 = 0
Q(5,2) = 0

and Σ3H
5H :


v3 = b3b4 − b2b5 = 0

b5 y + b4 z5 v1v2xz = 0
Q(5,2) = 0

. (6.36)

The intersection structure is summarized by the Ã5 Dynkin diagram in figure 6.3 [29].

Fibering all the other exceptional P1s over the matter curves gives more matter surfaces, for example

ΣI5M = EI ∩ {b3 = 0} for I ∈ {0, 1, 3, 4} , (6.37)

and similar for Σ∗5H . Next, we need to know which linear combinations of the matter surfaces correspond
to which states in the 5M and 5H representations. This can be read off from the tables in [29, App.
A.2]. The vectors of matter surfaces corresponding to the vectors in the 5 representations are:

Σ5M =


Σ2`

5M + Σ3
5M + Σ4

5M + Σ0
5M

Σ2`
5M + Σ3

5M + Σ4
5M + Σ0

5M + Σ1
5M

Σ2`
5M

Σ2`
5M + Σ3

5M
Σ2`

5M + Σ3
5M + Σ4

5M

 and Σ5H =


Σ0

5H + Σ3H
5H + Σ4

5H
Σ0

5H + Σ1
5H + Σ3H

5H + Σ4
5H

Σ0
5H + Σ1

5H + Σ2
5H + Σ3H

5H
Σ3H

5H + Σ4
5H

Σ3H
5H

 . (6.38)

For later use, let us also mention how the fiber structure over the C10M curve changes:

• P1
0 and P1

3 don’t split.
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P1
0

P1
4D

P1
14 P1

24

P1
2B

P1
3

Figure 6.4: Extended Dynkin diagram D̃5 over C10M .

• v1 = 0 together with the Weierstrass equation implies that v4 = 0, we say that P1
1 = P1

14.

• P1
2 = P1

24 + P1
2B splits into a component with v4 = 0 and one other component.

• P1
4 = P1

14 + P1
24 + P1

4D splits in three components.

The Dynkin diagram is displayed in figure 6.4.

Chiral Indices and Calculating Hypercharges. The chiral index χ(Rk) of a given state in the
representation R is the number ν+ − ν− of chiral zero modes. In F-theory it can be calculated by
integrating G4-flux over the corresponding matter surface [5, 29]:

χ(Rk) = (ΣR)k ·G4 . (6.39)

In our case, G4 = GY4 = FY ∧ ωY = [CY ]S ∧ ωY , where

ωY = −2 [E1]− 4 [E2]− 6 [E3]− 3 [E4]

as discussed in section 5.3. By (6.23), the chiral index is the product of the intersection number of the
fibers, and the intersection number in the base:

χY (Rk) = qY (Rk) · (CY · CR) . (6.40)

The charge qY (Rk) is the intersection of the fibers. Remembering that P1
3 = P1

3G + P1
3H and looking

at figure 6.3, we get for our example

qY (5H)5 = P1
3H · ωY = −2 · 0− 4 · 0− 6 · (1− 2)− 3 · 1 = 3 . (6.41)

Similar calculations show that the intersections P1
i · ωY vanish for i ∈ {1, 2, 4} and the intersection with

P1
0 is

P1
0 · ωY = −2 · 1− 4 · 0− 6 · 0− 3 · 1 = −5 ,

such that
qY (5H) = (−2,−2,−2, 3, 3)T (6.42)

as expected.
The hypercharges of the 5M states can be calculated in the same way: As

(P1
0,P1

1,P1
2`,P1

3,P1
4) · ωY = (−5, 0,−2, 5, 0) ,

we readily get
qY (5M ) = (−2,−2,−2, 3, 3)T . (6.43)

Splitting the C5H Matter Curve. In subsection 3.2.3, we discussed that doublet-triplet splitting is
one of the problems of SU(5) GUT theories. The Higgs, transforming in the 5H of SU(5), transforms as
(1,2)1/2 ⊕ (3,1)−1/3 under the Standard Model gauge group. The triplet is unwanted because it could
for example mediate proton decay. In general, there is no explanation for why the triplet should be
absent or much more massive than the doublet. We will see that we can easily achieve doublet-triplet
splitting in our model, though, if the respective components have different chiral indices.
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So far, the chiral index χY (5H) of the Higgs is zero though, for a simple reason: The curve C5H is
defined as the total intersection of B3 with z5 = b3b4 − b2b5 = 0 in T4, hence

[C5H ]S = [b3b4 − b2b5]S = ι∗[z5 ∩ b3b4 − b2b5]B3 = ι∗ω (6.44)

for ω ∈ H1,1(B3). The hypercharge flux was constructed in such a way that
∫
CY ι

∗ω = 0, therefore

(Σ5H)k ·G
Y
4 = 0 . (6.45)

If on the other hand we split the curve C5H , we can achieve different chiral indices for the doublet
and the triplet. Remember that C5H is given by

C5H : z5 = 0 , b3b4 − b2b5 = 0 and Q(5,2) = z1z2z6 F1 + z3z4 F̃1 = 0

in T4, the last equation being (6.6). If now

b3 = b̂3 z2 + b5Q2(z1, z2, z3) and b2 = b̂2 z4 + b4Q2(z1, z2, z3) , (6.46)
then b3b4 − b2b5 = b̂3b4 z2 − b̂2b5 z4 (6.47)

such that z2 = z4 = 0 automatically satisfies both given conditions. Therefore, C5H splits into two
components C5Hu and C5Hd , where

C5Hd = {z2 = z4 = z5 = 0} and C5Hu = C5H − C5Hd . (6.48)

The matter surfaces split accordingly, Σ5H = Σ5Hu + Σ5Hd , and the integration yields

χY (5Hd) = qY (5H) · (CY · C5Hd) =


2
2
2
−3
−3

 and χY (5Hu) = χY (5H)− χY (5Hd) =


−2
−2
−2
3
3

 . (6.49)

We used that C5Hd = C24, and we could simply use the already known intersection numbers:

(C24 − C13 − C63) · C24 = C2
24 = −1 .

Note that the integral is allowed to be non-zero here, because C5Hd can not be written as a complete
intersection involving B3.

6.5 Doublet-Triplet Splitting
U(1)X-Flux and Charges. So far we have neglected the additional U(1)X gauge group. We will now
switch on a U(1)X flux, that means taking

G4 = GX4 +GY4 for GX4 = FX ∧ ωX , (6.50)

where FX is a two-form in the base like in (5.36). Let L = {` = 0} and Z = {z = 0}, then the two-form
ωX is given by [1, 9, 29]

ωX = −5 ([L]− [Z]− K̄)− 2 [E1]− 4 [E2]− 6 [E3]− 3 [E4] = ωY − 5 [E5] , (6.51)

where [E5] = [L]− [Z]− K̄. We choose

FX = i∗ ([z1]− 8 [z6]) (6.52)

(i being the embedding i : B3 → T4).
Before going on, we’d like to calculate the U(1)X charges of the different matter surfaces. If we want

to be able to do that, we first need to know how the divisors L and Z intersect the various P1
∗ fibers.
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• Over the C5M curve, the Weierstrass equation reads

0 = b2 z
3
5 v

2
1v2v4 xz

4 .

Taking the SR ideal into consideration, this means that the fiber P1
` splits into the two components,

P1
` = P1

2` + P1
`x, where P1

2` is the object we already encountered before. This lets us calculate

(P1
0,P1

1,P1
2`,P1

3,P1
4) · L = (0, 0,−2 + 1, 1 + 0, 0) = (0, 0,−1, 1, 0) .

Further, the divisor Z intersects none of the P1
i for i 6= 0 and it turns out that P1

0 ·Z = 1. Because
K̄ is a class of the base, its intersections with the exceptional P1s are zero (remember (6.26)). It
follows that

(P1
0,P1

1,P1
2`,P1

3,P1
4) · E5 = (−1, 0,−1, 1, 0)

and ultimately (P1
0,P1

1,P1
2`,P1

3,P1
4) · ωX = (0, 0, 3, 0, 0) such that

qX(5M ) = +3 for all components. (6.53)

• Over the C5H curve, the intersections simply turn out to be:

(P1
0,P1

1,P1
2,P1

3H ,P1
4) · L = (0, 0, 0, 1, 0)

(P1
0,P1

1,P1
2,P1

3H ,P1
4) · Z = (1, 0, 0, 0, 0) .

Hence, (P1
0,P1

1,P1
2,P1

3H ,P1
4) · ωX = (0, 0, 0,−2, 0) and

qX(5H) = −2 . (6.54)

• For the C10H curve, let’s for example consider the component of the matter surface with fiber P1
4D.

Its hypercharge is qY = −2− 0− 0− 3(−2 + 1) = +1, and qX = +1 as well since L and Z do not
intersect P1

4D. Analysis along these lines shows that, again, all components have the same U(1)X
charge,

qX(10M ) = +1 . (6.55)

Doublet-Triplet-Splitting. We are finally able to implement doublet-triplet splitting. Using again
the formula χX(Rk) = qX(Rk) ·

∫
S
FX ∧ [CR]S , we calculate4 the chiral indices of the Higgs vectors:

χX(5Hd) = −2
∫
C5Hd

FX = −2
∫
C5Hd

i∗ ([z1]− 8 [z6]) = −2
∫
i∗C5Hd

([z1]− 8 [z6])

= −2
∫
T4

[z2] ∧ [z4] ∧ [z5] ∧ ([z1]− 8 [z6]) = −2 , (6.56)

χX(5Hu) = −2
∫
T4

(
[Q(5,2)] ∧ [b3b4 − b2b5]− [z2] ∧ [z4]

)
∧ [z5] ∧ (8[z6]− [z1]) = +2 . (6.57)

Therefore, finally,

χ(5Hd) = χX(5Hd) + χY (5Hd) =


0
0
0
−5
−5

 and χ(5Hu) = χX(5Hu) + χY (5Hu) =


0
0
0
5
5

 . (6.58)

There are five Higgs doublets Hd in the (1̄, 2̄)−1/2 = (1,2)−1/2 of the Standard Model and five Higgs
doublets Hu in the (1,2)1/2, this is five times the spectrum of the MSSM (compare subsection 3.1.2).
As required, there are no Higgs triplets.

4 All such integrals were evaluated using Sage, see subsection D.3.1.

66



6.6. IMPROVING THE MODEL

Number of generations. Let us count the generations of matter on the 5M and 10M curves. Like the
Higgs surface, the matter surfaces Σ5M and Σ10M don’t intersect the hypercharge flux GY4 because the
matter curves can be written as a complete intersection involving B3. Therefore χY (5M ) = χY (10M ) = 0
and we only need to calculate χX(5M ) and χX(10M ).

Using the charges calculated above, we get

χ(5M ) = χX(5M ) = 3
∫
T4

[Q(5,2)] ∧ [b3] ∧ [z5] ∧ ([z1]− 8 [z6]) = −9 , (6.59)

χ(10M ) = χX(10M ) =
∫
T4

[Q(5,2)] ∧ [b5] ∧ [z5] ∧ ([z1]− 8 [z6]) = 9 . (6.60)

Hence, we have 9 generations of matter, each contained in a 5̄⊕ 10 as discussed around (3.9).
Finally, there is some more chiral matter on the matter surface over the conifold singularity,

Σ1 = {Q(5,2) = b2 = b3 = ` = 0} . (6.61)

The number of singlets is [1]

χ(1) = 5
∫

[Q(5,2)] ∧ [b2] ∧ [b3] ∧ ([z1]− 8 [z6]) = −1095 . (6.62)

6.6 Improving the Model
Using only the methods introduced so far, the result obtained above is optimal: We could install a free
parameter η in the GY4 -flux, modifying (6.29) to

GY4 = η
[
ΘY

24 −ΘY
13 −ΘY

63
]
Ỹ4

. (6.63)

Further, we could generalize the definition of GX4 (6.52) to

FX = i∗ (a [z1] + b [z6]) (6.64)

with free parameters a and b, this is the most general form of a class in B3.
For the reasons discussed above,

χY (5M ) = χY (10M ) = χY (1) = 0 ,

and obviously
χY (5Hd) = η (2, 2, 2,−3,−3)T , χY (5Hu) = −χY (5Hd) .

Generalizing the calculations of χX above yields

χX(5Hd) = −2a
χX(5Hu) = −14a− 2b
χX(5M ) = 15a+ 3b
χX(10M ) = a− b

χX(1) = 65a+ 145b .

(6.65)

Doublet-triplet splitting requires 2η − 2a = 0 and −2η − 14a − 2b = 0, we have to take a = η and
b = −8η. Then

χ(5Hu/d) = (0, 0, 0,±5η,±5η)T , (6.66)
χ(5M ) = −9η , (6.67)
χ(10M ) = 9η , (6.68)

χ(1) = −1095η . (6.69)

Since chiral indices should be integers, the choice η = 1 used above is the best possibility.
In the following we will show that the result can still be improved.
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Introducing Gλ4 -Flux. There is one more G4-flux in F-theory [9], it has been neglected so far: Let
ωλ = 2 [E1]− [E2] + [E3]− 2 [E4], then

Gλ4 = λ
(
5 [E2] ∧ [E4] + ωλ ∧ K̄

)
, (6.70)

where λ is a free parameter. The so-defined object satisfies all constraints that G4-fluxes have to obey,
especially:

• It is orthogonal to Z, i.e.
∫
Ỹ4
Gλ4 ∧ Z ∧ [Ba] = 0 for any base divisor Ba. This follows because the

SR ideal contains zvi for all i.

• It is orthogonal to all base divisors, i.e.
∫
Ỹ4
Gλ4 ∧ [Ba] ∧ [Bb] = 0. The reason is that we can use

(6.23), and C̃24 = 0.

• It is orthogonal to all Cartan fluxes Gi4 = [Ei] ∧ Fi. This can be proven from the intersection
numbers [9] ∫

Ỹ4

[E2] ∧ [E4] ∧ [Ei] ∧ [Ba] = (1,−1, 1,−1)i
∫
S

c1(B3) ∧ [Ba] .

(They can be derived from the intersection products (6.24).)
Hence we get

∫
Ỹ4

(5 [E2] ∧ [E4]) ∧Gi4 = (5,−5, 5,−5)i
∫
S

c1(B3) ∧ Fi, and on the other hand∫
Ỹ4

ωλ ∧ K̄ ∧ [Ei] ∧ Fi = (2C1i − C2i + C3i − 2C4i)
∫
S

c1(B3) ∧ Fi

= (−5, 5,−5, 5)i
∫
S

c1(B3) ∧ Fi ,

such that ∫
Ỹ4

Gλ4 ∧Gi4 = 0 . (6.71)

The last property notably implies that the chiral indices of all components of matter in a certain
representation (like 5Hu/d , 5M or 10M ) are equal: The difference between components is always a sum
of matter surfaces of the form [Ei] ∧ · · · .

Chiral Indices. It remains to calculate the chiral indices χλ(R) = ΣR · Gλ4 . This is slightly more
difficult than the previous calculations, because Gλ4 is not of the type F ∧ ω. We’ve seen above how
to handle intersection products involving two exceptional divisors

∫
Ỹ4

[Ei] ∧ [Ej ] ∧ [Ba] ∧ [Bb] or three
exceptional divisors

∫
Ỹ4

[E2] ∧ [E4] ∧ [Ei] ∧ Ba], both can be easily reduced to integrals over B3 using
the methods displayed in [9, App. B]. We have also been able to deal with products of the type∫
Ỹ4

[Ei] ∧ [Ba] ∧ [Σ2`
5M ] by looking at the intersection structure related to the Dynkin diagram of the

enhanced gauge symmetry.
The ingredient which is still missing are integrals like

∫
Ỹ4

[E2] ∧ [E4] ∧ [Σ2`
5M ]. In principle, this can

be done calculating in T̃6, using the homological relations between the divisor classes and the relations
following from the SR ideal in order to write down the intersection ring of T̃6. In that way, identities like

χλ(10M ) = λ

∫
C10M

(−6K̄ + 5S)

χλ(5M ) = 2λ
∫
C5M

K̄

χλ(5H) = −λ
∫
B3

S ∧ S ∧ K̄

χλ(1) = 0

(6.72)

listed in [9, Table 1] can be derived.
We will simply use a computer algebra system to automatically calculate the integrals over T̃6 (see

section D.3 in the appendix). The results are as follows:
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• For 5H , see (6.36) to get

χλ(5H) =
∫
T̃6

[Q(5,2)] ∧ ([b5] + [y]) ∧ [E3] ∧ ([b3] + [b4]) ∧Gλ4 = 2λ . (6.73)

Note that we know from the definition that [b5−k] = K̄ + k (K̄ − S).

• For 5Hd , we need to take a closer look at the surface Σ3H
5Hd . Since is given by the equations

v3 = 0 = b5 y + b4 z5 v1v2xz from in (6.36), together with z2 = 0 = z4 from (6.48), we need to
integrate

χλ(5Hd) =
∫
T̃6

([b5] + [y]) ∧ [E3] ∧ [z2] ∧ [z4] ∧Gλ4 = 0 . (6.74)

This implies χλ(5Hu) = χλ(5H) = 2λ.

• For 5M , we remember (6.34) and the result is

χλ(5M ) =
∫
T̃6

[Q(5,2)] ∧ [`] ∧ [E2] ∧ [b3] ∧Gλ4 = 2λ . (6.75)

• As mentioned above, one of the components in 10M has P1
4D as its fiber, the matter surface is

given by the equations

Σ4D
10M : Q(5,2) = (v2v3`x+ b4z5z

2) = v4 = b5 = 0

in T̃6. Using this, we can determine the respective chiral index

χλ(10M ) =
∫
T̃6

[Q(5,2)] ∧ ([v2] + [v3] + [`] + [x]) ∧ [E4] ∧ [b5] ∧Gλ4 = −4λ . (6.76)

• And finally, χλ(1) = 0.

Optimal Spectrum. Including Gλ4 -flux, the chiral indices are5

χ(5Hd) = −2a+ (2,−3) η (6.77)
χ(5Hu) = −14a− 2b+ (−2, 3) η + 2λ (6.78)
χ(5M ) = 15a+ 3b+ 2λ (6.79)
χ(10M ) = a− b− 4λ (6.80)

χ(1) = 65a+ 145b . (6.81)

Doublet-triplet splitting requires that a = η and b = λ− 8η. Implementing this, we get

χ(5Hd) = (0,−5η) , χ(5Hu) = (0, 5η) ,
χ(5M ) = 5λ− 9η , χ(10M ) = −5λ+ 9η ,
χ(1) = 145λ− 1095η .

Requiring that all those numbers are integers, there is no solution with one Higgs doublet, i.e. 5η = 1.
Instead, we can require that there are three generations of matter. Using −5λ+9η = 3, we can eliminate
λ and get

χ(5Hd) = (0,−5η) , χ(5Hu) = (0, 5η) ,
χ(5M ) = −3 , χ(10M ) = 3 ,
χ(1) = −834η − 87 .

Since 834 and 5 don’t have common factors, the best we can do is to choose η = 1 which gives five Higgs
doublets.

5 We simply write e.g. −2 instead of (−2,−2,−2,−2,−2)T , and (2,−3) instead of (2, 2, 2,−3,−3) for readability.
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Splitting the Higgs-Curve Differently. We made a choice above when we defined

CHd = C24 = {z2 = z4 = z5 = 0} (6.82)

in (6.48).
If we were to take, for example,

b3 = b̂3 z1 + b5Q2(z1, z2, z3) and b2 = b̂2 z3 + b4Q2(z1, z2, z3) (6.83)

instead of (6.46), then the Higgs curve would split into

CHd = C13 = {z1 = z3 = z5 = 0} (6.84)

and CHu = CH − CHd . Note that also C13 implicitly solves Q(5,2) = 0.
In fact, there are three choices for CHd : Either C24, as explored above, or C13, or C63. Note that there

is no C64 because of the SR ideal.

• We can quickly discard the case CHd = C63 because

CY · C63 = C24 · C63 − C13 · C63 − C2
63 = 0− 1− (−1) = 0 , (6.85)

which means that there can not be doublet-triplet splitting.

• In the case CHd = C13 we get the chiral indices

χ(5Hd) = −2b+ (−2, 3) η + 2λ (6.86)
χ(5Hu) = −16a+ (2,−3) η (6.87)

and the unchanged (6.79), (6.80), (6.81). Note that the sign in front of the η-terms changed
compared to before because CY · C13 = +1. The calculations of χX and χλ can be found in
subsections D.3.1 and D.3.2, respectively.
Proceeding like above, we see that doublet-triplet splitting requires η = 8a and b = λ− 8a, leaving
a and λ as free parameters. Again, there is no solution with only one Higgs doublet, but a solution
with three generations of chiral matter. With that choice, we get twenty Higgs doublets, however.
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Chapter 7

Summary

Hypercharge Flux. We used the toric variety with scaling relations

z1 z2 z3 z4 z5 z6
1 1 1 2 0 1
0 0 0 1 1 1

(7.1)

and SR ideal 〈z1z2z3, z4z5z6〉 as the ambient geometry for our calculations. The base manifold B3 of the
elliptic fibration is the zero locus of a polynomial of scaling degree (5, 2) and the brane locus S is the
intersection of B3 with {z5 = 0}. Note that {z5 = 0} is the blow-up of a P3 in a point, therefore S is a
dP7-surface.

The defining equation of B3 was restricted to have the form

z1z2z6 F1(z1z6, z2z6, z3z6, z4) + z3z4 F̃1(z1z6, z2z6, z3z6, z4) +O(z5) = 0 (7.2)

(where F1 and F̃1 are linear combinations of their arguments). Then, the curves

C13 : {z1 = z3 = z5 = 0} ,
C24 : {z2 = z4 = z5 = 0} and
C63 : {z6 = z3 = z5 = 0}

(7.3)

lie in S and the combination
CY = C24 − C13 − C63 (7.4)

is trivial in B3 but non-trivial in S. In other words, it satisfies our condition (1.1)

ι∗CY = 0 , (7.5)

so that a hypercharge flux FY = [CY ]S breaks an SU(5) GUT to the Standard Model.
We modeled the SU(5) GUT in F-theory by writing down a U(1)-restricted Tate model with appro-

priately restricted coefficients, precisely

a1 = b5 , a2 = b4 z5 , a3 = b3 z
2
5 , a4 = b2 z

3
5 , a6 = 0 , (7.6)

where the bi are sections which do not have global factors of z5. This describes a singular elliptic fibration.
The resolved variety is a bundle where the fiber over a point in S consists of five P1s intersecting like
the extended Dynkin diagram of SU(5). If Θi

Y is the surface which is the i-th such P1 fibered over the
curve CY from above, the hypercharge flux FY corresponds to

GY4 =
[
−2Θ1

Y − 4Θ2
Y − 6Θ3

Y − 3Θ4
Y

]
Ỹ4

(7.7)

flux in F-theory.
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Doublet-Triplet Splitting. In F-theory matter lives on matter surfaces Σ, which are linear combi-
nations of the exceptional P1s fibered over matter curves. For example, the Higgs matter curve is

C5H : z5 = b3b4 − b2b5 = 0 (7.8)

and the different components of the Higgs vector correspond to different matter surfaces (Σ5H)k over
this curve. The chiral index χ (5H)k, i.e. the number of zero modes, can be counted by integrating
G4-flux over the surface,

χ(Rk) = (ΣR)k ·G4 . (7.9)

By definition of GY4 , (Σ5H)k ·GY4 = 0. Nevertheless, we were able to achieve different chiral indices
for the doublet and the triplet: We split the Higgs matter curve by restricting the form of the parameters
b2 and b3 in the following way:

b2 = b̂2 z4 + b4Q2(z1, z2, z3) and b3 = b̂3 z2 + b5Q2(z1, z2, z3) . (7.10)

Then C5H splits into C5Hd = C24 and C5Hu = C5H − C24. For each Higgs vector, the doublet and the
triplet have different chiral indices:

χ (5Hd) = (2,−3) and χ (5Hu) = (−2, 3) (7.11)

(the first number stands for the chiral index of the triplet and the second is that of the doublet).

Final Spectrum. In the end, we assumed the most general form of G4-flux (compatible with the
breaking of SU(5) to the Standard Model):

G4 = η GY4 +GX4 +Gλ4 . (7.12)

The hypercharge flux was scaled with a free parameter η, and GX4 and Gλ4 are the only G4-fluxes which are
orthogonal to all Cartan fluxes, see (6.64) and (6.70). GX4 has two free parameters a and b corresponding
to the two classes in H2(B3), Gλ4 has one free parameter λ.

The chiral indices of all matter representations contained in our model are:

χ(5Hd) = (2η − 2a, −3η − 2a) , (7.13)
χ(5Hu) = (2λ− 2η − 14a− 2b, 2λ+ 3η − 14a− 2b) , (7.14)
χ(5M ) = 2λ+ 15a+ 3b , (7.15)
χ(10M ) = −4λ+ a− b , (7.16)

χ(1) = 65a+ 145b . (7.17)

(The different components of the 5M and 10M representations all have the same chiral index.) All of
these numbers must be integer, and for doublet-triplet splitting the first entries in (7.13) and (7.14) must
be zero. These constraints lead us to the following conclusions:

• Without Gλ4 -flux (for λ = 0), the result stated in [1] is optimal: We can at best get down to 9
generations of chiral matter and 5 Higgs doublets.

• By introducing Gλ4 -flux, we are able to reduce the number of generations to the MSSM value of 3.
The number of Higgs doublets is still 5, though.

• We also explored all other possible choices for splitting the Higgs matter curve, but found that the
other choices are either inconsistent or lead to a higher number of Higgs doublets.
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Appendix A

Differential Geometry

Note. The contents of this chapter were compiled from [53, Ch. I.2 - II.3], [54, Ch. 3 - 7, 9 - 10] and [55].

A.1 Manifolds
A.1.1 Definition
Definition A.1 (Differentiable Manifold). Let M be a topological space and m ∈ N+. A pair (U,ϕ)
where U ⊂ M is open and ϕ is a homeomorphism from U to ϕ(U) ⊂ Rm is called a chart. A family
{(Ui, ϕi)} of charts (of identical dimension) such that

⋃
i Ui = M is called an atlas of M .

M is called an m-dimensional differentiable manifold if it is equipped with an atlas such that the
transition functions ϕi ◦ ϕ−1

j are smooth (C∞) where they are defined.
Two atlases are called compatible if all transition functions of their union are smooth where they are

defined. An equivalence class of compatible atlases on M is called a differentiable structure.

Definition A.2 (Vector Field). LetM be a differentiable manifold. The set C∞(M) of smooth functions
consists of functions f : M → R such that f ◦ ϕ−1

i is smooth for every chart Ui.
A vector field v on M is an R-linear function v : C∞(M)→ C∞(M) satisfying the Leibniz law

v(f · g) = v(f) · g + f · v(g) . (A.1)

The set of all vector fields on M is called Vect(M).

The naive idea of a vector field on Rm being a function α : Rm → Rm translates into this picture by
assigning to α the vector field vα = αµ∂µ : C∞(Rm) → C∞(Rm). In fact, the operators ∂µ are a basis
of Vect(Rm) as a C∞(Rm)-module.

A.1.2 Tangent and Cotangent Space
Definition A.3 (Tangent Space). Let us now fix a point p ∈ M . Similar to the above definition, a
tangent vector vp is an R-linear function vp : C∞(M)→ R satisfying the Leibniz law

vp(f · g) = g(p) vp(f) + f(p) vp(g) . (A.2)

The set of all tangent vectors at p is called the tangent space TpM . It is a vector space over R.

There is a correspondence between vector fields and tangent vectors: Each vector field v yields a
tangent vector vp by evaluation: vp(f) = v(f)|p. Additionally, two vector fields are equal if and only if
the tangent vectors defined by them are equal at every point p.

Alternatively, we could have defined tangent vectors as equivalence classes of curves through that
point. We can see this because we can assign to each curve γ : (−ε, ε) → M with γ(0) = p a tangent
vector γ′(0) via

γ′(0) : C∞(M)→ R, f 7→ (f ◦ γ)′(0) . (A.3)
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Lemma A.4. Those definitions are equivalent.

Proof (taken from [56, Ch. 5B]). As we have seen, we can assign to each curve a tangent vector. We
arrange the curves into equivalence classes in such a way that this map is injective. The only thing left
to show is that we can find a curve γ for each vp such that vp = γ′(0).

Without loss of generality, we work in a chart where ϕ(p) = 0. We set h = f ◦ ϕ−1, then1 h(x) =
h(0) +

∫ 1
0 h,i(tx) dt · xi. Using definition A.3, we get

vp(f) = vp[q 7→ h(ϕ(q))] = h,i(0) · vp[q 7→ ϕi(q)]︸ ︷︷ ︸
ci

.

Now we finally set γ̃i(t) = t · ci and γ = ϕ−1 ◦ γ̃ such that (f ◦ γ)′(0) = (h ◦ γ̃)′(0) = h,i(0) ci.

Theorem A.5. If we work on a chart (U,ϕ) of M we can write down the tangent vectors

(∂µ)p : C∞(M)→ R, f 7→ ∂µ(f ◦ ϕ−1)
∣∣
ϕ(p) . (A.4)

Those are a basis of TpM . We will omit the (·)p where it is obvious from the context.

Proof. We will show that those tangent vectors span TpM . In lemma A.4, we have seen that every
tangent vector can be written in the form γ′(0). Now, according to the chain rule

γ′(0) f = (f ◦ γ)′(0) = (f ◦ ϕ−1 ◦ ϕ ◦ γ)′(0) = [ϕµ ◦ γ]′ (0) · (∂µ)γ(0) f .

Definition A.6 (Cotangent Space). The cotangent space T ∗pM is the dual space of TpM . In a chart,
the basis dual to {∂µ} is written {dxµ}, i.e. dxµ(∂ν) = δµν .

We call the elements of T ∗pM dual vectors in p. To each f ∈ C∞(M) we assign a dual vector, its
differential in that point, df |p = ∂µf |p (dxµ)p.

The definition of the differential of f ensures that for a tangent vector vp = vµ (∂µ)p,

df |p (vp) = vµ (∂µ)p f = vp(f) . (A.5)

Note. As we can see, the dxµ are the differentials of the coordinate functions xµ : U → R, p 7→ ϕµ(p).

A.1.3 Tensors
Definition A.7 (Tensor). An (r, s)-tensor T is an element of TpM⊗r ⊗ T ∗pM

⊗s. That is, it is a
multilinear map T : (T ∗pM)r × (TpM)s → R. In a chart, it can be expanded in the basis

T = Tµ1...µr
ν1...νs ∂µ1 ⊗ · · · ⊗ ∂µr ⊗ dxν1 ⊗ · · · ⊗ dxνs . (A.6)

If there are two charts in a neighborhood of p we can do a coordinate transformation by changing
from one description to the other. Let us call the coordinate functions of the one chart xµ(p) and of the
other yµ(p). Slightly abusing the notation, we will call the transition functions x(y) and y(x). The basis
transformation formulas then take the intuitive form

dyµ = ∂yµ

∂xν
dxν and (A.7)

∂yµ = ∂

∂yµ
= ∂xν

∂yµ
∂xν . (A.8)

From this we derive how the components of tensors transform.
1 h,i denotes the partial derivative, summation over the repeated “i” is implied.
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Example A.8. Let T = Tµν∂xµ ⊗ dxν , this has to be equal to T = (T ′)µν∂yµ ⊗ dyν . Then we get that
the transformed components are

(T ′)µν = T ρλ
∂yµ

∂xρ
∂xλ

∂yν
. (A.9)

Tensors of different ranks transform analogously.

Definition A.9 (Tensor Fields). A tensor field is a smooth assignment of a tensor to each point. Smooth
means here that the components are smooth functions from M to R in every chart.

An (1, 0)-tensor field is a vector field in Vect(M) as discussed above. (0, 1)-tensor fields are called
one-forms, the set containing them is written Ω1(M) in the context of differential forms (see subsection
A.2). A (0, 0)-tensor field is just an element of C∞(M), in that context we write Ω0(M) instead.

Note. Now we can also define the differential of f ∈ C∞(M) as a one-form. In every chart, we want
that df = ∂µf dxµ. According to the discussion after definition A.6, we use df(v) = v(f) as the global
definition (where v is a vector field).

A.1.4 Induced Maps
We consider now a smooth map Φ : M → N between two differentiable manifolds M and N .

Definition A.10 (Smooth Map). Φ is a smooth map if and only if ψ ◦Φ ◦ϕ−1 : Rm → Rn is smooth for
any charts (U,ϕ) on M and (V, ψ) on N . Further, Φ is a diffeomorphism if Φ is smooth and bijective,
and also Φ−1 is smooth.

Definition A.11 (Pullback of Functions). Let f ∈ C∞(N) be a function, then we can define its pullback
via Φ as

Φ∗f : M → R, (Φ∗f)(p) = (f ◦ Φ)(p) , (A.10)

i.e. Φ∗ is a map C∞(N)→ C∞(M), or equivalently Ω0(N)→ Ω0(M).

Definition A.12 (Pushforward of Tangent Vectors). Let vp ∈ TpM be a tangent vector of M in p. We
can then define its pushforward via Φ, Φ∗vp ∈ TΦ(p)N , as

(Φ∗vp)f = vp(Φ∗f) (A.11)

for all f ∈ C∞(N), i.e. Φ∗ is a map TpM → TΦ(p)N . Φ∗ is also called the differential of Φ, written dΦ.

Lemma A.13. If N = R, this definition of the differential is the same as the other one given above.

Proof. Φ∗ maps TpM to TΦ(p)R ∼= R as it should. Take ξ ∈ C∞(R) and let Φ∗(vp) act on ξ. The result
is Φ∗(vp)ξ = vp(Φ) · ξ′(Φ(p)).

Definition A.14 (Pushforward of Vector Fields). We can only define the pushforward of a vector field
if Φ is a diffeomorphism. In that case, we define

(Φ∗v) : q 7→ (Φ∗v)q = Φ∗vΦ−1(q) (A.12)

for a vector field v : p 7→ vp ∈ Vect(M). Here we understand Φ∗ as a map Vect(M)→ Vect(N).

Note. If we let v = vµ∂xµ and Φ∗v = (v′)µ∂yµ like in the discussion before (A.9), then (v′)µ = vν ∂y
µ

∂xν

like in (A.9). What we did above was a passive coordinate transformation, pushing forward corresponds
to an active coordinate transformation.

Definition A.15 (Pullback of Cotangent Vectors). Let ω ∈ T ∗Φ(p)(N), then its pullback via Φ is

(Φ∗ω)(v) = ω(Φ∗v) (A.13)

where v ∈ TpM , i.e. Φ∗ : T ∗Φ(p)(N)→ T ∗pM .
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Definition A.16 (Pullback of One-Forms). We can pull back one-forms without requiring Φ to be a
diffeomorphism by simply defining

(Φ∗ω)p = Φ∗(ωΦ(p)) . (A.14)

Now Φ∗ is a map Ω1(N)→ Ω1(M).

Note. We can naturally define the pullback of all tensor fields of type (0, s). The components of such
tensor fields transform under the pullback as one would expect from (A.9).

Theorem A.17 (Naturalness). Let f ∈ C∞(N) and Φ : M → N smooth. Then

Φ∗(df) = d(Φ∗f) . (A.15)

Proof. It suffices to show that both one-forms are equal in any point p. Let vp ∈ TpM , then

[Φ∗(df)]|p vp =
[
Φ∗(df |Φ(p))

]
vp = df |Φ(p) (Φ∗vp) = (Φ∗vp)(f) = vp(Φ∗f) = d(Φ∗f)|p vp .

Example A.18. Let γ : I ⊂ R→ R2 be a curve and ω = dx+ dy ∈ Ω1(R2). Then we can use theorem
A.17 to pull back ω to I:

γ∗(dx+ dy) = d(γ∗x) + d(γ∗y) = d(γx(t)) + d(γy(t)) =
[
(γx)′ (t) + (γy)′ (t)

]
dt .

A.1.5 Metrics
Definition A.19 (Metric). A Riemannian Metric g is a (0, 2)-tensor field which is symmetric (g(v, w) =
g(w, v) for v, w ∈ Vect(M)) and positive definite (g(v, v) ≥ 0 and g(v, v) = 0 iff v = 0).

g is pseudo-Riemannian if it is symmetric and non-degenerate (if g(v, w) = 0 for all w, then v must
be 0).

The inverse metric is a (2, 0)-tensor field, also written as g, satisfying gµλgλν = δµν .

The map (v, w) 7→ g(v, w) is a scalar product for the vector space TpM . A scalar product always
induces a canonical isomorphism between a vector space and its dual. This isomorphism is called the
musical isomorphism.

Definition A.20 (Musical Isomorphisms). For v ∈ TpM we define v[ ∈ T ∗pM such that v[(w) = g(v, w)
for all w ∈ TpM . In components this means that

(v[)µ = gµνv
ν . (A.16)

Analogously, for ω ∈ T ∗pM we define ω] ∈ TpM such that g(ω], v) = ω(v) for all v ∈ TpM . In
components:

(ω])µ = gµνων . (A.17)

This is called pulling indices up and down.

Example A.21. The pseudo-Riemannian metric gµν = diag(−1,+1,+1,+1) is called the Minkowski
metric. It has signature (3, 1) because there are 3 positive and 1 negative eigenvalues, also written as
s = 3.

A.2 Differential Forms

A.2.1 Exterior Product
We will first define the exterior algebra of an arbitrary vector space V with basis e1, · · · , en.
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Definition A.22 (Two-Vectors). Let v,w ∈ V be vectors. We define their exterior product to be

v ∧w = v ⊗w −w ⊗ v . (A.18)

v ∧ w lies in the space Λ2V of two-vectors. This space is spanned by the
(
n
2
)
basis elements ei ∧ ej

(1 ≤ i < j ≤ n).
The components of this two-vector are given by

(v ∧w)ij = viwj − vjwi . (A.19)

They are antisymmetric by definition.

Note. The components of a two-vector are defined such that

v ∧w = (v ∧w)ij ei ⊗ ej = 1
2(v ∧w)ij ei ∧ ej =

∑
i<j

(v ∧w)ij ei ∧ ej . (A.20)

Definition A.23 (q-Vectors). In general, the space ΛqV of q-vectors is spanned by
(
n
q

)
basis elements∧q

k=1 eik (1 ≤ i1 < · · · < iq ≤ n), where
∧

is the antisymmetrization2 of the tensor product.
The space ΛV =

⊕n
q=0 ΛqV is called the Grassmann Algebra or Exterior Algebra over V .

Note. Analogously, we define the antisymmetric components ωi1...iq of a q-vector ω to be such that

ω = ωi1...iq

q⊗
k=1

eik = 1
q! ωi1...iq

q∧
k=1

eik . (A.21)

We now want to define the exterior product of a q-vector ω and an r-vector η. We impose the following
conditions: Firstly, ΛV should become an associative (graded) algebra together with the exterior product
∧. Secondly, for q vectors v1, . . . ,vq we want

v1 ∧ · · · ∧ vq =
q∧
i=1

vi ,

where
∧

was defined above as the antisymmetrization of the tensor product. Those conditions are
uniquely satisfied by the following definition:

Definition A.24 (Exterior Product). The components (ω ∧ η)i1...iq+r are given by

(ω ∧ η)i1...iq+r = 1
q!r!ω[i1...iqηiq+1...iq+r] = 1

q!r!
∑
π

(−1)π ωπ(i1)···π(iq)ηπ(iq+1)···π(iq+r) . (A.22)

Proof. Obviously,
ω ∧ η = 1

q!r!ωi1...iqηiq+1...iq+r ei1 ∧ · · · ∧ eiq+r .

This can be compared with the definition

ω ∧ η = 1
(q + r)! (ω ∧ η)i1...iq+r ei1 ∧ · · · ∧ eiq+r

to read off the antisymmetric (ω ∧ η)i1...iq+r .

Example A.25. If ω = 1
2ωij ei ∧ ej is a two-vector and η = ηkek is a vector, then ξ = ω ∧ η has

components

ξijk = 1
2 (ω12η3 + ω31η2 + ω23η1 − ω21η3 − ω13η2 − ω32η1) = ω12η3 + ω31η2 + ω23η1 .

2That means
∧
k

vk =
∑

π
(−1)π

⊗
k

vπ(k), where the sum runs over all permutations π of the indices i.
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Theorem A.26. The Grassmann Algebra is a graded commutative algebra, i.e. for a q-vector ω and a
r-vector η

ω ∧ η = (−1)qr η ∧ ω . (A.23)

Proof. The theorem holds by definition for ω, η of the form ei1 ∧ · · ·∧eiq and ej1 ∧ · · ·∧ejr , respectively,
and therefore it is true for all ω and η.

Definition A.27 (Differential Form). A differential form or q-form is a smooth assignment of an element
of ΛqT ∗pM to each point p in a manifold M . The space of q-forms is written Ωq(M). The space of all
differential forms is Ω(M).

Note. Locally, a basis of Ωq(M) (as a C∞(M)-module) is dxµ1 ∧ · · · ∧ dxµq , 1 ≤ µ1 < · · · < µq ≤ m.

A.2.2 Exterior Derivative
Definition A.28. We define the exterior derivative d : Ωq(M)→ Ωq+1(M) by the following properties:

i) d : Ω0(M)→ Ω1(M) is the differential as defined above.

ii) d is R-linear.

iii) d satisfies a graded Leibniz identity: For ω ∈ Ωq(M) and η ∈ Ωr(M),

d(ω ∧ η) = dω ∧ η + (−1)qω ∧ dη . (A.24)

iv) d(dω) = 0 for all differential forms ω.

Lemma A.29. d is well-defined and unique. On a chart with ω = 1
q!ωµ1...µq dxµ1 ∧ · · · ∧ dxµq ,

dω = 1
q!
(
∂νωµ1...µq

)
dxν ∧ dxµ1 ∧ · · · ∧ dxµq . (A.25)

Note. This means that (dω)µ1...µq+1 = 1
q!∂[µ1ωµ2...µq+1].

Example A.30. Let A = Aµdxµ be a one-form and F = dA. Then F = 1
2Fµνdxµ ∧ dxν with

Fµν = ∂µAν − ∂νAµ . (A.26)

Lemma A.31 (Naturalness). Theorem A.17 extends to ω ∈ Ωq(N) and Φ : M → N smooth:

Φ∗(dω) = d(Φ∗ω) . (A.27)

A.2.3 Hodge Star
Definition A.32 (Volume Form). A volume form vol is a nowhere-vanishing element of Ωm(M).

A manifold on which a volume form exists is called orientable.

If there is a metric given on an orientable manifold, there is a canonical volume form: On an orientable
manifold, we can use oriented charts on which dx1∧· · ·∧dxm = ρ vol with a positive function ρ ∈ C∞(M).
The transition functions between oriented charts are orientation-preserving, i.e. det ∂y

µ

∂xν > 0.
Now define on every chart the canonical volume form (for simplicity just called vol) as

vol =
√
|g|dx1 ∧ · · · ∧ dxm (A.28)

(g is the determinant of the matrix (gµν)). Because the transition functions are orientation-preserving,
this definition agrees on the overlap of two charts.
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Definition A.33 (Hodge Star). Let’s first define the inner product of two q-forms ω and η. It is a
0-form given by 〈ω, η〉 = 1

q!g
µ1ν1 · · · gµqνqωµ1...µqην1...νq .

The Hodge star operator ∗ gives a canonical isomorphism between the spaces Ωq(M) and Ωm−q(M)
of the same dimension. The Hodge star of a q-form ω is defined by the equation

η ∧ ∗ω = 〈η, ω〉 vol (A.29)

for all η ∈ Ωq(M). ∗ω ∈ Ωm−q(M) is called the Hodge dual of ω. Note that ∗1 = vol.

Lemma A.34 (Calculating the Hodge Dual). Let εi1...im be ±1 as usual, and ω ∈ Ωq(M). Then

(∗ω)ν1...νm−q =
√
|g|
q! ωµ1...µqε

µ1...µq
ν1...νm−q . (A.30)

Proof. One can prove (A.29) from (A.30) for basis elements ω = dxµ1 ∧· · ·dxµq and η = dxν1 ∧· · ·∧dxνq
with fixed µi and νi. It follows that it is true for all ω and η.

Lemma A.35 (Square). In a manifold of signature (s,m− s),

∗2 = (−1)q(m−q)+s . (A.31)

A.3 Homology and Cohomology
A.3.1 Chains and Boundaries
Definition A.36 (Simplex). An oriented r-simplex in Rm is the convex hull of r+ 1 points p0, . . . , pr ∈
Rm which are affinely independent, that means that the vectors p1 − p0, . . . , pr − p0 are linearly inde-
pendent. We write σr = 〈p0 . . . pr〉 to denote the convex hull{

p0 +
∑
i

ti(pi − p0) : ti ≥ 0,
∑
i

ti ≤ 1
}
. (A.32)

A singular r-simplex in M is the image of σr under a smooth map f : σr →M .

Definition A.37 (Chain Group). We now take the free R-module over the set of r-simplexes in M .
The result is the chain group Cr(M) consisting of elements of the form

∑
i aisi, where ai ∈ R and si is

an r-simplex.

Definition A.38 (Boundary). The boundary of a simplex σr = 〈p0 . . . pr〉 in Rm is given by the chain

∂σr =
r∑
i=0

(−1)i〈p0 . . . p̂i . . . pr〉 ∈ Cr−1(Rm) . (A.33)

If f : σr →M is a singular r-simplex, its boundary is3 f(∂σr).

Theorem A.39 (Chain Complex). (C(M), ∂) is a chain complex. That means that ∂ : Cr(M) →
Cr−1(M) are group homomorphisms and ∂2 = 0.

Proof. The maps ∂ are group homomorphisms by definition. Furthermore, applying ∂ again to (A.33)
obviously gives zero.

Note. This construction will lead us to singular homology groups of manifolds. A very similar construc-
tion yields the simplicial homology of topological spaces. For this, we consider simplicial complexes.
Those are collections of simplexes in Rm the intersections of which are common faces. We can define a
boundary operator in the simplicial complex in an obvious way.

3The notation means
∑r

i=0(−1)if(〈p0 . . . p̂i . . . pr〉) ∈ Cr−1(M).
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A simplicial complex triangulates a topological space X if there is a homeomorphism between the
complex as a subset of Rm and X. For a topological space that has a triangulation we can then define
its simplicial homology groups to be the homology groups of the simplicial complex (see below). They
are isomorphic to the singular homology groups we will define below, this is a useful way for calculating
the singular homology.

Note also that in the context of simplicial homology the chain groups are usually defined to be free
abelian groups (i.e. Z-modules) over the simplexes instead of R-modules. For now we will only be
concerned with real coefficients, but everything works equally fine with arbitrary coefficient rings.

A.3.2 Homology Groups
Definition A.40. For any chain complex (C, ∂) we can define homology groups as follows:

• The group of r-cycles Zr is the kernel of ∂ : Cr → Cr−1.

• The group of r-boundaries Br is the image of ∂ : Cr+1 → Cr.

• Br is a subgroup of Zr because of ∂2 = 0. The r-th homology group is given by

Hr = Zr/Br . (A.34)

Definition A.41. The singular homology groups Hr(M) of a manifold are the homology groups of its
singular chain complex (C(M), ∂).

The Betti numbers br of M are their dimensions: br(M) = dimHr(M)

Lemma A.42 (Basic Properties).

i) “Dimension Axiom”: Hn(M) = 0 for n > 0 if M consists of only one point.

ii) “Additivity”: IfM is a disjoint union of path connected componentsMi, then Hr(M) =
⊕

iHr(Mi).

iii) H0(M) = R if and only if M is path connected.

Proof. The first claim is obvious.
To show the second statement, one just has to see that all the groups Cn, Zn and Bn split in such

direct sums.
As for the third, because of the previous statement it suffices to show that H0(M) = R if M is path

connected. Any two points p1, p2 ∈ Z0(M) are equivalent, because they are the boundary of the path
between them. Therefore H0(M) is one-dimensional.

Note. An important concept in algebraic topology are the homology groups Hr(M,A) of M relative to
a subspace A. They are the homology groups of the quotient chain complex C(M)/C(A).

Now we can list some more properties of homology, proven for example in [57]. These properties,
together with the ones mentioned in lemma A.42, can be used to define homology axiomatically:

i) “Homotopy Axiom” : If two pairs (M,A) and (N,B) are homotopy equivalent, their homology groups
are isomorphic.

ii) “Excision” : If A ⊂ U ⊂M with Ā ⊂ intU , then Hn(M,U) and Hn(M\A,U\A) are isomorphic.

iii) “Mayer-Vietoris sequence” : Let U, V ⊂ X be subspaces. Under certain conditions (for example if
intU ∪ intV = X) there exists an exact sequence4:

· · · → Hn+1(X)→ Hn(U ∩ V )→ Hn(U)⊕Hn(V )→ Hn(X)→ . . . .

A final extremely important property of homology is that for every short exact sequence 0 → C ′ →
C → C̄ → 0 of chain complexes, one can construct a long exact sequence in homology:

· · · → Hn+1(C̄)→ Hn(C ′)→ Hn(C)→ Hn(C̄)→ · · · .

4 A sequence · · ·
fn−1−−−−→ On

fn−−→ On+1
fn+1−−−−→ · · · of objects and morphisms is called exact if for every two subsequent

morphisms ker fn+1 = im fn.
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A.3.3 Integration of Differential Forms
There are two closely related notions of integrating differential forms. In the first case, we want to
integrate a q-form over a q-chain:

Definition A.43. Let ω ∈ Ωq(M) and let c ∈ Cq(M) be a simplex, i.e. there is a smooth map f : σq → c.
Then ∫

c

ω =
∫
σq

f∗ω (A.35)

(a q-form can be integrated over a submanifold of Rm in an obvious manner). For a general c ∈ Cq(M),
we extend the definition linearly.

The other case is the integration of a volume form over the whole manifold. If it is not possible to
cover all of M with only one chart, we need to split the integral over the single charts.

Definition A.44. Let (Ui, ϕi) be an atlas of M such that every point of M is only in a finite number
of charts (M needs to be paracompact, i.e. every open cover has a refinement that is locally finite). A
collection of functions εi : M → [0, 1] is called a partition of unity if the support of εi is within Ui and∑
i εi = 1.
For ω ∈ Ωm(M), we can now define∫

M

ω =
∑
i

∫
Ui

εi ∧ ω =
∑
i

∫
ϕi(Ui)

(
ϕ−1
i

)∗ (εi ∧ ω) . (A.36)

Now we can finally state Stokes’ Theorem which generalizes the fundamental theorem of calculus and
several identities from vector calculus:

Theorem A.45 (Stokes). Let ω ∈ Ωq−1(M) and c ∈ Cq(M). Then∫
c

dω =
∫
∂c

ω . (A.37)

Proof. It suffices to show this for a simplex c. Because of (A.35), it then suffices to show that the
formula holds for a q-simplex in Rm. We then note that it suffices to use a (q − 1)-form ω of the type
ω = g(x) dx1 ∧ · · · ∧ dxq−1. In this case, it is a simple calculation.

A.3.4 Cohomology Groups
Definition A.46 (DeRham Cohomology). The differential forms Ω(M) together with the exterior deriva-
tive d form a cochain5 complex. The cohomology groups of it are called the deRham cohomology of M :
Zq(M) is the set of closed q-forms ω with dω = 0 and Bq(M) is the set of exact q-forms ω with ω = dη.
Then

Hq(M) = Zq(M)/Bq(M) . (A.38)

The numbers bq = dimHq(M) are also called Betti numbers (and are in fact equal to bq as we will
see below).

Example A.47. H0 consists of those functions f ∈ C∞(M) with df = 0, i.e. of the locally constant
functions. b0 is therefore equal to the number of connected components of M (like b0).

Theorem A.48 (DeRham Duality). Hq is the dual space of Hq.

Proof. Let us define the map
(·, ·) : Cq × Ωq → R, (c, ω) =

∫
c

ω . (A.39)

5 It is a cochain complex because the coboundary operator d doesn’t map Cn → Cn−1 but Cn → Cn+1. Cocycles,
coboundaries and cohomology groups are defined in complete analogy to definition A.40.
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Because of Stokes’ theorem, (·, ·) also gives a well-defined bilinear map Hq × Hq → R. It remains to
prove that Hq and Hq are finite vector spaces and (·, ·) is non-degenerate. This is in fact the content of
deRham’s theorem, see [54, Thm. 6.2].

Now we can understand elements of Hq as linear maps from Hq to R and vice versa, this is the
definition of the dual space. Note that there is no canonical isomorphism between the two spaces if we
don’t specify a scalar product.

Theorem A.49 (Poincaré Duality). Hq and Hm−q are isomorphic, the isomorphism is called Poincaré
duality. Especially,

bq = bq = bm−q = bm−q . (A.40)

Proof. Let us define the map

Λ : Hq ×Hm−q → R,Λ([ω], [η]) =
∫
M

ω ∧ η (A.41)

(where [ω] is the equivalence class of ω in Hq). Again, this is well-defined, bilinear and non-degenerate.
Therefore, Hm−q is isomorphic to the dual space of Hq which is Hq.

How does the isomorphism look explicitly? In general a non-singular bilinear Λ : V ×W → R gives
an isomorphism ϕ : V ∗ → W , where ϕ(v′) satisfies Λ(v, ϕ(v′)) = v′(v) for all v ∈ V . Therefore, the
Poincaré dual of a [c] ∈ Hq(M) is a class [γ] ∈ Hm−q(M) such that∫

c

ω =
∫
M

ω ∧ γ ∀ω . (A.42)

Definition A.50 (Pullback). We define the pullback of a cohomology class to be

Φ∗[ω] = [Φ∗ω] . (A.43)

This is well defined because of lemma A.31.

A.3.5 Hodge Theory
Using the Hodge star operator, we can define an inner product on Ωq(M). Note that this doesn’t give
an inner product on Hq(M), as ∗ and d are not compatible in general. In the following, let M be a
compact orientable manifold.

Definition A.51 (Scalar Product). Let ω, η ∈ Ωq(M), we define

(ω, η) =
∫
M

〈ω, η〉 vol =
∫
M

ω ∧ ∗η . (A.44)

Definition A.52. The adjoint exterior derivative d† is defined by

(dω, η) = (ω,d†η) (A.45)

for all ω ∈ Ωq(M) and η ∈ Ωq−1(M).
The Laplacian ∆ is ∆ = (d + d†)2 = dd† + d†d.

Lemma A.53 (Adjoint Derivative). Obviously,
(
d†
)2 = 0.

Furthermore, the adjoint exterior derivative can be calculated as

d† = (−1)m(q+1)+s+1∗d∗ (A.46)

on a manifold of signature s.
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Example A.54. Electrodynamics is described by the electromagnetic field which is an exact two-form
F = dA in Minkowski space. The homogeneous Maxwell equations follow directly from dF = d2A = 0.
The inhomogeneous Maxwell equations can be written as ∗d∗F = J , or

d†F = J . (A.47)

Example A.55. The Laplacian of f ∈ Ω0(M) = C∞(M) can be calculated as

∆f = (−1)s+1∗d∗ (∂µf dxµ) = · · · = (−1)s+1√
|g|

∂ν

(√
|g|gνµ∂µf

)
. (A.48)

Finally, noticing the equality

(ω,∆ω) = (dω,dω) + (d†ω,d†ω) ≥ 0 (A.49)

for M of signature s = 0 (otherwise the scalar product is not positive definite) leads to a number of
important theorems:

Definition A.56. A q-form ω is (co-)closed if dω = 0 (d†ω = 0), (co-)exact if ω = dη (ω = d†η) and
harmonic if ∆ω = 0.

Lemma A.57. ω is harmonic if and only if it is closed and coclosed.

Theorem A.58 (Hodge Decomposition Theorem). Every ω can be written uniquely as the sum of an
exact, a coexact and a harmonic form:

Ωq(M) = dΩq−1(M)⊕ d†Ωq+1(M)⊕Harmq(M) . (A.50)

Proof. The decomposition is possible because6 every ψ ⊥ Harmq(M) can be written as ψ = ∆η for some
η. It is unique because dΩq−1(M) and d†Ωq+1(M) are perpendicular, and additionally ∆η ⊥ Harmq(M)
for all η.

Theorem A.59 (Hodge’s Theorem). Under the conditions as above (M is compact, orientable and
Riemannian),

Hq(M) ∼= Harmq(M) . (A.51)

Proof. Follows from theorem A.58 and lemma A.57.

A.4 Fiber Bundles
A.4.1 Fiber Bundles and Structure Groups
Definition A.60 (Fiber Bundle). A fiber bundle consists of the following data:

i) A differentiable manifold M , called base space.

ii) A differentiable manifold F , called the fiber.

iii) A differentiable manifold E, called total space, together with a projection π : E →M .

iv) A local trivialization: For each p ∈M there has to be an open chart U ⊂M containing p such that
E|U = {q ∈ E : π(q) ∈ U} and U × F are diffeomorphic as fiber bundles (see below).

We write π : E →M or F → E
π→M for the fiber bundle.

Example A.61. For a given base space M and fiber F , the trivial bundle M × F is a fiber bundle.
6 According to [54, Ex. 7.23], the proof of this is highly technical.
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Definition A.62 (Bundle Morphism). A bundle morphism between two bundles π : E → M and
π̃ : Ẽ → M̃ is a smooth map Φ : E → Ẽ together with a smooth map Ψ : M → M̃ such that
π̃ ◦ Φ = Ψ ◦ π.

If Φ and Ψ are diffeomorphisms, then the bundles are diffeomorphic.

Definition A.63 (Section). A section s of a fiber bundle F → E
π→ M is a map s : M → E with

π ◦ s = idM . The space of sections is denoted by Γ(E).

Definition A.64 (G-Bundle). Let G be a group acting on the fiber of a fiber bundle F → E
π→ M

from the left. Consider two charts Ui, Uj ⊂M with the bundle diffeomorphisms ϕi : Ui×F → E|Ui and
ϕj : Uj × F → E|Uj . The local trivialization is called a G-atlas if the transition functions ϕ−1

i ◦ ϕj can
be written as (p, f) 7→ (p, gij(p).f) for a gij : Ui ∩ Uj → G where they are defined.

A G-bundle is a fiber bundle with an equivalence class7 of G-atlases. G is called its structure group.

Note. We will use the notation [p, f ]i = ϕi(p, f). The condition for the transition function then reads

[p, f ]j = [p, gij(p).f ]i . (A.52)

Theorem A.65 (Fiber Bundle Construction Theorem). A G-bundle is uniquely specified by giving the
base space, the fiber, charts Ui and functions gij : Ui∩Uj → G. The gij have to satisfy gii ≡ e, gijgji ≡ e
and the cocycle condition gijgjkgki ≡ e.

Proof. We let E be the union
⋃
i Ui×F with identifications according to the gij . For details see [54, Ch.

9.2.2].

A.4.2 Vector Bundles and Principal Bundles
Definition A.66 (Vector Bundle). A vector bundle is a fiber bundle where the fiber F is a vector space.
Furthermore, the trivialization morphisms U × F → E|U have to be vector bundle morphisms.

A vector bundle morphism is a bundle morphism whose restriction to any fiber is linear.

Example A.67. A vector field is a section of the tangent bundle TM =
⋃
p TpM . The tangent bundle is

a vector GL(dimF )-bundle, the transition functions between charts are (V ′)µ = V ν ∂y
µ

∂xν as seen in (A.9).
In other words, the group element g(p) acting from the left is the matrix ∂yµ

∂xν

∣∣∣
p
.

Example A.68. A function (0-form) is a section of the trivial bundle M × R.
A one-form is a section of the cotangent bundle T ∗M =

⋃
p T
∗
pM .

More generally, differential forms are sections of the form bundle ΛT ∗M =
⋃
p ΛT ∗pM .

Note. Each vector bundle admits a global section, the zero section s : M → 0 ∈ F .

Definition A.69. From given vector bundles we can create new vector bundles in several ways:

• Given a vector G-bundle F → E
π→ M , we use the construction theorem A.65 to create the dual

bundle, a vector G-bundle with base space M and fiber F ∗ dual to F . We reuse the transition
functions gij , but they now act in the dual representation8 on F ∗.

• Given π : E → M and π̃ : Ẽ → M̃ , we can define the product bundle in a pretty straightforward
way:

(π × π̃) : E × Ẽ →M × M̃, (p, p̃) 7→ (π(p), π̃(p̃)) .

• Let f : N → M be a smooth map and F → E
π→ M a vector bundle. Then the pull-back

bundle f∗E is constructed as a vector bundle over N with fiber F and transition functions tij ◦ f .
Alternatively it can be described as {(p, u) ∈ N × E : f(p) = π(u)}.

7 Two G-atlases are equivalent if their union is a G-atlas as well.
8 Let the action of G on V be g : V → V, v 7→ ρ(g)v. Then the dual representation is the action g : V ∗ → V ∗, ϕ 7→ ρ∗(g)ϕ

where [ρ∗(g)ϕ]v = ϕ[ρ(g)−1v]. In components, ρ∗(g) = ρ(g−1)T .
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• Given vector G-bundles F → E
π→ M and F̃ → Ẽ

π̃→ M , the Whitney sum bundle is a vector
G-bundle with base spaceM and fiber F⊕F̃ . One way to define it is as the pullback of the product
bundle (using f : M →M×M with f(p) = (p, p)). Another way is to just use theorem A.65 again,
the transition functions are the direct sum of the transition functions of E and Ẽ.

• In the same setting, the tensor product bundle is a vector G-bundle with base space M and fiber
F ⊗ F̃ .

Definition A.70 (Principal G-Bundle). A principal G-bundle P (M,G) is a G-bundle over the base M
which has G as its fiber.

We can define a right action of G on P (M,G). In a chart Ui, u ∈ P (M,G) is written as [π(u), gi(u)]i.
h ∈ G acts from the right as

[π(u), gi(u)]i.h = [π(u), gi(u)h]i (A.53)

Note. This is independent of the chart, because the transition functions gij = gig
−1
j act from the left.

In more detail, let u ∈ Ui ∩ Uj . Because of the G-bundle condition, gi(u) = gij(π(u))gj(u). Thus

[π, gih]i = [π, gijgjh]i = [π, gjigijgjh]j = [π, gjh]j .

Lemma A.71. We can use a section of a principal bundle to choose which group element gets mapped
to the unit element in a trivialization. Therefore, sections in charts correspond to local trivializations,
and a principal bundle is trivial if and only if there is a global section.

Definition A.72 (Associated Bundles). Given a principal bundle P (M,G) with G acting on a vector
space F in a representation ρ, we can construct the associated vector bundle P ×ρF . It is a vector bundle
with base space M and fiber F and can be constructed by identifying the points

(u, v) ∼ (u.g, ρ(g−1)v) (A.54)

in P (M,G)× F .
We write an equivalence class as [u, v] (warning: do not confuse with the local trivialization [p, v]i).
The projection of the associated vector bundle is π([u, v]) = π(u).

Note. On the other hand, given a vector G-bundle π : E →M there is an associated principal G-bundle,
which we can construct using theorem A.65 and the transitions functions gij of E.

Definition A.73. A local trivialization [·, ·]i of P (M,G) canonically induces a local trivialization of the
associated vector bundle which we will call {·, ·}i: We define

{p, v}i = [[p, e]i, v] . (A.55)

Note that every element of P×ρF can be written in the form [[p, e]i, v] because [u, v] = [[π(u), gi(u)]i, v] =
[[π(u), e]i, ρ(gi(u))v].

Because {p, v}j = {p, ρ(gij)v}i we can see that P ×ρ G is a G-bundle.

A.4.3 Gauge Transformations
Definition A.74 (Gauge Transformation). A gauge transformation is a diffeomorphism Φ : P → P
which maps fibers to fibers (π ◦ Φ = π) and is compatible with the right action: Φ(u.g) = Φ(u).g.

In a chart Ui with u = [π(u), gi(u)]i, we can describe the gauge transformation as Φ̄i : P |Ui → G

acting from the left: Φ(u) = [π(u), Φ̄i(u)gi(u)]i. This means that Φ̄i(u) = gi(Φu)gi(u)−1. Because
Φ̄i(u.g) = Φ̄i(u), this induces a map Φi : Ui → G such that

Φ [π(u), gi(u)]i = [π(u),Φi(π(u)) gi(u)]i . (A.56)

Comparing this with the action in another chart Uj finally yields

Φj(p) = g−1
ij (p)Φi(p)gij(p) . (A.57)
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Definition A.75. Gauge transformations act naturally on associated vector bundles by

Φ [u, v] = [Φ(u), v] . (A.58)

This is well-defined thanks to Φ(u.g) = Φ(u).g.
In a chart, this means

Φ {p, v}i = [Φ [p, e]i, v] = [[p,Φi(p)]i, v] = {p, ρ(Φi(p)) v}i . (A.59)

A.5 Connections

A.5.1 Connections on Vector Bundles
Definition A.76 (Connection). Let π : E → M be a vector bundle. A connection D on M assigns to
each vector field v ∈ Vect(M) a map Dv : Γ(E)→ Γ(E) with the following properties:

i) D is C∞(M)-linear in v, i.e. Dfv+gw = fDv + gDw for functions f, g ∈ C∞(M).

ii) For every v, Dv is R-linear.

iii) Leibniz Rule: For f ∈ C∞(M) and s ∈ Γ(E),

Dv(fs) = v(f)s+ fDvs . (A.60)

The object Dv is called covariant derivative in direction v. We use the abbreviation Dµ = D∂µ .

A closely related notion is that of a vector potential. It appears when there is a canonical “best”
connection D0 on the bundle, we call it the flat connection. For example, after choosing a local trivial-
ization we can on a chart U choose a basis {ea} of sections such that every section s ∈ Γ(E|U ) can be
written uniquely as s = saea, sa ∈ C∞(M). Then we define (in that chart)

D0
µs = (∂µsa) ea . (A.61)

Definition A.77 (Vector Potential). A vector potential is an endomorphism valued one-form, i.e. a
section of

End(E)⊗ T ∗M . (A.62)

The endomorphism bundle End(E) is the tensor product of the bundle and its dual, End(E) = E ⊗E∗.
This means, a vector potential A has three indices: A = Aaµb ea ⊗ eb ⊗ dxµ.

Lemma A.78. Any connection D can be written as the sum of the flat connection D0 and a vector
potential. On the other hand, for any vector potential A, D = D0 +A defines a connection.

Proof. For the first part we need to show that A(v)(s) defined as Dv(s) −D0
v(s) is C∞(M)-linear in v

and s. Linearity in s follows because the v(f)-terms of the Leibniz rule cancel out.
For the second part we mainly have to check that D0 +A obeys the Leibniz rule:

Dv(fs) = D0
v(fs) +A(v)(fs) = v(f)s+ fD0

v(s) + fA(v)s = v(f)s+ fDv(s) .

Definition A.79 (G-connection). On a G-bundle π : E → M with G acting in the representation
ρ : G→ End(E), we also have a representation dρ : g→ End(E) of the Lie algebra. We can consequently
view g as a subspace of End(E).

A connection D is a G-connection if in local coordinates the Aµ take values in g.
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Note. Consider a chart U with a basis {ea} of sections. The equation D = D0 +A can then be written
as

(Dµs)a = ∂µs
a + sbAaµb . (A.63)

We can use this to calculate the components of A: Because Dµs = Dµ(saea) = (∂µsa) ea + saDµea, we
immediately get

Dµeb = Aaµbea . (A.64)

So far, D and A are only defined locally, and the components of A depend on the basis of local sections.
Let us consider another chart with basis {e′a} such that e′a = Rbaeb where both are defined (for a G-valued
function R). Then A and A′ need to satisfy the compatibility condition

A′ = R−1AR+R−1dR . (A.65)

Definition A.80 (Levi-Civita Connection). Let g be a pseudo-Riemannian metric on a manifold M .
The Levi-Civita connection ∇ is the unique connection on TM which is metric preserving (v[g(u,w)] =
g(∇vu,w) + g(u,∇vw)) and torsion free ([v, w] = ∇vw −∇wv).

The vector potential is called the Christoffel symbols Γλµν . Note that all three indices are of the same
type in this case. Torsion-freeness is equivalent to Γλµν = Γλνµ.

Note. The condition that ∇ is metric preserving can be written as ∇vg = 0, using notation we will
introduce in definition A.85.

Lemma A.81. The Christoffel symbols can be calculated via

Γλµν = 1
2g

λη (∂µgνη + ∂νgµη − ∂ηgµν) . (A.66)

A.5.2 Note on Connections on Principal Bundles
There’s a different way of defining connections on principal and associated bundles. For u ∈ P (M,G),
we first define the vertical subspace VuP as the image of the map

] : g→ TuP,A 7→ A] with A] : t 7→ u. exp(tA) (A.67)

(using lemma A.4 to identify curves with tangent vectors).
Then a connection is defined to be a separation of TuP into HuP ⊕ VuP with9 Hu.gP = (Rg)∗HuP

and some smoothness condition. HuP is called the horizontal subspace. Equivalently, the connection
is given by a one-form ω ∈ g ⊗ T ∗P called Ehresmann connection. ω has to satisfy ω(A]) = A10 and
(Rg)∗ωu.g(X) = g−1ωu(X)g. The definitions are equivalent because ω defines a projection of TuP on
VuP , i.e. HuP = kerω = {X ∈ TuP : ω(X) = 0}.

One more important ingredient is the notion of horizontal lift: If γ : (−ε, ε) → M is a curve, then
there is a unique horizontal lift γ̃ : (−ε, ε) → P with π ◦ γ̃ = γ, γ̃′(t) ∈ Hγ̃(t)P and an initial condition
γ̃(0) = u0 (for an arbitrary u0 with π(u0) = γ(0)).

Now, we can finally use all this to define a connection on the associated vector bundle P ×ρ F . Let
p ∈ M , X ∈ TpM and s ∈ Γ(P ×ρ F ). Choose a curve γ such that γ(0) = p and γ′(0) = X. Along the
curve, s(γ(t)) = [γ̃(t), η(t)] for some lift γ̃ and a curve η in F . We define

DX(s)|p = [γ̃(0), η′(0)] (A.68)

(which is independent of the choice of γ and the choice of initial condition for γ̃) and we define Dv(s)
for a vector field v by evaluating at each point Dv(p)(s).

Lemma A.82. The object D we just defined is a G-connection on the associated vector bundle (in the
sense of our definitions above). On the other hand, every G-connection on a vector G-bundle can be
understood in this way.

9Rg : P → P is the right action of g ∈ G on P .
10 ] can be made into a map ] : g→ Vect(P ) in an obvious manner.
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Proof. We will just show the most important point, that equation (A.64) holds.
Let p,X, γ and γ̃ be like in definition (A.68). Let furthermore p be in a chart Ui and let σi : q 7→ [q, e]i

be the section corresponding to the local trivialization (see lemma A.71). We choose a local basis of
sections of the associated bundles by setting ea(q) = {q, ea}i, where {ea} is a basis of the vector space
F . We can write γ̃(t) = [γ(t), g(t)]i. Without proof we accept the fact [54, (10.13)]

g′(0) g(0)−1 = −σ∗i ω(X) .

We want to calculate DXea|p. From the definition ea(γ(t)) = [γ̃(t), η(t)] we read off η(t) = g(t)−1.ea.
Now with (A.68),

DXea|p = [γ̃(0), d
dtg(t)−1

∣∣∣∣
t=0

.ea] = {p, g(0) d
dtg(t)−1

∣∣∣∣
t=0

.ea}i

= {p,−g′(0) g(0)−1.ea}i = {p, σ∗i ω(X).ea}i .

A = σ∗i ω is a g-valued vector potential. It is given only locally, but can be shown to satisfy (A.65)
(see [54, (10.9)], therefore it defines a vector potential globally. This proves our claim.

Lemma A.83. A connection on an associated vector bundle is compatible with a gauge transformation
Φ : P → P :

Φ(Dµs) = DΦ
µΦ(s) , (A.69)

where DΦ is the gauge transformed connection associated with HΦ
Φ(u)P = Φ∗HuP .

The transformed Ehresmann connection is ωΦ = (Φ−1)∗ω and the transformed vector potential is

AΦ
i = ΦiAiΦ−1

i + Φid
(
Φ−1
i

)
. (A.70)

Proof. (A.69) follows from the definition (A.68): If we want to calculate DΦ
XΦ(s)

∣∣
p
, we can use the lift

γ̃Φ = Φ ◦ γ because then
(
γ̃Φ)′ (0) = Φ∗γ̃′(0).

For the rest, see [55].

A.5.3 Derivatives and Curvature
Let π : E → M be a vector bundle and D a connection on it. In this subsection we will be concerned
with E-valued q-forms, meaning sections of E ⊗ ΛqT ∗M . We first need some technical definitions. For
those note that a generic E-valued q-form is the sum of terms s⊗ω, where s is a section of E and ω is a
q-form on M . We are only going to consider forms of this special type, the definitions for general forms
are an obvious extension.

Definition A.84.

i) Assume there is some product between sections of E and those of another vector bundle Ẽ. For
example, we have a canonical product between sections of End(E) and E, or between two sections
of End(E). Then we can define a wedge product between an E-valued q-form s⊗ω and an Ẽ-valued
r-form t⊗ η:

(s⊗ ω) ∧ (t⊗ η) = (s · t)⊗ (ω ∧ η) . (A.71)

ii) The graded commutator of an End(E)-valued q-form A and an End(E)-valued r-form B is

[A,B] = A ∧B − (−1)qrB ∧A . (A.72)

Definition A.85. From our connection D on E we can derive connections on other bundles:

i) We define D∗ on E∗ by the requirement v(λ ∧ s) = (D∗vλ) ∧ s + λ ∧ (Dvs) for any vector field v,
where λ is a section of E∗ and s one of E.

ii) On E ⊕ Ẽ, we can simply let (D ⊕ D̃)v(s, s̃) = (Dvs, D̃v s̃).
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iii) And on E ⊗ Ẽ, (D ⊗ D̃)v(s⊗ s̃) = Dvs⊗ s̃+ s⊗ D̃v s̃.

iv) This gives us a connection on End(E) = E ⊗ E∗: Let A be a section of End(E) and s one of E.
Then, by straightforward calculation, (DvA)s = Dv(As)−A(Dvs) or

DvA = [Dv, A] . (A.73)

Definition A.86 (Exterior Covariant Derivative). The exterior covariant derivative of a form s⊗ η is
dD(s⊗ η) = (dDs) ∧ η + s⊗ (dη) . (A.74)

The exterior covariant derivative of a section is defined over (dDs)(v) = Dvs, generalizing the formula
(df)(v) = v(f). In local coordinates, that means dDs = Dµsdxµ.
Lemma A.87. In local coordinates, we can write D = D0 +A. Obviously, dD0 = d.

Let ω be an E-valued form and B an End(E)-valued form. Calculation shows
dDω = dω +A ∧ ω and dDB = dB + [A,B] . (A.75)

Definition A.88 (Curvature). Let π : E → M be a vector bundle and D a connection on it. For two
vector fields v, w ∈ Vect(M), the curvature F (v, w) is an operator Γ(E)→ Γ(E) given by

F (v, w) = [Dv, Dw]−D[v,w] . (A.76)
Lemma A.89.
i) F is C∞(M)-linear in v, w and in s ∈ Γ(E).

ii) Hence, in local coordinates F (v, w) = vµwνFµν for Fµν = [Dµ, Dν ].

iii) For a local basis of sections {ea}, define Fµνea = F bµν aeb. Then

F bµν a = ∂µA
b
νa − ∂νAbµa +AbµcA

c
νa −AbνcAcµa . (A.77)

Suppressing the internal indices, we can write this as Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ].

iv) Consequently, if D is a g-connection, also Fµν is g-valued.
Theorem A.90 (Curvature Form). In local coordinates, we define the End(E)-valued curvature 2-form
to be F = 1

2Fµνdxµ ∧ dxν . Hence, we can write the result of lemma A.89 as
F = dA+A ∧A . (A.78)

This is called Cartan’s Structure Equation.
F is actually globally defined and coordinate-independent. (It is important to note though that (A.78)

only holds locally. If we write D = D0 +A globally, we will in general get F = F 0 + dA+A ∧A.)
Proof. Applying dD again to (A.74) gives, for an arbitrary E-valued form ω,

d2
Dω = F ∧ ω . (A.79)

This can be used to define F globally independent of coordinates.

Theorem A.91 (Bianchi Identity).
dDF = 0 (A.80)

Proof. We can use lemma A.87 and definition (A.78) to calculate dDF . Some terms cancel and we get
dDF = d2A+ [A,A ∧A], both terms are zero.

Alternatively, we could use definition (A.79) and compare d3
Dω = dD(F ∧ ω) = F ∧ dDω.

Theorem A.92. Let D be a G-connection. Plugging Ã = gAg−1 +gdg−1 into (A.78) gives F̃ = gFg−1.
This tells us the compatibility condition for F and how it transforms under gauge transformations.
Definition A.93. The curvature of the Levi-Civita connection ∇ is called the Riemann tensor R:

Rρσ µν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ (A.81)
(note that all indices are of the same type and that the order of the bottom indices differs from (A.77)).
The Ricci tensor is Ricµν = Rλµλν and the curvature scalar is R = gµν Ricµν .
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A.5.4 Application: Yang-Mills Theory
In physics, a Yang-Mills gauge theory describes fermionic matter which is interacting through bosonic
fields. It is specified by giving a gauge group, the fermionic matter content and its representation under
the gauge group.

Mathematically, Yang-Mills theory is just an application of the theory of vector bundles associated
with a principal bundle. However, we will modify the definitions given above slightly to incorporate
coupling constants and write everything in local coordinates:

• Let G be a Lie group and g its Lie algebra with generators T a (a = 1, . . . ,dim g). The generators
satisfy a commutation relation [T a, T b] = ifabcT c.

• Choose a representation of G. The fermionic matter field ψ is classically a section of the vector
bundle E associated with the principal G-bundle under the given representation (times an internal
spinor structure).

• Locally, a gauge transformation is just an assignment of a group element U(x) to every point x.
We can write U = e−iα, where α(x) = αa(x)T a is an element of g.
Under a gauge transformation,

ψ(x) 7→ U(x)ψ(x) = e−iαψ (A.82)

(equation (A.59)). Infinitesimally, that is ψ 7→ ψ − iαψ.

• A connection on the principal G-bundle induces a connection D on the associated vector bundle,
acting on ψ. Like in (A.63), we write it in terms of a vector potential, but now we scale it with a
coupling constant g:

(Dµψ)i = ∂µψ
i + igAiµjψj . (A.83)

The vector potential A is a g-valued 1-form. According to (A.70), it transforms as

Aµ 7→ UAµU
−1 + i

g
(∂µU)U−1 . (A.84)

Infinitesimally: Aµ 7→ Aµ + 1
gDµα, where Dµα was defined in definition A.85.

• The kinetic term of ψ is
iψ̄γµDµψ , (A.85)

this is gauge invariant by lemma A.83.

• The curvature of the connection is (see lemma A.89)

Fµν = 1
ig [Dµ, Dν ] = ∂µAν − ∂νAµ + ig[Aµ, Aν ] . (A.86)

Under a gauge transformation, Fµν 7→ UFµνU
−1, this makes the kinetic term

− 1
2 tr (F ∧ ∗F ) = −1

2 tr (FµνFµν) (A.87)

gauge invariant.

Note. Oftentimes, α is scaled with g as well and in all formulas α is replaced with g α.

92



Appendix B

Complex Geometry

Note. This chapter was mainly taken from [58], [54, Ch. 8, 10.4 and 11], [48, Ch. 1.1] and [59, Ch. 1.1].

B.1 Complex Manifolds
B.1.1 Definitions
Definition B.1 (Complex Manifold). First of all, a function f : Cn → Cm is holomorphic if each
complex component is holomorphic (obeys the Cauchy-Riemann equations) in every complex variable.

Let X be a differentiable manifold. A holomorphic atlas contains charts ϕi : Ui → Cm with holomor-
phic transition functions. X equipped with a holomorphic atlas is a complex manifold.

Two holomorphic atlases on X define the same complex structure on X if their union is a holomorphic
atlas as well.

Definition B.2 (Complex Submanifold). Let X be a complex manifold of C-dimension m. A subman-
ifold Y ⊂ X is a complex submanifold of dimension n ≤ m if there is an atlas of charts ϕi : Ui → Cm
such that

ϕi(Y ∩ Ui) ⊂ Cn . (B.1)

Example B.3 (The Torus T 2). Take two points ω1, ω2 ∈ C with =(ω2/ω1) > 0. The lattice L defined
by them is the set of all n1ω1 + n2ω2, ni ∈ Z. Such a lattice defines naturally a complex structure on
the torus T 2 = C/L.

One can show that two lattices define the same complex structure if and only if(
ω̃1
ω̃2

)
= λM

(
ω1
ω2

)
(B.2)

for a λ ∈ C and a M ∈ PSL(2,Z) = SL(2,Z)/Z2 (we factorize out the Z2 because a factor −1 in M can
be put into λ) [54, Ex. 8.2].

Consequently, the complex structure is completely determined by the modulus τ = ω2/ω1 ∈ H =
{z ∈ C : =(z) > 0}. Two τ result in the same complex structure if they are related by a PSL(2,Z)
transformation. The moduli space of the torus is therefore H/PSL(2,Z). Details on how this space
looks can be found e.g. in [60, Ch. 5.1].

Example B.4 (Complex Projective Space). Another example is complex projective space, defined as
CPm =

(
Cm+1 − {0}

)
/ ∼ with z ∼ z′ ⇔ z = λz′. The coordinate functions inherited from Cm+1 are

called homogeneous coordinates. The equivalence class [(z0, . . . , zm)] is usually written as [z0 : · · · : zm].
Every point has a neighborhood in which one of the homogeneous coordinates is nowhere zero. We

can fix that coordinate to be 1, then the remaining m coordinates are unambigous. They are called
inhomogeneous coordinates and define a chart on that neighborhood. m + 1 of such charts cover CPm,
take Uµ = {[z0 : · · · : zm] : zµ 6= 0}.
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Since a complex manifold of C-dimension m is also a differentiable manifold of dimension 2m, we
already know how to define (real) tangent and cotangent spaces. We write the m complex coordinate
functions zi as 2m real coordinate functions: zµ = xµ+iyµ. TpX is spanned by the 2m vectors {∂xµ , ∂yµ}
and T ∗pX by the covectors {dxµ,dyµ}.

Definition B.5. The complexified tangent and cotangent spaces are

TpX
C = C⊗ TpX and T ∗pX

C = C⊗ T ∗pX (B.3)

(note that T ∗pXC =
(
TpX

C)∗).
The vectors

∂zµ = 1
2 (∂xµ − i∂yµ) and ∂z̄µ = ∂zµ = 1

2 (∂xµ + i∂yµ) (B.4)

are a basis of TpXC. We also write ∂µ = ∂zµ and ∂̄µ = ∂z̄µ . The corresponding dual basis of T ∗pXC is

dzµ = dxµ + i dyµ and dz̄µ = dxµ − i dyµ . (B.5)

Definition B.6. The sheaf of holomorphic functions on X is called the structure sheaf OX . That means
that for U ⊂ X open,

OX(U) = {f : U → C : f holomorphic} . (B.6)
Holomorphic functions f : U → C or Φ : X → Y on complex manifolds are defined analogously to
smooth functions on a differentiable manifold.

We also define the sheaf O∗X of nowhere vanishing holomorphic functions on X.

As a reminder:

Definition B.7 (Sheaf). Let X be a topological space. A sheaf F gives us for every open U ⊂ X an
object F(U) of some category, and for U ⊂ V there is a restriction morphism rUV : F(V )→ F(U). We
write rUV (f) = f |U .

The morphisms have to satisfy the following axioms:

• rUU = id and rUV ◦ rVW = rUW (pre-sheaf )

• Let Ui be an open covering of U and f, g ∈ F(U). If f |Ui = g|Ui for all i, then f = g.

• If we are given fi ∈ F(Ui) such that fi|Ui∩Uj = fj |Ui∩Uj , there is f ∈ F(U) such that fi = f |Ui .

Note. The maximum principle has severe consequences on complex manifolds: For example, any global
holomorphic function on a compact and connected X is constant, OX(X) = C. Also, we cannot have a
holomorphic partition of unity on a complex manifold (see definition A.44).

The definition of a meromorphic function is not so straightforward. We would like meromorphic
functions on U to be the quotient field of OX(U). This definition has a serious drawback: If Ui is a
covering of X and fi are meromorphic functions on Ui such that fi = fj on Ui ∩ Uj , we would expect it
to extend to an f which is meromorphic on X. With the mentioned naive definition, this would not be
the case however (see Cousin problems).

We need to define meromorphic functions as local quotients of holomorphic functions. The locality
can be mathematically captured by considering stalks of the sheaf OX . We remember:

Definition B.8 (Stalk). Let F be a sheaf on X and x ∈ X. The stalk of F at x is the direct limit
Fx = lim−−→

U3x F(U). The direct limit lim→ is defined as the disjoint union of all elements of all F(U),
where two elements f ∈ F(U), g ∈ F(V ) are identified if there is a W ⊂ U ∩ V containing x such that
f |W = g|W .

Elements of a stalk are called germs.

Definition B.9 (Meromorphic Function). A meromorphic function f associates to every p ∈ X a germ
fp ∈ Q(OX,p) (Q denotes the quotient field). This happens in such a way that for every point of X there
is a neighborhood U and g, h ∈ OX(U) with fp = [g]

[h] for all p ∈ U (where [g] and [h] are the equivalence
classes of g and h in the stalk OX,p).
KX is the sheaf of meromorphic functions and K∗X the sheaf of invertible meromorphic functions.

94



B.1. COMPLEX MANIFOLDS

B.1.2 Almost Complex Structure
We continue to investigate the tangent space of a complex manifold. In every point p ∈ X we define Jp,
a (1, 1)-tensor of TpX, by setting Jp∂xµ = ∂yµ and Jp∂yµ = −∂xµ . Using that the transition functions
between charts are holomorphic and thus obey the Cauchy-Riemann equations it can be easily seen that
this definition is independent of the chart and gives us a (1, 1)-tensor field J .

Definition B.10 (Almost Complex Structure). An almost complex structure on a differentiable manifold
is a (1, 1)-tensor field J that squares to

J2 = − id . (B.7)

An almost complex structure always has m eigenvalues +i and m eigenvalues −i. The complexified
tangent space splits into two subspaces:

TpX
C = TpX

+ ⊕ TpX− . (B.8)

Note. In a complex manifold, TpX+ is spanned by the ∂µ and TpX− by the ∂̄µ.

Definition B.11. Vectors in TpX+ (TpX−) are called (anti-)holomorphic vectors.
Also vector fields can be decomposed accordingly and vector fields in Vect(X)+ (Vect(X)+) are called
(anti-)holomorphic vector fields.

Theorem B.12 (Newlander and Nirenberg 1957). Let M be a 2m-dimensional differentiable manifold
with almost complex structure J . If [v, w] ∈ Vect(X)+ for all v, w ∈ Vect(X)+, we say that J is
integrable.

If J is integrable, then M is a complex manifold with almost complex structure J . On the other hand,
the almost complex structure of every complex manifold is integrable.

Proof. [58, Thm. 2.6.19]

B.1.3 Complex Differential Forms
Definition B.13 ((r, s)-Form). A q-vector ω ∈ Ωqp(X)C is said to be an (r, s)-vector or vector of bidegree
(r, s) if ω(V1, . . . , Vq) = 0 unless r of the vectors are holomorphic and s of the vectors are antiholomorphic.
The set of (r, s)-forms is called Ωr,s(X).

A generic form ω of bidegree (r, s) can locally be written as

ω = 1
r!s!ωµ1...µrν1...νs dzµ1 ∧ · · · ∧ dzµr ∧ dz̄ν1 ∧ · · · ∧ dz̄νs . (B.9)

Lemma B.14 (Decomposition).
Ωq(X)C =

⊕
r+s=q

Ωr,s(X) (B.10)

In this context, the wedge product is a map ∧ : Ωr,s × Ωr′,s′ → Ωr+r′,s+s′ . If we apply the exterior
derivative to an (r, s)-form, we get a form in Ωr+1,s ⊕ Ωr,s+1.

Definition B.15 (Dolbeault Operators). The Dolbeault operators ∂ and ∂̄ are the induced maps ∂ :
Ωr,s → Ωr+1,s and ∂̄ : Ωr,s → Ωr,s+1 such that d = ∂ + ∂̄. For ω = 1

r!s!ωµν dzµ ∧ dz̄ν (short notation for
(B.9)) they are given by

∂ω = 1
r!s!∂λωµν dzλ ∧ dzµ ∧ dz̄ν (B.11)

∂̄ω = 1
r!s! ∂̄λωµν dz̄λ ∧ dzµ ∧ dz̄ν . (B.12)

A q-form ω of bidegree (q, 0) with ∂̄ω = 0 is called holomorphic.
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Lemma B.16. The usual rules for computing hold: ∂2 = 0 = ∂̄2, and

∂(ω ∧ η) = ∂ω ∧ η + (−1)qω ∧ ∂η

(∂̄ analogously).

Definition B.17 (Dolbeault Complex). The cochain complex

0 −→ Ωr,0(X) ∂̄−→ Ωr,1(X) ∂̄−→ · · · (B.13)

is called the Dolbeault complex of X.
Its cohomology groups are the (r, s) ∂̄-cohomology groups Hr,s

∂̄
(X). The (complex) dimensions of

those are the Hodge numbers br,s.

B.2 Kähler Manifolds
B.2.1 Hermitian Manifolds
Definition B.18 (Hermitian Manifold). Let g be a Riemannian metric on a complex manifold X. If

gp(JpY, JpZ) = gp(Y, Z) (B.14)

for all Y,Z ∈ TpX then g is a Hermitian metric and (X, g) a Hermitian manifold.

Theorem B.19. Every complex manifold can be made into a hermitian manifold.

Proof. Take some Riemannian metric ĝ and set g(v, w) = 1
2 (ĝ(v, w) + ĝ(Jv, Jw)).

Definition B.20 (Complex Extension). gp can be extended to a C-bilinear map gp : TpXC⊗TpXC → C.
The extension is still just called g. Now we can give the components in the basis {dzµ,dz̄ν}:

gµν = g(∂µ, ∂ν) and gµν̄ = g(∂µ, ∂̄ν) etc . (B.15)

Lemma B.21. Because g is bilinear, gµν = gνµ and gµν̄ = gν̄µ etc.
Because g originally was real, gµν = gµ̄ν̄ and gµν̄ = gµ̄ν etc.
Because g is hermitian, one easily sees gµν = 0 = gµ̄ν̄ . Therefore

g = gµν̄dzµ ⊗ dz̄ν + gµ̄νdz̄µ ⊗ dzν . (B.16)

Definition B.22 (Kähler Form). Let (M, g) be a Hermitian manifold. We define Ω(v, w) = g(Jv,w).
Ω is a real two-form (Ω ∈ Ω2(X)) called fundamental form or Kähler form. After extension to C, its

components are Ωµν̄ = −Ων̄µ = igµν̄ , so

Ω = igµν̄ dzµ ∧ dz̄ν . (B.17)

Proof. Ω is real by definition. Its antisymmetry can be seen from Ω(v, w) = g(J2v, Jw) = −g(Jw, v) =
−Ω(w, v).

Theorem B.23. A Hermitian manifold is orientable.

Proof. Ω ∧ · · · ∧ Ω is a nowhere vanishing 2m-form. This can be easily seen by applying it to a basis of
the form {e1, Je1, . . . , em, Jem} in any point.

Note. Some authors call h = 1
2 (g − iΩ) the hermitian metric. The Riemannian metric g is then defined

to be 2<(h) and Ω is −2=(h). The only nonzero components of h are hµν̄ = gµν̄ :

h = gµν̄ dzµ ⊗ dz̄ν . (B.18)

hp can be seen as a map hp : TpX+ ⊗ TpX− → C which actually is hermitian, meaning hp(Y, Z̄) =
hp(Z, Ȳ ) for Y, Z ∈ TpX+.
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On the tangent bundle of a Hermitian manifold (X, g), we can define the Levi-Civita connection ∇ just
like in definition A.80. On the complexified tangent bundle TXC, there is another natural connection:

Definition B.24 (Chern Connection). Let D be a real connection on TXC with vector potential A.
We extend the argument v of Av to take complex vector fields by simple C-linear extension. Now, D
is compatible with the complex structure if Aµ(TX+) ⊂ TX+ (i.e. Aλ̄µ∗ = 0)) and Aµ̄(TX+) = 0 (i.e.
A∗µν̄ = 0). Because D is real, we directly see that this is equivalent to all mixed-index components of A
being zero.

The Chern connection D is the unique real connection which is compatible with the metric (like in
definition A.80) and the complex structure. Its vector potential is called Γ (like the vector potential of
∇).

Lemma B.25. Because D is compatible with the complex structure, the only non-zero components of Γ
are Γλµν = Γλ̄µ̄ν̄ . They can be calculated via

Γλµν = gλκ̄∂µgνκ̄ and Γλ̄µ̄ν̄ = gλ̄κ∂̄µgν̄κ . (B.19)

This also shows the uniqueness of the Chern connection.

Theorem B.26. The almost complex structure J is parallel with respect to the Chern connection D:

DJ = 0 . (B.20)

B.2.2 Kähler Manifolds
Definition B.27 (Kähler Manifold). A Kähler manifold is a Hermitian manifold with closed Kähler
form, dΩ = 0.

Theorem B.28. A Hermitian manifold is Kähler if and only if J is also parallel with respect to the
Levi-Civita connection,

∇J = 0 . (B.21)

Proof. First one notes that for any form ω, dω = ∇ω because of torsion-freeness.
From calculating (∇vΩ)(u,w) one then finds out that ∇J is zero if and only if ∇Ω is zero. This

proves the claim because dΩ = ∇Ω.

Theorem B.29. The condition dΩ = 0 can be locally written as

∂λgµν̄ = ∂µgλν̄ and ∂λ̄gµ̄ν = ∂µ̄gλ̄ν . (B.22)

This has the following consequences:

i) The Chern connection is torsion-free and therefore agrees with the (complexified) Levi-Civita con-
nection.

ii) In a chart Ui, gµν̄ = ∂µ∂ν̄Ki for some Kähler potential Ki. In other words, Ω = i∂∂̄Ki.

Proof. To get (B.22) just calculate (∂ + ∂̄) (igµν̄ dzµ ∧ dz̄ν) which has to be zero.

Example B.30. The Euclidean metric δ on Cm is Hermitian. Its Kähler form Ω = i
2
∑
µ dzµ ∧ dz̄µ is

obviously closed, it has a Kähler potential K = 1
2zµz̄

µ.

Example B.31. Complex projective space is a Kähler manifold. Define a Kähler potential by setting
(using the charts of example B.4)

Kµ([z0 : · · · : zm]) = 1
2π

m∑
ν=0

∣∣∣∣zνzµ
∣∣∣∣2 (B.23)

This defines a Kähler form called ωFS = i∂∂̄K because ∂∂̄Kµ = ∂∂̄Kν . There is a Hermitian metric g
whose Kähler form is Ω, it is called the Fubini-Study metric.
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Definition B.32 (Projective Manifold). A complex manifold X is projective if it is isomorphic to a
closed complex submanifold of a complex projective space.

Theorem B.33. Every projective manifold is Kähler.

Proof. It is easy to show that, in general, a complex submanifold of a Kähler manifold is again Kähler.

Lemma B.34 (Curvature of Hermitian Manifolds). Using lemma B.25, we see the following:
Let Rρσ µν̄ be the curvature tensor corresponding to the Chern connection on a hermitian manifold,

defined like in A.93. In general the only non-vanishing components of it are:

Rρσ µν̄ = −Rρσ ν̄µ (B.24)

and their complex conjugates.

Theorem B.35 (Curvature of Kähler Manifolds). On a Kähler manifold, the Levi-Civita and the Chern
connection are the same. (B.24) is therefore true for the Riemann tensor Rρσ µν̄ .

(B.22) implies an additional symmetry of the Riemann tensor:

Rρσ µν̄ = Rρµσν̄ . (B.25)

Importantly,
Ricµν̄ = Rλµλν̄ = Rλλµν̄ = tr(Rµν̄) (B.26)

where the trace goes over the “endomorphism”-part of R viewed as an endomorphism-valued 2-form. We
will need this later for the characterization of Calabi-Yau manifolds (lemma B.92).

Note that on a hermitian manifold, tr(Rµν̄) = −∂µ∂̄ν log det g (from lemma B.25).

B.2.3 Hodge Theory on Hermitian Manifolds
On a Hermitian manifold, we can define the Hodge star operator like in definition A.33. It is a map
∗ : Ωr,s(X)→ Ωm−s,m−r(X). Then we define a scalar product on Ωr,s(X) similar to definition A.51:

(ω, η) =
∫
M

ω ∧ ∗η . (B.27)

The adjoint Dolbeault operators ∂† and ∂̄† are defined with respect to this scalar product similar to
definition A.52. It turns out that d† = ∂† + ∂̄†, ∂† = −∗∂̄∗ and ∂̄† = −∗∂∗, also (∂†)2 = 0 = (∂̄†)2.

Definition B.36 (Harmonic Forms). On a Hermitian manifold, we define ∆∂ = (∂ + ∂†)2 and ∆∂̄ =
(∂̄ + ∂̄†)2.

We call the space of harmonic forms with respect to ∆∂̄

Harmr,s

∂̄
(X) = {ω ∈ Ωr,s(X) : ∆∂̄ω = 0} . (B.28)

In this context, we have analogues of theorems A.58 and A.59:

Theorem B.37 (Hodge). There is the orthogonal decomposition

Ωr,s(X) = ∂̄Ωr,s−1(X)⊕ ∂̄†Ωr,s+1(X)⊕Harmr,s

∂̄
(X) . (B.29)

Also, the ∂̄-homology groups (see definition B.17) are isomorphic to spaces of harmonic forms:

Hr,s

∂̄
(X) ∼= Harmr,s

∂̄
(X) . (B.30)
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B.2.4 Cohomology of Kähler Manifolds
Theorem B.38. Let X be a Kähler manifold. Then

∆ = 2∆∂ = 2∆∂̄ . (B.31)

Definition B.39 (Hodge Diamond). The Hodge numbers defined in definition B.17 are usually arranged
in the Hodge diamond:

bm,m

bm,m−1 bm−1,m

. .
. . . .

bm,1
... b1,m

bm,0 · · · · · · · · · b0,m

bm−1,0 ... b0,m−1

. . . . .
.

b1,0 b0,1

b0,0


(B.32)

Theorem B.40. In a Kähler manifold,

i) the Hodge Diamond is symmetric about the vertical axis: br,s = bs,r.

ii) the Hodge Diamond is symmetric about the horizontal axis: br,s = bm−s,m−r.

Proof. i) If ω ∈ Ωr,s is ∂̄-harmonic then ω̄ ∈ Ωs,r is also ∂̄-harmonic:

∆∂̄ω̄ = ∆∂ω = ∆∂̄ω = 0 .

ii) The map Λ which we already used in equation (A.41) can be seen as a bilinear non-degenerate map
Hr,s ×Hm−r,m−s → C. This gives br,s = bm−r,m−s = bm−s,m−r.

B.3 Holomorphic Vector Bundles
B.3.1 Interlude: Cohomology of Sheaves
There is a very general notion of cohomology groups Hq(X,F) of sheaves F . The definition that works
most universally is Grothendieck cohomology (usually just called “cohomology”): Here the homology
group functor Hq(X, ·) is defined as the right derived functor of the section functor ΓX : F → F(X).
Čech cohomology Ȟ(X,F) is a less abstract approach which often agrees with Grothendieck cohomology
(see theorem B.43 and [58,61]), but is more easily accessible and calculable.

Definition B.41 (Čech cohomology). To define Čech cohomology, we first fix an open cover {Ui : i ∈ I}
of X.

The cochain groups are defined as follows:

Cn ({Ui},F) =
∏

i0 6=···6=in

F(Ui0 ∩ · · · ∩ Uin) . (B.33)

This means that a 0-cochain σ ∈ C0 is a collection of objects σi ∈ F (Ui). 1-cochains are collections of
the type σij ∈ F (Ui ∩ Uj) and so on.

We define the coboundary of a cochain in a way similar to (A.33). For example, for a 0-cochain σ,
the coboundary is a 1-cochain δσ with (δσ)ij = − (σi)|Ui∩Uj + (σj)|Ui∩Uj . In general, for an n-cochain
σ,

(δσ)i0...in+1 =
n+1∑
j=0

(−1)j
(
σi0...̂ij ...in+1

)∣∣∣
Ui0∩···∩Uin+1

. (B.34)
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Since δ2 = 0, the cochain groups together with the coboundary operators make up a cochain complex.
Let’s call its cohomology groups Hq ({Ui},F).

Čech cohomology is the direct limit of the groups Hq ({Ui},F) for ever finer coverings {Ui}:

Ȟq(X,F) = lim−−−→
{Ui}

Hq ({Ui},F) . (B.35)

Taking the direct limit is possible because if {Vi} is a finer covering then {Ui} then there is a natural
homomorphism Hq ({Ui},F)→ Hq ({Vi},F).

Lemma B.42. For every F , there is an open cover {Ui} such that Ȟq(X,F) = Hq ({Ui},F) [61].

Theorem B.43. There is a natural isomorphism between the zeroth cohomology groups, H0(X,F) ∼=
Ȟ0(X,F), and between the first cohomology groups, H1(X,F) ∼= Ȟ1(X,F).

The higher cohomology groups agree if for example X is paracompact.

For the proof of this theorem as well as for the following ones we would need to know how to compute
Grothendieck cohomology using an acyclic resolution of the sheaf F . Details about this are in [58].
Note. Obviously, the zeroth homology group just contains the global sections of the sheaf,

H0(X,F) = F(X) . (B.36)

Theorem B.44. Let M be a differentiable manifold.
We denote the constant sheaf with values in R by R.

Hq(M,R) ∼= Hq(M) ∼= H∗q (M) . (B.37)

Here Hq(M) is the deRham cohomology (definition A.46). We have already seen in theorem A.48 that
it is the dual of the singular homology (with real coefficients) Hq(M), defined in A.41.

Theorem B.45. Let X be a complex manifold.
The holomorphic r-forms on it form a sheaf Ωr,0(X) = ΩrX (see definitions B.13, B.51 and B.52).

Hs(X,ΩrX) ∼= Hr,s

∂̄
(X) , (B.38)

where H∂̄ is the Dolbeault cohomology already defined in definition B.17.
This also works for E-valued forms if π : E → X is a holomorphic vector bundle (to be defined below):

Hs(X,E ⊗ΩrX) ∼= Hr,s

∂̄
(X,E) , (B.39)

where Hr,s

∂̄
(X,E) are the cohomology groups of the E-valued Dolbeault complex.

Note. One can understand why all those different types of cohomology usually agree: It is possible to
define (co-)homology axiomatically, the axioms are called Eilenberg-Steenrod axioms. Those axioms were
all already mentioned in subsection A.3.2 as properties of singular homology: The dimension axiom,
additivity, excision, the homotopy axiom and the existence of the long exact sequence in homology.

The Eilenberg-Steenrod uniqueness theorem (see e.g. [62]) tells us that if the underlying manifold is
e.g. a finite CW-complex [57, Ch. 4], (co-)homology is unique. Since all the definitions of (co-)homology
we have seen satisfy the axioms, they have to agree.

B.3.2 Holomorphic Vector Bundles
Definition B.46 (Complex Vector Bundle). Let E and X be complex manifolds. A vector bundle
F → E

π→ X is called a complex vector bundle of rank r if the fiber F is Cr.

Definition B.47 (Holomorphic Vector Bundle). A complex vector bundle Cr → E
π→ X with structure

group GL(C, r) is a holomorphic vector bundle if
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i) π is holomorphic as a map between complex manifolds.

ii) The transition functions gij : Ui ∩ Uj → GL(C, r) are holomorphic.

iii) The local trivializations ϕi : Ui × Cr → E|Ui are biholomorphic.

A rank 1 holomorphic vector bundle is called a holomorphic line bundle.

Theorem B.48 (Cocycle Description). Theorem A.65 still holds true: A holomorphic vector bundle is
uniquely specified by giving the base space, the rank, and charts and transition functions satisfying the
cocycle conditions.

Example B.49. The trivial holomorphic line bundle is O = X×C. Its sheaf of sections is the structure
sheaf OX of holomorphic functions.

A holomorphic line bundle is trivial if and only if it admits a global section that is nowhere vanishing
and holomorphic.

Example B.50. The holomorphic tangent bundle TX+ (see definition B.11) is a holomorphic vector
bundle. Its rank is equal to the (complex) dimension of the complex manifold X.

Proof. Let ζ = ζ(z) be a change of chart. By definition it is holomorphic, so ∂zµ = ∂ζν

∂zµ ∂ζν . The
components of a vector vp = vµp (∂zµ)p ∈ TpX+ then transform with the holomorphic matrix ∂ζν

∂zµ .

Example B.51. The holomorphic cotangent bundle Ω1,0(X) is by definition the dual bundle of TX+.
For convenience we will call it ΩX .

By taking the q-fold exterior product, we get the bundle of holomorphic q-forms ΛqΩX = Ωq,0(X)
which we will call ΩqX . Note that on anm-dimensional complex manifold X there are q-forms for q ≤ 2m,
but only holomorphic q-forms for q ≤ m.

The canonical bundle KX is the bundle of holomorphic m-forms:

KX = ΩmX = Ωm,0(X) = detΩX . (B.40)

(The determinant bundle of a rank r bundle E is detE = ΛrE.)

Definition B.52 (Sheaf of Sections). Let π : E → X be a holomorphic vector bundle. The holomorphic
sections of E form a sheaf over X, we will call this sheaf E as well. This should clarify the notation in
theorem B.45.

Theorem B.53 (Adjunction Formula). Let Y ⊂ X be a complex submanifold according to definition
B.2. Then naturally TY + ⊂ T (X|Y )+. The orthogonal complement of TY + is again a holomorphic
vector bundle, called the normal bundle NY/X .

There is a natural isomorphism

KY
∼= KX|Y ⊗ detNY/X . (B.41)

Proof. It is true in general that for a short exact sequence 0→ E → F → G→ 0 of holomorphic vector
bundles, detF ∼= detE ⊗ detG. Applying this to

0→ TY + → T (X|Y )+ → NY/X → 0 (B.42)

yields the claim.
We can also see this by straightforward calculation: If Y is a submanifold of X this means that

the transition functions gXij of X|Y can be chosen block-diagonal: One block consists of the transition
functions gYij of Y and one of those of NY/X , gNij . The transition functions of the canonical bundle are the
determinant of the inverse transpose matrix (see the definition A.69 of the dual bundle). The theorem
is true because (

det gYij
)−1 =

(
det gXij

)−1 (det gNij
)

and the transition functions determine the bundle according to theorem B.48.

101



APPENDIX B. COMPLEX GEOMETRY

Definition B.54 (Picard Group). The Picard group Pic(X) of a complex manifold X consists of (iso-
morphism classes of) holomorphic line bundles over X. The group operation is taking the tensor product,
the inverse is given by taking the dual bundle and the trivial line bundle O is the neutral group element.

Proof. The only nontrivial thing we have to show is that for a line bundle C → L
π→ X, L ⊗ L∗ ∼= O.

The easiest way to see that is using theorem B.48: Let gij be the transition functions of L, then the
transition functions of L⊗ L∗ are gij ⊗ (gij)−T = 1 (because gij are 1× 1 matrices).

Theorem B.55. The Picard group Pic(X) is naturally isomorphic to H1(X,O∗X).
(O∗X is the sheaf of nowhere vanishing holomorphic functions like in definition B.6.)

Proof. First of all, by theorem B.43 we can use Ȟ1 instead of H1. According to lemma B.42, we can fix
a cover {Ui} fine enough to compute Čech cohomology with it.

Let us now map a line bundle L ∈ Pic(X) to the 1-cochain (g)ij = gij of its transition functions.
This cochain is closed because

(δg)ijk = gjkg
−1
ik gij = e

due to the cocycle condition of the transition functions.
Therefore we have defined a homomorphism Pic(X)→ Ȟ1(X,O∗X). The homeomorphism is surjective

because the transition functions determine the line bundle (theorem B.48). It is also injective because
its kernel consists of line bundles with transition functions of the form gij = hjh

−1
i for some hi which

are holomorphic and nowhere vanishing – such a bundle is trivial (see example B.49).

B.3.3 Divisors of Complex Manifolds
Definition B.56 (Analytic Subvariety). Let X be a complex manifold. A closed subset Y ⊂ X is an
analytic subvariety if for each x ∈ X there is an open neighborhood Ux ⊂ X such that Y ∩ Ux can be
described as the zero set of a finite set of holomorphic functions over Ux.

A point p ∈ Y is regular if there is an open neighborhood Vp of p such that Y ∩Vp is a complex manifold.
Otherwise, p is called singular. The dimension of Y in a regular point p is dimp Y = dim(Y ∩ Vp). The
dimension of Y is dimY = sup{dimp Y : p regular}.1

An analytic subvariety Y is an (analytic) hypersurface if dimY = dimX − 1.

Definition B.57 (Irreducible Subvariety). An analytic subvariety Y is called irreducible if it can not
be written as the union of two proper analytic subvarieties.

Definition B.58 (Divisor). The group of divisors Div(X) of a complex manifold X is the free abelian
group over the set of irreducible hypersurfaces. In other words, elements D ∈ Div(X) are of the form

D =
∑
i

aiYi (B.43)

for ai ∈ Z and irreducible hypersurfaces Yi.
A divisor is called effective if all the ai are not negative.

The next step is to define divisors corresponding to meromorphic functions. For this, we need the
concept of the order of a meromorphic function along an irreducible hypersurface:

Definition B.59 (Order). Let f ∈ KX(X) be a globally defined meromorphic function and Y an
irreducible hypersurface in X.

Fix a point x ∈ Y . According to the definition, Y is given as the zero set of a holomorphic function
g ∈ OX,x in a neighborhood of x. Because OX,x is a unique factorization domain [58, Prop. 1.1.15] and
g is irreducible, we can write

fx = gn · . . . (B.44)

with a unique exponent n, this is the order of f along Y in x: ordY,x(f) = n.
1 Alternatively we could use that the subset of regular points Yreg is a complex submanifold and set dimY = dimYreg.
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The order in x is actually the same for all regular points x ∈ Y since it doesn’t change in a small
neighborhood and the set of regular points of Y is connected. This allows us to define

ordY (f) = ordY,x(f), for x ∈ Y regular. (B.45)

Definition B.60 (Principal Divisor). Now we can assign a divisor

(f) =
∑
Y irr.

ordY (f)Y (B.46)

to each f ∈ KX(X). Divisors of this form are called principal divisors.

Lemma B.61. What we have defined so far are Weil divisors. In contrast, Cartier divisors are defined to
be elements of H0(X,K∗X/O∗X) (taking the quotient is possible because a nowhere vanishing holomorphic
function is also an invertible meromorphic function).

In our setting, those definitions agree:

Div(X) ∼= H0(X,K∗X/O∗X) . (B.47)

Proof. An element of H0(X,K∗X/O∗X) is first of all a collection of fi ∈ K∗X(Ui). Two such collections
(fi) and (gi) are equivalent if fi = gi · hi for a hi ∈ O∗X(Ui) for all i. Also (fi) has to be coclosed, i.e.
(δf)ij = f−1

i · fj ∈ O∗X(Ui ∩ Uj).
Because of this last condition, the notion ordY (f) is well-defined for an f ∈ H0(X,K∗X/O∗X) and we

assign to it the divisor (f) =
∑
Y irr. ordY (f)Y . (Note: This formula is different to (B.46) because f is

a different kind of object!) This map is a homomorphism because ordY (f · g) = ordY (f) + ordY (g).
It is also bijective because we can write down the inverse: Say we are given a divisor D, it suffices

to take one of the form D = a Y (a ∈ Z and Y is an irreducible hypersurface). We can choose a cover
{Ui} fine enough that Y ∩ Ui is the zero set of a gi ∈ OX(Ui). Set fi = (gi)a ∈ K∗X(Ui), the so defined
collection is coclosed (as a K∗X/O∗x - cochain): On Ui ∩ Uj , gi and gj can only differ by a O∗X(Ui ∩ Uj)
function because they define the same irreducible hypersurface.

Consider now the following short exact sequence of sheaves:

0→ O∗X → K∗X → K∗X/O∗X → 0 . (B.48)

As mentioned in subsections A.3.2 and B.3.1, this induces a long exact sequence in homology:

· · · −−−−→ H0(X,K∗X) −−−−→ H0(X,K∗X/O∗X) −−−−→ H1(X,O∗X) −−−−→ · · ·∥∥∥ ∥∥∥ ∥∥∥
· · · −−−−→ KX(X) −−−−→ Div(X) −−−−→ Pic(X) −−−−→ · · ·

(B.49)

We used theorem B.55 and lemma B.61.
The homomorphism KX(X) → Div(X) is the assignment of a principal divisor seen in definition

B.60. Apparently, there is a natural homomorphism Div(X) → Pic(X). A closer examination of the
construction of the long exact sequence in homology shows that an (fi) ∈ H0(X,K∗X/O∗X) gets mapped
to a 1-cochain (gij) ∈ H1(X,O∗X) with

gij = f−1
i · fj , (B.50)

this cochain is obviously coclosed.

Definition B.62. This homomorphism is called O : Div(X)→ Pic(X).

Lemma B.63. O(D +D′) = O(D)⊗O(D′) (because of how the transition functions gij look).
Furthermore, O(0) = O and O(−D) = O(D)∗.

Theorem B.64. From (B.49) we can see that a divisor D is principal if and only if O(D) = O.
Two divisors D and D′ are called linearly equivalent, D ∼ D′, if their difference is a principal divisor.

Obviously O : Div(X)/∼ → Pic(X) is an injection.
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The next question we will be concerned with is what the image of the map O : Div(X)/∼ → Pic(X)
looks like. It turns out:

Theorem B.65. A line bundle L ∈ Pic(X) can be written as O(D) if and only if it admits global
sections, i.e. H0(X,L) 6= {0}.

More specifically, for each L there is a semigroup homomorphism ZL : H0(X,L)\{0} → Div(X)
with O(ZL(s)) = L. This means in particular that the difference ZL(s1)− ZL(s2) is a principal divisor
(theorem B.64) for s1, s2 ∈ H0(X,L)\{0}.

Proof. To prove the “⇐” part, we only have to give an explicit ZL. The idea is that if we fix trivializations
ϕi : Ui × C → L, then the cochain consisting of fi = ϕ−1

i ◦ s|Ui defines an element in H0(X,K∗X/O∗X)
and we can use lemma B.61. For details and for “⇒” see [58, Ch. 2.3], note that the proof relies on
lemma B.66 as well.

Note. Intuitively, ZL gives the zero set of global sections of L including multiplicity. The theorem above
can be understood as follows: If the line bundle L admits global sections, we can consider the zero locus
of such a section. It is a divisor D with O(D) = L.

We want to use these results in order to rewrite the adjunction formula (theorem B.53). First we
need one more lemma:

Lemma B.66. Let D be an effective divisor. Then D is in the image of ZO(D).

Proof. By lemma B.61, an divisor is given by a collection of fi ∈ K∗X(Ui). But if D is effective, the fi
are actually holomorphic and define a global section s ∈ H0(X,O(D)) with ZO(D)(s) = D.

Theorem B.67 (Adjunction Formula). Let Y be a smooth hypersurface, i.e. a complex submanifold of
codimension 1.

i) If Y is in the image of ZL for some L ∈ Pic(X), then L|Y ∼= NY/X .

ii) In particular, NY/X ∼= O(Y )|Y and therefore

KY
∼= (KX ⊗O(Y ))|Y . (B.51)

Proof. The first part of the theorem is proved by comparing the transition functions of L|Y and NY/X .
For the second part we need to understand why NY/X ∼= O(Y )|Y , (B.51) then follows from theorem

B.53. The reason is that Y seen as a divisor is effective, therefore by the previous lemma in the image
of ZO(Y ). Now we can use the first part of the theorem.

What we have seen so far is a way to assign cohomology classes Y ∈ Div(X) and O(Y ) ∈ Pic(X) to
an irreducible hypersurface Y . Poincaré duality (see theorem A.49) gives us another way:

Definition B.68. Let Y be a smooth hypersurface. Its fundamental class is the Poincaré dual, denoted
by [Y ] ∈ H2(X).

Remember that its definition was
∫
Y
ω|Y =

∫
X
ω ∧ [Y ] for all ω ∈ H2m−2(X).

Theorem B.89 will show how these concepts are related.

B.4 Chern Classes
B.4.1 Hermitian Vector Bundles and Connections
We have already covered connections in detail in section A.5 and we have talked about the Chern
connection on the tangent bundle of a complex manifold in section B.2. We can generalize this a bit,
but the following results should not be surprising after the previous discussion.
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Definition B.69. Let M be a differentiable manifold and Cr → E
π→ M a complex vector bundle. A

hermitian structure h on E is the smooth assignment of a hermitian scalar product hp on every fiber
E|p. The pair (E, h) is called a hermitian vector bundle.

Example B.70. In subsection B.2.1 we have seen that a Hermitian metric g on a complex manifold
induces a hermitian structure h : (v, w) 7→ h(v, w̄) on the holomorphic tangent bundle TX+.

Note. One can do Hodge theory on hermitian vector bundles over a hermitian manifold (X, g) in general.
Let us quickly fix the following notation: Ωr,s(X,E) = Ωr,s(X) ⊗ E in analogy to e.g. Hr,s

∂̄
(X,E).

Now define
∗̄ : Ωr,s(X,E)→ Ωm−r,m−s(X,E∗) (B.52)

by ∗̄(ω ⊗ s) = ∗ω ⊗ h(s, ·). With this definition we have η1 ∧ ∗̄η2 = 〈η1, η2〉 vol like in subsection A.2.3,
where 〈·, ·〉 is the inner product on Ωr,s(X) ⊗ E induced by the hermitian metric g and the hermitian
structure h. Again, this gives us a scalar product (η1, η2) =

∫
X
η1 ∧ ∗̄η2.

All this allows us to define a Laplacian ∆∂̄ on Ωr,s(X,E). We then get Hodge decomposition

Ωr,s
∂̄

(X,E) = ∂̄Ωr,s−1(X,E)⊕ ∂̄†Ωr,s+1(X,E)⊕Harmr,s

∂̄
(X,E) (B.53)

as well as an isomorphism

Harmr,s

∂̄
(X,E) ∼= Hr,s

∂̄
(X,E)

( ∼= Hs(X,E ⊗ ΩrX)
)
. (B.54)

Furthermore, Poincaré duality (theorem A.49) is generalized to Serre duality. Serre duality is based
on the map Λ : Hr,s

∂̄
(X,E)×Hm−r,m−s

∂̄
(X,E∗)→ C which is bilinear and non-degenerate. Thus,

Hr,s

∂̄
(X,E) ∼= Hm−r,m−s

∂̄
(X,E∗)∗ . (B.55)

This duality does not depend on g or h.

Definition B.71 (Hermitian Connection). A connection D on a hermitian vector bundle (E, h) is called
hermitian if it is compatible with the hermitian structure, i.e.

v[h(s1, s2)] = h(Dvs1, s2) + h(s1, Dvs2) . (B.56)

Example B.72. Say we have a hermitian manifold (X, g) with induced hermitian structure h on TX+

like in example B.70.
In general, a connection D on TX+ induces a connection on D′ on TX as follows: TX is locally

R-spanned by the basis {∂xµ , ∂yµ} and TX+ is locally R-spanned by the basis {∂µ, i∂µ}. We define the
isomorphism ξ : TX → TX+ as ∂xµ 7→ ∂µ and ∂yµ 7→ i∂µ. This can also be written in a coordinate-free
form:

ξ : TX → TX+, v 7→ 1
2 (v − iJ(v)) . (B.57)

This map induces the connection D′ on TX by requiring Dv(ξ ◦ w) = ξ ◦D′v(w).
If D is hermitian, the induced connection D′ is compatible with the Riemannian metric g (in the

sense of definitions A.80 and B.24).

Proof. A quick calculation shows that we can always rewrite g(v1, v2) as

g(v1, v2) = 2<
[
h(ξ ◦ v1, ξ ◦ v2)

]
.

All that’s left to do is taking the real part of both sides of the equation

v h(ξ ◦ v1, ξ ◦ v2) = h(ξ ◦D′vv1, ξ ◦ v2) + h(ξ ◦ v1, ξ ◦D′vv2) .

Definition B.73. Remember that a connection D on a holomorphic vector bundle π : E → X is a map
D : Ω0(X,E)→ Ω1(X,E) = Ω1,0(X,E)⊕ Ω0,1(X,E). Hence also the connection has two components:

D = D+ ⊕D− . (B.58)

The connection D is compatible with the holomorphic structure if D− = ∂̄. In local coordinates, D
can then be written in the form D = D0 +A for an A ∈ Ω1,0(X,End(E)).
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Example B.74. We return to the setting of example B.72. By example B.50, TX+ can be given the
structure of a holomorphic vector bundle over X.

A connection D on TX+ which is compatible with the holomorphic structure induces a connection
D′ on TXC which is compatible with the complex structure in the sense of definition B.24.

Proof. By definition, the vector potential A of D is a (1, 0)-form mapping TX+ → TX+. Let A′ be the
vector potential of the induced D′ (continued from TX to TXC), we know

A′(−)
µ

= ξ−1 ◦A(−)
µ
◦ ξ = 2<A(−)

µ
◦ ξ = A(−)

µ
◦ ξ +A(−)

µ
◦ ξ̄ .

Because A is a (1, 0)-form and Ā a (0, 1)-form, we see that A′µ = Aµ ◦ ξ and A′µ̄ = Āµ ◦ ξ̄. ξ is a projector
on TX+ and Aµ maps TX+ → TX+, also ξ̄ is a projector to TX− and Āµ maps TX− → TX−. The
claim follows directly.

Definition B.75 (Chern Connection). On a holomorphic vector bundle E with hermitian structure h,
there is exactly one connection that is compatible with both the hermitian and the holomorphic structure.
It is called the Chern connection D.

Lemma B.76 (Curvature of the Chern Connection).

i) Let D be a hermitian connection on a hermitian vector bundle. Then its curvature (seen as an
End(E)-valued 2-form) is skew-hermitian, i.e. h(F ·, ·) = −h(·, F ·) or F † = −F .

ii) Let D be a connection on a holomorphic vector bundle with D− = ∂̄. Then its curvature is a sum
of a (2, 0)- and a (1, 1)-form, but doesn’t have a (0, 2)-part.

iii) Hence, the curvature of the Chern connection D on a holomorphic hermitian bundle is a real, skew-
hermitian (1, 1)-form.

Proof. i) We calculate locally. According to theorem A.90, F = dA+A ∧A. Because D is hermitian,
A† = −A. The claim F † = −F follows using (A ∧A)† = −A† ∧A†.

ii) A is a (1, 0)-form and F = (∂̄A) + (∂A+A ∧A).

Let D again be the Chern connection on a holomorphic hermitian bundle. We already know that its
curvature FD is an element of Ω1,1(X,End(E)).

According to lemma A.87, dDFD = dFD + [A,F ]D and this has to be zero because of the Bianchi
identity (theorem A.91). Because A is a (1, 0)-form and FD a (1, 1)-form we see that ∂̄FD = 0. Therefore,
FD yields a cohomology class [FD] ∈ H1,1

∂̄
(X,End(E)) ∼= H1(X,ΩX ⊗ End(E)).

Definition B.77 (Atiyah Class). The Atiyah class of a holomorphic vector bundle E is a class

A(E) ∈ H1(X,ΩX ⊗ End(E)) . (B.59)

Let ϕi : Ui × Cr → E be local trivializations and ϕij = ϕ−1
i ◦ ϕj , then A(E) is given by the 1-cochain

ψij = ϕj ◦ (ϕij dϕ−1
ij ) ◦ ϕ−1

j .

The Atiyah class is of interest on its own, but here we only note that

Theorem B.78. On a holomorphic hermitian bundle, the Atiyah class A(E) is equal to [FD].

B.4.2 Invariant Polynomials
Definition B.79 (Invariant Polynomial). An invariant polyomial P is a k-multilinear symmetric map

P : gl(r,C)k → C (B.60)

with P (CB1C
−1, . . . , CBkC

−1) = P (B1, . . . , Bk) for all C ∈ GL(r,C). We’ll call the space of invariant
polynomials of k variables Ik(r).
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Given a complex vector bundle π : E → M of rank r, an invariant polynomial P naturally acts on
End(E)-valued forms as well:

P (ω1 ⊗ s1, . . . , ωk ⊗ sk) = ω1 ∧ · · · ∧ ωk P (s1, . . . , sk) . (B.61)

The polarized form P̃ of P is the map

P̃ : Ω2(M,End(E))→ Ω2k(M), (ω ⊗ s) 7→ P (ω ⊗ s, . . . , ω ⊗ s) . (B.62)

Lemma B.80.

i) A k-multilinear symmetric map P is an invariant polynomial if and only if for all B,B1, . . . , Bk ∈
gl(r,C):

k∑
j=1

P (B1, . . . , [B,Bj ], . . . , Bk) = 0 . (B.63)

ii) Let F be the curvature of an arbitrary connection D on E. Then P̃ (F ) is closed.

iii) If D and D′ are two connections on E, then [P̃ (FD)] = [P̃ (FD′)] in H2k(M).

Proof. i) Follows directly from the definition using C = eBt and differentiating.

ii) Remembering lemma A.87, we get

dP (F, . . . , F ) =
∑

P (F, . . . , dF, . . . , F ) =
∑

P (F, . . . , dDF − [A,F ], . . . , F ) = 0 .

(The first equality is just the usual Leibniz rule because d only acts on the forms.)

iii) Thanks to lemma A.78, D′ = D +A for a vector potential A. Let Dt = D + tA, its curvature Ft is
Ft = F + tdDA+ t2A ∧A. We write

P̃ (F ′)− P̃ (F ) =
∫ 1

0

d
dt P̃ (Ft) dt = k

∫ 1

0
P (dDA+ 2tA ∧A,Ft, . . . , Ft) dt

and see by a calculation that dP (A,Ft, . . . , Ft) = P (dDA,Ft, . . . , Ft) + 2tP (A∧A,Ft, . . . , Ft). This
shows that

P̃ (F ′)− P̃ (F ) = d
[
k

∫ 1

0
P (A,Ft, . . . , Ft) dt

]
.

Definition B.81. For a complex vector bundle E of rank r, there is a map χE : Ik(r)→ H2k(M) assign-
ing χE(P ) = [P̃ (FD)]. As we have shown, this is independent of the connection D. The homomorphism
χE is called Weil homomorphism.

Theorem B.82 (Naturality). Let f∗E be the pullback bundle defined in A.69.

χf∗EP = f∗ (χEP ) . (B.64)

Proof. If A is a vector potential on E, f∗A is a vector potential on f∗E (i.e. it satisfies (A.65)). The
associated curvature can be calculated to be f∗F . This proves the claim since P̃ (f∗F ) = f∗P̃ (F ).

An easy consequence is that the classes [χE(P )] are trivial if E is a trivial bundle, because trivial
bundles are isomorphic to pullback bundles of some {p} × F .
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B.4.3 Chern Classes and Characters
Definition B.83 (Chern Classes). We define invariant polynomials P1, . . . , Pr by

det(id +B) = 1 + P̃1(B) + · · ·+ P̃r(B) . (B.65)

(P̃k(B) is the part of the expansion with degree k. Note that fixing P̃k(B) uniquely determines an
invariant Pk such that P̃k(B) = Pk(B, . . . , B).)

The k-th Chern class ck(E) is

ck(E) =
[
P̃k

(
i

2πF
)]
∈ H2k(M) . (B.66)

The total Chern class is c(E) = 1 + c1(E) + · · ·+ cr(E) ∈ H(M).

Definition B.84 (Chern Characters). This time, we define the polynomials by

tr(eB) = r + P̃1(B) + P̃2(B) + · · · . (B.67)

Then the k-th Chern character is chk(E) =
[
P̃k
( i

2πF
)]
∈ H2k(M) and the total Chern character is

ch(E) = r + ch1(E) + ch2(E) + · · · .

Definition B.85 (Chern Classes of a Manifold). Let X be a complex manifold. We write

ck(X) = ck(TX+) (B.68)

and also chk(X) = chk(TX+).

Example B.86. By expanding det(id +B) = 1 + tr(B) + · · · we can read off the first few Chern classes:

c0(E) = 1, c1(E) = i
2π [trF ] , c2(E) = −1

2
1

(2π)2 [trF ∧ trF − tr(F ∧ F )] . (B.69)

For the Chern characters we find chk(E) = 1
k! tr

[ i
2π F

]k.
Lemma B.87 (Some Rules for Computing).

i) On a Whitney sum bundle, the total curvature is a direct sum of the curvatures of the individual
bundles. Since the determinant is multiplicative and the trace is additive, we immediately get

c(E1 ⊕ E2) = c(E1) ∧ c(E2) and ch(E1 ⊕ E2) = ch(E1) + ch(E2) . (B.70)

For example, c1(E1 ⊕E2) = c1(E1) + c1(E2) and c2(E1 ⊕E2) = c2(E1) + c2(E2) + c1(E1)∧ c1(E2).

ii) On a tensor product bundle E1 ⊗ E2 we get F = F1 ⊗ 1 + 1⊗ F2. Therefore,

ch(E1 ⊗ E2) = ch(E1) ∧ ch(E2) (B.71)

(because tr(A ⊗ B) = tr(A) tr(B)). A consequence is for example if E1 and E2 are line bundles,
c1(E1 ⊗ E2) = c1(E1) + c1(E2).

iii) On the dual bundle E∗, F ∗ = −FT and

ck(E∗) = (−1)k ck(E) and chk(E∗) = (−1)k chk(E) . (B.72)

iv) Finally, theorem B.82 tells us that

ck(f∗E) = f∗ ck(E) and chk(f∗E) = f∗ chk(E) . (B.73)
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Note. An important tool is the splitting principle: It can be shown that there is always a ring extension
A∗ ⊃ H∗(M) and elements γi ∈ A2 such that c(E) =

∏
i(1 + γi).

This means that the Chern classes of E essentially behave like those of
⊕

i Li where Li are line
bundles with chern class c(Li) = 1 + γi. To be more precise, we can always construct a pullback bundle
π∗E which is isomorphic to

⊕
i Li.

In other words, to prove a polynomial identity in the Chern classes of complex vector bundles, it
suffices to prove it under the assumption that the vector bundles are the Whitney sum of complex line
bundles. [63]

This is an example for such a proof:

2 ch2(E) = 1
(2π)2 tr(iF )2 = tr(diag(γ2

1 , . . . , γ
2
r )) =

∑
i

γ2
i

c1(E)2 − 2 c2(E) =
(∑

i

γi

)2

− 2
∑
i<j

(γi ∧ γj) =
∑
i

γ2
i .

Theorem B.88 (First Chern class of the Canonical Bundle).

c1(KX) = − c1(X) . (B.74)

Proof. Let γ1 . . . γr be the Chern roots of a complex vector bundle E. Then the Chern roots of ΛqE are
γi1 + · · ·+ γiq for all 1 ≤ i1 < · · · < iq ≤ r. Invoking the splitting principle this shows c1(detE) = c1(E)
in general. The theorem is proven by applying this to E = ΩX .

Theorem B.89 (Chern Classes of Hypersurfaces). Let Y ⊂ X be a smooth irreducible hypersurface and
i : Y → X the inclusion.

i) In that case,
i∗ c(X) = c(Y ) ∧ i∗ c(O(Y )) . (B.75)

By expanding, we get in particular c1(Y ) = i∗ (c1(X)− c1(O(Y ))).

ii) Let [Y ] ∈ H2(X) be the fundamental class of Y (see definition B.68). Then

c1(O(Y )) = [Y ] . (B.76)

Because of linearity, this also holds for divisors D =
∑
i aiYi in general: c1(O(D)) =

∑
i ai[Yi].

Proof. i) We rewrite the normal bundle sequence (B.42) using the resultNY/X ∼= O(Y )|Y from theorem
B.67. Now it looks like

0→ TY + → i∗TX+ → i∗O(Y )→ 0 . (B.77)

The claim follows directly from the fact that for a short exact sequence 0 → E → F → G → 0 of
holomorphic vector bundles,

c(F ) = c(E) ∧ c(G) . (B.78)

The reason is that we can view the sequence as a short exact sequence of complex vector bundles.
Such a sequence always splits, i.e. F ∼= E ⊕G with a smooth isomorphism. Chern classes only see
the complex and not the holomorphic structure, this finishes the proof.
Note that a short exact sequence of complex vector bundles always splits because we can use a
partition of unity. In general there is no holomorphic partition of unity though, so there might be
no holomorphic splitting.

ii) The proof is highly non-trivial. The basic idea is to choose some hermitian structure on the line
bundle O(Y ), let F be the curvature of its Chern connection. Now we have to prove

i
2π

∫
X

F ∧ ω =
∫
Y

ω
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for all closed real forms α. The left hand side is first converted into an integral over the boundary of
Dε using Stokes’ theorem A.45, where Dε is a kind of ε-neighborhood of Y . After some more work
we can then use the residue theorem to prove the claim. See [58, Prop. 4.4.13].

Note. On a line bundle L, we have several definitions of the first Chern class:

• The one we have used above, c1(L) = i
2π [P̃1(F )].

• As we have seen, this is equal to

c1(L) = i
2π [FD] = i

2πA(L) , (B.79)

where D is the Chern connection and A(L) the Atiyah class (definition B.77) of the line bundle.

• Another possibility is as follows: The exponential sequence

0→ Z→ OX
f 7→exp(2πi f)−−−−−−−−−→ O∗X → 0 (B.80)

is a short exact sequence of sheaves. This induces a long exact sequence in homology,

· · · → Pic(X) ∼= H1(X,O∗X) δ→ H2(X,Z)→ · · · .

There is a natural homomorphism from H2(X,Z) to H2(X,C) = H2(X) and it turns out that

c1(L) = −δ(L) . (B.81)

Definition B.90. The canonical class KX of X is KX = c1(KX), and the anticanonical class is K̄X =
c1(K̄X). Theorems B.88 and B.89 tell us that

K̄X = c1(X) (B.82)

B.4.4 Calabi-Yau Manifolds
Note. For literature, see also [59, Ch. 1.2], [22, Ch. 14] and [64, Ch. 9].

Motivation. From a physics perspective, we are interested in compact complex manifolds. They are
used for string compactification where the e.g. 10-dimensional spacetimeM10 on which the string degrees
of freedom live is of product form: M10 = R1,3×M6. The “internal” compact manifoldM6 determines
the effective theory in R1,3 at low energies.

We want this effective theory to have N = 1 supersymmetry. It can be shown that a necessary
condition for supersymmetry is the existence of a globally defined, covariant constant spinor field onM6
(see section 3.3). A necessary condition for this in turn is thatM6 is a Ricci-flat Kähler manifold.

On the other hand, there is a sufficient condition for N = 1 supersymmetry involving the holonomy
ofM6. We have not defined holonomy yet but will make up for this in definition B.91. The mentioned
sufficient condition is that the holonomy group of M6 (which is a 3-complex dimensional manifold, as
we know now) is exactly SU(3). We will now investigate the relation between those conditions and in
passing define Calabi-Yau manifolds.

Definition B.91 (Holonomy). Let π : E →M be a vector bundle, D a connection on it and p ∈M . A
loop γ : [0, 1] → M based at p (i.e. γ(0) = γ(1) = p) defines an element Gγ ∈ GL(E|x) : Gγ maps a
vector v ∈ E|x to the result of parallel transporting v around the loop γ with respect to D.

The (global) holonomy group of D is

Hol(D) = {Gγ} ⊂ GL(dimE) , (B.83)

this is (up to an isomorphism) independent of p ∈M .
The local holonomy group Hol∗p(D) is the subgroup coming from infinitesimal contractible loops γ

(i.e. the direct limit of making those loops smaller and smaller). The local holonomy group is contained
in the connected component of Hol(D) containing the identity.
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Note. We define the holonomy of a Riemannian manifold (M, g) to be that of its Levi-Civita connection.
M is orientable if and only if its holonomy group is contained in SO(dimM).
M admits a complex structure such that (M, g) is Kähler if and only if it is even dimensional and its
holonomy group is contained in U(dimM/2).

Lemma B.92. Let X be a compact Kähler manifold of complex dimension m. Then the following
conditions are equivalent:

i) X admits a Kähler metric such that the local holonomy is contained in SU(m).

ii) X admits a Ricci-flat Kähler metric.

iii) The first Chern class c1(X) vanishes.

Some authors then call X a Calabi-Yau manifold.

Proof. For the equivalence between i) and ii), we consider a vector v ∈ TpX+ and an infinitesimal loop
γ based at p. Under parallel transport it changes as

∆vρ =
(∮

γ

xµ dx̄ν
)
Rρσ µν̄v

σ .

Having used theorem B.35 we see that holomorphic vectors are only mapped to holomorphic vectors2

and the local holonomy must be contained in U(m) (as noted above). The trace of the matrix acting on
v corresponds to the u(1) part in u(m) = su(m) ⊕ u(1). According to theorem B.35 it vanishes if and
only if Ric = 0.

The implication ii) ⇒ iii) is also clear from theorem B.35. The other direction is very non-trivial, it
is the content of the Calabi-Yau theorem [58, Cor. 4.B.22].

We know that c1(KX) = − c1(X) (theorem B.88), so if c1(X) = 0 then also c1(KX) = 0. This does
not imply that KX is trivial, but if on the other hand KX is trivial then c1(X) = 0.

Lemma B.93. Let X be a compact Kähler manifold of complex dimension m. The following conditions
are equivalent and stronger3 than the conditions in lemma B.92:

i) KX is trivial.

ii) X has a holomorphic m-form that vanishes nowhere.

iii) X admits a Kähler metric such that the global holonomy is contained in SU(m).

Some authors then call X a Calabi-Yau manifold.

Proof. The equivalence i) ⇔ ii) is a direct consequence of example B.49.
The implication iii) ⇒ ii) can be seen by explicitly constructing such a holomorphic m-form: Just

take a m-vector ω in ΛmTX+ at some point p. The form at point q is ω parallel transported from p to
q, this is independent of the path because ω transforms trivially under SU(m).

On the other hand, a holomorphic m-form must always be covariantly constant. Such a form can only
by defined globally if the global holonomy is contained in SU(m), because otherwise it doesn’t transform
as a singlet.

We use an even more restrictive definition of a Calabi-Yau manifold, because we want a compactifi-
cation on a Calabi-Yau manifold to yield N = 1 supersymmetry:

Definition B.94 (Calabi-Yau Manifold). A Calabi-Yau manifold or CY m-fold is a compact Kähler
manifold with global holonomy equal to SU(m). [65]

Theorem B.95. In a manifold like in B.93,
2 This was also already clear because the Chern connection is compatible with the complex structure.
3 If X is simply connected, they are equivalent.
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i) bm,0 = b0,m = 1.

ii) br,0 = bm−r,0 and b0,s = b0,m−s.

iii) If the manifold is CY (according to the definition above), additionally br,0 = 0 for 0 < r < m.

Proof. i) The nowhere vanishing holomorphic m-form is unique: Two such forms Ω and Ω′ would be
related by Ω′ = fΩ with f holomorphic. But, as noted after definition B.6, a holomorphic function
on a compact manifold is constant.

ii) Let α = 1
r!αµ1...µr dzµ1 ∧ · · · ∧ dzµr be a ∂̄-harmonic (r, 0)-form (see theorem B.37). Define now the

(0,m− r)-form β by βν̄r+1...jm = 1
(m−r)! Ω̄j̄1...j̄m

αj̄1...j̄r . One can show that β is ∂̄-harmonic and this
is an isomorphism.

iii) Take a harmonic representative α of Hr,0
∂̄

(X). From the facts that X is Ricci-flat and compact, one
shows that α needs to be covariantly constant. Hence, it should transform as a singlet under the
holonomy group, but it transforms as the Λrm which only contains a singlet if r = 0 or r = m.

Example B.96 (CY Threefold). Combining this with theorem B.40, the Hodge diamond of e.g. a
Calabi-Yau threefold looks as follows:

1
0 0

0 b1,1 0
1 b2,1 b2,1 1

0 b1,1 0
0 0

1


. (B.84)

Example B.97 (CY 4-Fold). We will also need the Hodge diamond of a CY 4-fold, it is

1
0 0

0 b1,1 0
0 b2,1 b2,1 0

1 b3,1 b2,2 b3,1 1
0 b2,1 b2,1 0

0 b1,1 0
0 0

1


. (B.85)

There are only three independent Hodge numbers because (without proof)

b2,2 = 2
(
22 + 2b1,1 + 2b3,1 − b2,1

)
. (B.86)
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Appendix C

Projective Geometry

Note. Literature: [58], [59, Ch. 1 - 6] and [48, Ch. 1.3].

C.1 Basics
We have already defined defined complex projective spaces in example B.4. In example B.31 we saw
that they are Kähler manifolds. Furthermore, we already know that all projective manifolds are Kähler
manifolds (see theorem B.33).

In this chapter we will study projective spaces in much more detail. We will use the notation

Pn = CPn . (C.1)

Let’s start by stating a few results about their cohomology:

Theorem C.1 (Hodge Diamond). The Hodge numbers of Pn are bp,q = 1 if p = q ≤ n and bp,q = 0
otherwise. For example, the Hodge diamond of P2 looks like this:

1
0 0

0 1 0
0 0

1

 . (C.2)

Proof. With the methods shown in subsection A.3.2, one can calculate the homology of Pn: One trian-
gulates P1 and then gets the homology of Pn by induction, using the Mayer-Vietoris sequence [57]. The
result is that H2k(Pn, R) = R (for 0 ≤ k ≤ n and R ∈ {Z,R}) and all others are zero.

We see that b2k = 1 for 0 ≤ k ≤ n and b2k+1 = 0. That means that the rows in the Hodge diamond
have to add up to 1 or 0 alternatingly. Because of the symmetries (theorem B.37), this is only possible
if the Hodge diamond looks like claimed above.

Lemma C.2. The cohomology classes H2k(Pn,Z) = Hk,k

∂̄
(Pn,Z) ∼= Z are generated by the fundamental

classes of (n− k)-dimensional planes Pn−k ⊂ Pn.
This means that if [V ] ∈ H2k(Pn,Z), then [V ] = d [Pn−k] for some d ∈ Z. We usually just write

[V ] = d.

C.1.1 The Tautological Line Bundle
Definition C.3. We first define the holomorphic line bundle

O(−1) = {(`, z) ∈ Pn × Cn+1 : z ∈ `} (C.3)

(the notation ` ∈ Pn hints at the fact that a equivalence class in Pn is a line in Cn+1).
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The projection is simply π : (`, z) 7→ `. Over a chart1 Ui we have a canonical trivialization ϕ−1
i :

O(−1)|Ui → Ui × C given by ϕ−1
i (`, z) = (`, zi). This means that on Ui ∩ Uj , the transition functions

are gij = zi
zj
.

Definition C.4 (Tautological Line Bundle). The dual bundle of O(−1) is the tautological line bundle
O(1). We define O(k) = O(1)⊗k for k > 0, O(k) = O(−1)⊗(−k) for k < 0 and O(0) = O. This is a
homomorphism O : Z→ Pic(Pn).

Note. By definition, O(−1) is embedded in O⊕(n+1) = Pn × Cn+1. A coordinate zi can be seen as a
linear map from O⊕(n+1) to O. Restricting it to O(−1) it is also a holomorphic map from O(−1)→ O.
Consequently it is a global section of O(−1)∗ = O(1).

In more generality, O(−k) can be embedded in Pn ×
(
Cn+1)⊗k. A polynomial Ps ∈ C[z0 . . . zn]k of

the coordinates that is homogeneous of degree k gives rise to a holomorphic map from O(−k)→ O. We
associate to it a global holomorphic section s of O(k).

Theorem C.5 (Sections of O(k)). For k ≥ 0, the space C[z0 . . . zn]k is canonically isomorphic to the
global sections of O(k), H0(Pn,O(k)).

Proof. The given map C[z0 . . . zn]k → H0(Pn,O(k)) is obviously linear. It is also injective because
π2 : O(−k)→

(
Cn+1)⊗k is surjective – therefore, a polynomial inducing the trivial map has to be zero.

The idea for proving surjectivity is to first fix a global holomorphic section s of O(k) induced by a
polynomial Ps. Given another global holomorphic section t, the quotient t/s is a meromorphic function
on Pn. Let π : Cn+1\{0} → Pn and G = Ps ·(π◦(t/s)). G can be continued to a holomorphic function on
Cn+1. It is also obviously of degree k, hence a polynomial. G is mapped to t which proves surjectivity.
Details: [58, Prop. 2.4.1] or [48, Ch. 1.3].

C.1.2 Divisors
Definition C.6 (Algebraic Variety). An algebraic variety V ⊂ Pn is the zero set (locus) of a collection
of homogeneous polynomials {Fα(z0, . . . , zn)}.

Note. It makes sense to talk about the vanishing locus of a homogeneous polynomial in the coordinates
because F (z0, . . . , zn) = 0 if and only if F (λz0, . . . , λzn) = 0. Equivalently, the zero set of the polynomial
can be described as the zero set of the corresponding global section of O(deg f).
Note. The zero locus of a polynomial F in projective space is usually written as V (F ).

Theorem C.7 (Chow). Obviously, algebraic varieties are analytic subvarieties of Pn.
On the other hand, any analytic subvariety of Pn is algebraic.

Proof. Omitted, see [48, Ch. 1.3].

Definition C.8 (Degree of a Hypersurface). Let Y be an irreducible hypersurface, by theorem C.7 it is
given as the zero locus of an irreducible homogeneous polynomial of degree d. The degree deg Y of the
hypersurface is equal to the degree of the polynomial:

deg Y = d . (C.4)

Note. Irreducibility of the polynomial is crucial here, otherwise the value of the degree could not be
unique. If we allow reducible polynomials, we have to consider its zero locus as a divisor instead of just
as an algebraic variety: Let F be irreducible with zero locus Y , then the zero locus of F 2 is 2Y . This is
what the map ZL defined in theorem B.65 does.

Theorem C.9 (Divisors of Projective Space).

i) Up to linear equivalence, Div(Pn) has only one generator:

Div(Pn)/∼ ∼= Z . (C.5)
1 We will name the charts Ui and the homogeneous coordinates zi, differing from Uµ and zµ in example B.4.
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ii) The isomorphism is given by deg : Div(Pn)→ Z,
∑
i aiYi 7→

∑
i ai deg(Yi) which factorizes over ∼.

iii) Let Y be a hyperplane, meaning that Y is an irreducible hypersurface of degree 1 (in other words
Y ∼= Pn−1 ⊂ Pn). Then, O(Y ) = O(1) such that

Div(Pn)/∼ Z

Pic(Pn)

................................................................................................................................................................................................................................................................ ............
deg

................................................................................................................................................................................................................................................................ ............∼
............................................................................................................. .........

...

O .............................................................................................................
...
............

O commutes. (C.6)

Proof. Parts i) and ii) follow from the insight that a divisor D is principal if and only if degD = 0. The
proof of this fact is somewhat technical, we will skip it here.

For part iii) consider e.g. the hyperplane Y = (z0). On a chart Ui it is the zero set of the function
fi = x0

xi
∈ K∗Pn(Ui). This cochain is by lemma B.61 the corresponding element in H0(Pn,K∗Pn/O∗Pn). By

definition, O(Y ) is the line bundle with transition functions f−1
i · fj = zj

zi
, this is O(1) by definition

C.4.

Note. This gives us an understanding for theorem C.7 in the special case where the analytic subvariety
is a hypersurface Y : Y is an effective divisor, therefore Y is in the image of ZO(Y ) by lemma B.66. By
theorem C.9, O(Y ) is of the form O(k) the sections of which are homogeneous polynomials according to
theorem C.5.

C.1.3 Chern Classes and Line Bundles
Theorem C.10 (Canonical Bundle of Projective Space).

KPn ∼= O(−n− 1) . (C.7)

Proof. Calculation shows that the transition functions of KPn are gij = (−1)i−j
(
zi
zj

)n+1
. This is in the

same cochain class like the transition functions g̃ij =
(
zi
zj

)n+1
of O(−n− 1).

As mentioned before, for a short exact sequence 0→ E → F → G→ 0 of holomorphic vector bundles,
detF ∼= detE ⊗ detG. Therefore we could have proven theorem C.10 as well with the Euler sequence:

Theorem C.11 (Euler Sequence). On Pn there exists the following short exact sequence of holomorphic
vector bundles:

0→ O → O(1)⊕(n+1) → T (Pn)+ → 0 (C.8)

where the inclusion O → O(1)⊕(n+1) is the twisted version of the inclusion O(−1) ⊂ O⊕(n+1) we have
already seen above.

Proof. Omitted, see [58, Prop. 2.4.4]

We now come to the Chern classes of the line bundles O(k). Let Y ⊂ Pn be a hyperplane, then we
know from theorem C.9 that O(Y ) = O(1). Theorem B.89 tells us directly that

c1(O(1)) = [Y ] = 1 . (C.9)

Definition C.12. In the following, we will call this fundamental class J :

J = c1(O(1)) . (C.10)

As before, we will set J = 1 when it is clear from the context.
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Theorem C.13. The first Chern classes of the Bundles O(k) are

c1(O(k)) = c1
(
O(1)⊗k

)
= k c1(O(1)) = k . (C.11)

Because O(k) are line bundles, this means c(O(k)) = 1 + kJ .
In particular, theorem C.10 implies

c1(Pn) = −c1(KPn) = −c1(O(−n− 1)) = n+ 1 . (C.12)

Note. We can explicitly compute c1(O(1)). Remember that c1(L) = 2π
i [F ] for F the curvature of any

connection on L.
A hermitian structure on a line bundle is just a scalar positive function h. In this case, the curvature

of the Chern connection can be calculated to be FD = −∂∂̄ log(h) [58, Ex. 4.3.9].
On line bundles, there exists a natural hermitian structure [58, Ex. 4.1.2]. For O(1) it is given on

the chart Ui by h[z0 : · · · : zn] =
∑
j

∣∣∣ zjzi ∣∣∣2. Comparing this to the Kähler form ωFS of example B.31 this
shows that

FD = 2π
i ωFS . (C.13)

Explicit calculation shows easily that
∫
P1 ωFS = 1, and therefore∫

P1
J = 1 . (C.14)

It is possible to define Chern classes axiomatically, (C.14) then serves as the normalization axiom.2

Now we have found the total Chern classes of O(k) and the first Chern class of Pn. We are still
missing the total Chern class of Pn, however.

Theorem C.14 (Total Chern Class of Projective Space).

c(Pn) = c(O(1))n+1 = (1 + J)n+1 =
n+1∑
k=0

(
n+ 1
k

)
Jk . (C.15)

Proof. The proof is based on the Euler sequence (theorem C.11). We already used in the proof of B.89
that for 0 → E → F → G → 0, c(F ) = c(E) ∧ c(G). Applying this to the Euler sequence proves the
claim.

We close this subsection by finishing our analysis of line bundles: The line bundles O(k) are, in fact,
all holomorphic line bundles over projective space.

Theorem C.15 (Line Bundles of Projective Space).

Pic(Pn) ∼= Z (C.16)

and O : Z→ Pic(Pn) is an isomorphism.

Proof. We first prove that Pic(Pn) ∼= Z. We use the exponential sequence 0 → Z → OPn → O∗Pn → 0
(see (B.80)). It induces a long sequence in homology:

· · · −−−−→ H1(Pn,OPn) −−−−→ H1(Pn,O∗Pn) c1−−−−→ H2(Pn,Z) −−−−→ H2(Pn,OPn) −−−−→ · · ·∥∥∥ ∥∥∥ ∥∥∥ ∥∥∥
H0,1
∂̄

(Pn) = 0 −−−−→ Pic(Pn) −−−−→ Z −−−−→ H0,2
∂̄

(Pn) = 0
(C.17)

and its exactness proves the claim.
From Pic(Pn) ∼= Z we immediately get that O is injective. In order to prove surjectivity we claim

that, for L ∈ Pic(Pn), if c1(L) = d then O(d) = L. This follows from theorem B.89 and from injectivity
of c1, because c1(O(d)) = d = c1(L).

2 The other axioms are c0(E) = 1, naturality (lemma B.87 v)) and the sum formula (lemma B.87 i)).
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C.1.4 Complete Intersections
Definition C.16 (Degree of an Algebraic Variety). Let V ⊂ Pn be an algebraic variety given by k
polynomials. Its fundamental class [V ] lies in H2k(Pn,Z) ∼= Z (see theorem C.1).

According to lemma C.2, [V ] = d for some d ∈ Z. We call d the degree of the variety:

deg V = d . (C.18)

Lemma C.17. Definitions C.8 and C.16 agree.

Proof. Let Y be a hypersurface, we know from theorem C.9 that O(Y ) = O(deg Y ) (using definition
C.8). Therefore, using theorems B.89 and C.13, [Y ] = c1(O(Y )) = c1(O(deg Y )) = deg Y .

Theorem C.18 (Canonical Bundle of a Hypersurface). Let Y ⊂ Pn be a hypersurface of degree d. Then

KY = O(d− n− 1)|Y . (C.19)

Proof. The claim follows directly from the adjunction formula B.67, because we know O(Y ) = O(d) and
KPn = O(−n− 1).

Theorem C.19 (Chern Class of a Hypersurface). We directly see c1(Y ) = n+ 1− d. The total Chern
class is

c(Y ) = (1 + J)n+1

1 + dJ
. (C.20)

The fraction is to be understood in a symbolic way using Taylor expansion.

Proof. This follows directly from theorem B.89.

What we have done so far for hypersurfaces can be extended to so-called complete intersections:

Definition C.20 (Complete Intersection). Let F1, . . . , Fk be irreducible homogeneous polynomials of
degrees deg(Fi) in the coordinates z0, . . . , zn. Let X be the locus in Pn given by the intersection of their
zero sets,

X = V (F1) ∩ · · · ∩ V (Fk) . (C.21)

We further require that 0 is a regular value of (f1, . . . , fk) : Cn+1\{0} → Ck. Then X is a complex
submanifold of dimension n− k, we say that X is a complete intersection.

Alternatively, a complete intersection is an algebraic variety V of dimension k where the ideal of
homogeneous polynomials vanishing on V is generated by exactly (n− k) elements.

Theorem C.21 (Canonical Bundle of a Complete Intersection). Let V = V (F1)∩· · ·∩V (Fk) ⊂ Pn be a
complete intersection and qa = degFa the degrees of the defining polynomials. Then its canonical bundle
is

KV = O
(

k∑
a=1

qa − n− 1
)∣∣∣∣∣

V

. (C.22)

Theorem C.22 (Chern Class of a Complete Intersection). We directly see c1(V ) = n + 1 −
∑k
α=1 qa.

The total Chern class is

c(V ) = (1 + J)n+1∏k
α=1(1 + qaJ)

. (C.23)

Proof. One way to understand this is that V is the zero locus of a section of
⊕k

a=1O(qa) and the Chern
class of a direct sum is the (wedge) product of the individual Chern classes.
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C.1.5 Projective Calabi-Yau 3-Folds
From the physics point of view, we are mostly interested in Calabi-Yau 3-folds. Here we will try to
construct some which are submanifolds of projective space. The first attempt could be to realize the CY
as a hypersurface in projective space – in order to get a 3-fold we take P4. According to theorem C.19,
the Calabi-Yau condition is satisfied for d = 5:

Theorem C.23. A quintic hypersurface in P4 is Calabi-Yau.

We follow the notation of [59] and denote it by
[
4 5

]
.

Definition C.24 (Configuration Matrix). The family of complete intersections in Pn defined by poly-
nomials of degrees q1, . . . , qk is denoted by the configuration matrix[

n q1 · · · qk
]
. (C.24)

Note. The reason for this notation will become clear in section C.2.

Theorem C.25. A Calabi-Yau 3-fold can be realized as a complete intersection in projective space in
five ways:

1. A quintic in P4:
[
4 5

]
.

2. An intersection of a quadric and a quartic in P5:
[
5 2 4

]
.

3. An intersection of two cubics in P5:
[
5 3 3

]
.

4. An intersection of two quadrics and a cubic in P6:
[
6 2 2 3

]
.

5. An intersection of four quadrics in P7:
[
7 2 2 2 2

]
.

Proof. It is easy to see in the configuration matrix: We want a threefold, so the number of columns in
the right part needs to be n− 3. For the CY condition, those columns have to sum up to n+ 1. Finally,
the entries need to be natural numbers greater than 1 (because e.g.

[
5 1 5

]
=
[
4 5

]
).

Definition C.26 (Euler Characteristic). The Euler characteristic χE of a manifold M is given by

χE(M) =
dimM∑
q=0

(−1)qbq . (C.25)

For a CY 3-fold X this means χE(X) = 2(b1,1 − b2,1) (see the Hodge diamond in example B.96).
For a CY 4-fold Y this means χE(Y ) = 6(b1,1 + b3,1 − b2,1) (see the Hodge diamond in example B.97).

Note. For a simplicial complex K, let Iq be the number of q-simplexes in the complex. Then we define
χE(K) =

∑dimK
q=0 (−1)qIq which is a generalization of the formula “vertices−edges+faces” for polyhedra.

The Euler-Poincaré theorem shows that those definitions agree [54, Thm. 3.7].

Lemma C.27 (Calculating the Euler Characteristic). Let V ⊂ Pn be a CY 3-fold.

i) The Gauss-Bonnet theorem tells us that χE(V ) =
∫
V

c3(V ) [54, Ch. 11.4.2]

ii) It is important to remember that
∫
V
ω =

∫
Pn [V ] ∧ ω.

iii) (C.14) can be generalized to
∫
Pn J

n = 1.

Example C.28 (Euler Characteristic of the Quintic). Let V ∈
[
4 5

]
. We need its third Chern class

and its fundamental class.
c3(V ) can be calculated from theorem C.19, expanding the fraction and taking the J3 terms. The

result is c3(V ) =
[(5

3
)
− 5
(5

2
)

+ 25
(5

1
)
− 125

(5
0
)]
J3 = −40J3.

For the fundamental class we remember that [V ] = c1(O(V )) = c1(O(5)) = 5J .
Thus

χE(
[
4 5

]
) =

∫
P4

5J ∧ (−40J3) = −200 . (C.26)
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Example C.29. Let’s also calculate the Euler characteristic of V ∈
[
5 2 4

]
. The third Chern class is

c3(V ) = −22J3.
Theorem B.89 is at first glance insufficient for calculating [V ] because it is only valid for hypersurfaces.

However, we can apply it iteratively: V is the zero set of a section of O(2) ⊕ O(4) and hence its
fundamental class is [V ] = 2J ∧ 4J = 8J2.

Resulting in
χE(

[
5 2 4

]
) = −22 · 8 = −176 . (C.27)

We need one more ingredient in order to compute the Hodge numbers of our Calabi-Yaus:
Theorem C.30 (Lefshetz Hyperplane Theorem). Let X be a compact complex manifold and Y ⊂ X
a smooth hypersurface such that O(Y ) is a positive line bundle. (A line bundle is positive if there is a
metric such that its curvature is a positive form, or equivalently, if its first Chern class has a positive
representative.)

The map i∗ : Hq(X)→ Hq(Y ) is an isomorphism for q < dimC Y and injective for q = dimC Y .
Proof. Omitted, see [48, Ch. 1.2] or [58, Prop. 5.2.6].

Note. In this context, ample line bundles are sometimes mentioned. Ampleness is another property line
bundles can have, see [58, Def. 2.3.28]. The Kodaira embedding theorem tells us that over a compact
Kähler manifold, line bundles are ample if and only if they are positive [58, Prop. 5.3.1].

We can apply the Lefshetz hyperplane theorem because O(1) in Pn is a positive bundle, and its powers
are as well. In our case, we can apply this theorem several times until we arrive at our Calabi-Yau, and
see that b1,1 doesn’t change along the way. Thus b1,1 = 1 for all our complete intersections and b2,1 can
be computed from b1,1 and χE . Summarizing:

Label b1,1 b2,1 χE[
4 5

]
1 101 −200[

5 2 4
]

1 89 −176[
5 3 3

]
1 73 −144[

6 2 2 3
]

1 73 −144[
7 2 2 2 2

]
1 65 −128

Taken from [59, Table 1.1].

C.2 Constructing Calabi-Yaus
C.2.1 Products of Projective Spaces
We want to consider complete intersections in the embedding space X = Pn1

1 ×· · ·×Pnmm . A hypersurface
in X is given as the zero locus of a polynomial which can have different degrees qr of homogeneity in the
coordinates of the individual Pnrr . Such a polynomial is a section of the line bundle

⊗
rOr(qr).

A complete intersection is the intersection of k such hypersurfaces, in other words the zero locus of
a section of

k⊕
a=1

(
m⊗
r=1
Or(qra)

)
. (C.28)

Definition C.31 (Configuration Matrix). The degrees of homogeneity of the defining polynomials are
written as the configuration matrix of the respective complete intersection. It looks like this:

[
n q

]
=

n1 q1
1 · · · q1

k
...

...
. . .

...
nm qm1 · · · qmk

 . (C.29)

Such a configuration matrix stands for the set of all complete intersections with the given degrees.
This is obviously a generalization of definition C.24.
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1 > q [ 1 ] [ 1 ] := 2 ; q [ 1 ] [ 2 ] := 2 ; q [ 1 ] [ 3 ] := 0 ; q [ 2 ] [ 1 ] := 1 ; q [ 2 ] [ 2 ] := 1 ; q [ 2 ] [ 3 ] := 2
2 > Coefficient [
3 Sum[−1/3 ∗ q [ a ] [ r ]∗ q [ a ] [ s ]∗ q [ a ] [ t ] ∗ J [ r ]∗ J [ s ]∗ J [ t ] ,
4 {a , 1 , 2 } , {r , 1 , 3 } , {s , 1 , 3 } , {t , 1 , 3 } ] ∗
5 Product [Sum[ q [ a ] [ p ]∗ J [ p ] , {p , 1 , 3 } ] , {a , 1 , 2 } ] ,
6 J [ 1 ] ^ 2 J [ 2 ] ^ 2 J [ 3 ] ]
7 < −96

Listing C.1: Calculating the Euler characteristic in example C.36 using Mathematica.

Example C.32. A complete intersection with configuration matrix[
3 3 0 1
3 0 3 1

]
(C.30)

is the intersection of three hypersurfaces in P3
1×P3

2. The first is given by a polynomial of degree 3 in the
coordinates x of P3

1 only: fabcxaxbxc = 0. Similarly, the second hypersurface is given by a polynomial
of degree 3 in the coordinates y of P3

2 only: gαβγyαyβyγ = 0. The polynomial defining the third is of
degree 1 in both coordinate sets: haαxayα = 0.

Theorem C.33 (Chern Classes). Let Jr be the hyperplane classes of the individual spaces Pnrr . Then

c
[
n q

]
=
∏
r(1 + Jr)nr+1∏
a(1 +

∑
r q

r
aJr)

. (C.31)

The first Chern classes are c1
[
n q

]
=
∑
r (nr + 1−

∑
a q

r
a) Jr.

We see that the complete intersection is Calabi-Yau if∑
a

qra = nr + 1 (C.32)

for all rows r. Sometimes we are interested in cases which have an inequality “<” instead of the “=”
because such subvarieties have positive hyperplane bundles, similar to projective space.

Definition C.34. A configuration with
∑
a q

r
a < nr + 1 for all r is called ample.

A configuration with
∑
a q

r
a ≤ nr + 1 for all r, with a strict inequality for at least one r, is called

almost ample.

Theorem C.35 (Euler Characteristic). With the methods detailed above, we calculate for a Calabi-Yau
complete intersection:

χE
[
n q

]
=
[∑
r,s,t

1
3

(
δrst(nr + 1)−

∑
a

qraq
s
aq
t
a

)
JrJsJt ·

∧
a

(
m∑
p=1

qpaJp

)]
top

, (C.33)

“top” meaning the coefficient of
∏
r J

nr
r .

Example C.36. We’ll consider a complete intersection

V ∈

2 2 1
2 2 1
1 0 2

 . (C.34)

It is tedious but straightforward to calculate χE = −96 from (C.33), see listing C.1.
In order to calculate b1,1, we want to apply the Lefshetz hyperplane theorem again. This is a bit

tricky here because of the requirement that O(Y ) is positive. As described in [59, Ch. 2.4.1], it works
for example when the configuration is favourable (which is a certain condition on the location of zeroes
in the matrix).
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The configuration we are investigating here is favourable, we have to start with the first column and

calculate the Hodge numbers of Ṽ ∈
[
2 2
2 2

]
. With the Künneth formula

bq(X × Y ) =
q∑
p=0

bq−p(X)bp(Y ) (C.35)

we get b2q+1(P2×P2) = 0 and b2q(P2×P2) = (1, 2, 3, 2, 1). Because of the hyperplane theorem, bq(Ṽ ) =
bq(P2 × P2) for q < 3. This suffices to calculate b2(Ṽ × P1) = 3, by the hyperplane theorem also
b2(V ) = b1,1(V ) = 3.

Summarizing: χE = −96, b1,1 = 3 and b2,1 = b1,1 − 1
2χE = 51.

As seen in example C.32, one configuration matrix stands for a large class of varieties. An important
results states that most of them are non-singular and deduces that they are all essentially identical:

Theorem C.37 (Bertini). A generic element of a linear system is smooth (away from the base locus3

of the system).
Since the set of constraints leading to non-singular Calabi-Yaus is connected, all smooth manifolds

belonging to one configuration can be smoothly deformed into each other.

Proof. This can be proven by counting the number of constraints and of degrees of freedom.
Take for example the quintic in P4 given by F (z) = fabcdezazbzczdze = 0. As described in [59, Ch.

2.2.1], the parameter space M of coefficients fabcde is 101-dimensional. Let z ∈ P4 be a single point.
The manifold described by F is singular in z if F (z) = 0 and dF (z) = 0, actually only 5 of those 6
conditions are independent. Therefore the parameter space M]

z of coefficients leading to manifolds with
a singularity in z has dimM]

z = dimM− 5.
Now the dimension of the space M] of parameters leading to manifolds with a singularity somewhere

is dimM] = dimM]
z + dimP4 = dimM− 1, one dimension less than the total parameter space.

Note. A large part of chapter 2 of [59] is devoted to classifying CY complete intersections in product
projective spaces. Following theorem C.37, we only have to classify configuration matrices (and still
different configuration matrices can lead to isomorphic CY spaces).

For the classification we can first exclude “boring” cases like a block-diagonal configuration matrix, or
one with a column that only contains a single “1” somewhere. Going on, [59] introduce a diagrammatic
notation for configuration matrices: Draw a hollow circle with nr + 1 legs for each row r and a dot for
each column. Connect then qra of the legs of the circle r to the dot a.

With the help of some rules for simplifying such diagrams, they finally arrive at the result: There
are some 97, 000 different minimal configurations with over 6, 000 topologically distinct CY 3-folds.

C.2.2 Blowing Up
An important technique for constructing new complex manifolds is blowing up. Blowing up an n-
dimensional manifold in a point essentially means to replace that point with Pn−1.

Definition C.38 (Blow-Up). Let X be an n-dimensional complex manifold and x ∈ X. There exists a
complex manifold X̂, called the blow-up of X in x, together with a holomorphic map σ : X̂ → X such
that

i) the exceptional divisor E = σ−1(x) is isomorphic to Pn−1, and

ii) X̂\E and X\{x} are isomorphic via σ.

3 In our case that is the locus where all possible choices of the defining polynomial vanish. Note that for simple cases
like the quintic in P4, the base locus is empty.

121



APPENDIX C. PROJECTIVE GEOMETRY

Example C.39. Consider OPn−1(−1) = {(`, x) ∈ Pn−1 × Cn : x ∈ `} as a complex manifold together
with the projection σ : O(−1)→ Cn (i.e. σ(`, x) = x). This is the blow-up of Cn in 0.

Note that we can also write this as

Ĉn = {(x, z) ∈ Cn × Pn−1 : xizj = xjzi for all 0 ≤ i, j < n} (C.36)

where zi are the homogeneous coordinates of Pn−1 and xi the coordinates of Cn.

Note. This example makes it clear how we can construct the blow-up in general: Blowing up is a local
operation and the complex manifold X always looks like Cn in a neighborhood of x.
Note. More generally, one can also define the blow-up along a linear subspace Y ⊂ X. Let for example
X = Cn (with coordinates x0, . . . , xn−1 like before) and Y = Ck = {x ∈ Cn : xk = · · · = xn−1 = 0}.
Then the blow-up of X along Y is

{(x, z) ∈ Cn × Pn−k−1 : xizj = xjzi for all 0 ≤ i, j < (n− k)} . (C.37)

Theorem C.40 (Canonical Bundle of the Blow-Up). Let X̂ together with σ : X̂ → X be the blow-up of
the n-dimensional complex manifold X in x ∈ X. Then

KX̂
∼= σ∗KX ⊗OX̂ ((n− 1)E) . (C.38)

This implies especially
O(E)|E ∼= OPn−1(−1) . (C.39)

Proof. The proof of the first part can be found in [58, Prop. 2.5.5]. The general idea is to prove the
claim locally, i.e. for the case X = Cn with KX = O. Then we compare the cocycles of KX̂ = KO(−1)
and of OX̂(E).

(C.39) follows because

OPn−1(−n) = KPn−1 =
(
KX̂ ⊗O(E)

)∣∣
E

= (σ∗KX ⊗O(nE))|E

(we used the adjunction formula (B.51) and the first part of the theorem). σ∗KX |E is zero because
i∗σ∗KX = (σ ◦ i)∗KX = O. Because Pic(Pn−1) ∼= Z, we conclude (C.39).

Example C.41 (Blow-Up of Pn). Let’s construct the blow-up of Pn in [1 : 0 : · · · : 0]. Since blowing-up
is a local operation, we can just blow up in the chart U0 = {[1 : x1 : · · · : xn]} ∼= Cn. We know that we
only have to take the product with Pn−1 = {[z1 : · · · : zn]} and demand xizj = xjzi for all 1 ≤ i, j ≤ n.

The complete result is therefore

P̂n =
{

([x0 : · · · : xn], [z1 : · · · : zn]) ∈ Pn × Pn−1 : xizj = xjzi for all 1 ≤ i, j ≤ n
}
. (C.40)

There is a more practical way of constructing the blow-up which will also work in more general
settings. In order to understand it, we need to adopt a different, more abstract way of thinking about
projective space: We can describe a large class of varieties by just giving the following data:

• The quasi-homogeneous coordinates x1 . . . xm we will use.

• Some scaling relations of those coordinates, for example we could want to identify [x1 : x2 : x3]
with [Λx1 : Λ2x2 : x3]. Such scaling relations are usually written down in a table like this:

x1 x2 x3
1 2 0 .

• The Stanley-Reisner ideal or SR ideal is the ideal in the ring of monomials over the coordinates
containing those combinations of coordinates that are not allowed to be zero at the same time.
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Example C.42 (Blow-Up of P2). For definiteness’ sake we consider P2, we want to blow it up in
[1 : 0 : 0]. We describe P2 using three coordinates, say x, y and z, with the simple scaling relation
x y z
1 1 1 and the SR ideal 〈xyz〉.

We get the blow-up by introducing a new coordinate λ and scaling the coordinates y and z with it.
More precisely, we claim that the blow-up is:

x y z λ
1 1 1 0
0 1 1 −1

(C.41)

with an SR ideal of 〈xyz, yz, xλ〉 = 〈yz, xλ〉. The blow-up map σ is given by σ(x, y, z, λ) = [x : λy : λz].

Note. We can e.g. subtract the second row from the first in (C.41) and use the resulting relation instead

of the second, say. What we get are equivalent scaling relations:
x y z λ
1 1 1 0
1 0 0 1

.

Proof that this describes the blow-up of P2. First we easily check that σ is well-defined, i.e. σ(x, y, z, λ) =
σ(Λx,Λy,Λz, λ) = σ(x,Λy,Λz,Λ−1λ).

Then we calculate the exceptional divisor: σ−1[1 : 0 : 0] = {(1, y, z, 0)} = P1 because y and z can’t
be zero at the same time.

Finally we see that any other [x : y : z] ∈ P2 has exactly one preimage, namely the class of (x, y, z, 1).

Note. This kind of varieties are actually toric varieties [66, Thm. 5.1.11].
Toric varieties are in a sense a generalization of all the kinds of manifolds we are considering in this

section. For example, products of weighted projective spaces are toric varieties. We refer to [66], to the
appendix of [10] and also to subsection 2.2.4 for more on toric varieties.

C.2.3 Singularities
We consider the action of some group G on a variety Y .

Definition C.43 (Some Group Theory). An orbit of Y under this group action is an equivalence class
where y ∼ y′ iff y = g.y′ for some g ∈ G.

The group action is free if, for all y ∈ Y , g.y = y implies g = e.
The order of an element g ∈ G is the smallest positive integer m such that gm = e, it divides the

order of the group |G|.

This is interesting because all previously constructed CY manifolds were simply connected and hence
not suitable for physics applications. The situation changes if we go from Y to M = Y/G (i.e. the set of
orbits with the quotient topology, which is a complex manifold again):

Theorem C.44. A necessary condition for M to be a smooth CY manifold again (if Y was CY) is that
the action of G is holomorphic and free.

Then G becomes the fundamental group of M (if Y was simply connected) and

χE(M) = χE(Y )
|G|

. (C.42)

In reality however it is difficult to construct models where the group action is free. If it is not free,
each group element g ∈ G can fix a set Sg = {y ∈ Y : g.y = y} of arbitrary codimension less than n. We
have to expect that M has singularities in those fixed sets, M is not a manifold but a so-called orbifold.

In general, sets Sg of codimension 1 can not be singular. For a CY 3-fold we can have singularities of
dimension 0 or 1. We will concentrate on point-like singularities of dimension 0. Those will be resolved
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by replacing the singular points by an exceptional set, a simple argument shows that it should be of
complex dimension 1 or 2.

We already know of a process which replaces a point in a CY 3-fold by a complex set of dimension 2,
namely the blow-up. In the case where the space M that we want to blow up has a singularity, we have
to modify (C.38) though. If locally M = Cn/Zk, the blow-up will be OPn−1(−k) instead of OPn−1(−1)
and thus

KM̂
∼= σ∗KM ⊗OX̂ ((n− k)E) . (C.43)

The blow-up of a singularity of a type other than Z3 will not be CY any more if M was CY. One has to
do more work and consider so-called toric resolutions, see [59, Ch. 4.3].

Replacing the singularity by a complex set of dimension 1 is called small resolution. The exceptional
set here consists of a chain of P1’s intersecting each other as described by the Dynkin diagram of some
Lie algebra [59, Ch. 4.4].

Lemma C.45. We take M = Y/G like above. Let {Si} be the set of irreducible components of the fixed
point set S and gi ∈ G the corresponding group elements. Finally, let M̂ be a resolution with exceptional
set E. Then

χE(M̂) = χE(Y )
|G|

−
∑
i

χE(Fi)
|gi|

+ χE(E) , (C.44)

where |gi| is the order of gi ∈ G [59, Ch. 4.5].

C.2.4 Weighted Projective Spaces
Definition C.46. A weighted projective space Pn(w0:···:wn) is a space defined by the scaling relation

z0 z1 · · · zn
w0 w1 · · · wn

(C.45)

(notation like in subsection C.2.2). The SR ideal is 〈z0 · · · zn〉 like in ordinary projective space.

We write the weight in the form (w0 : · · · : wn) like an element of Pn to visualize the fact that
(w0 : · · · : wn) and (Λw0 : · · · : Λwn) obviously describe the same space. In other words, if all the weights
have a common divisor, we can simplify the system of weights.

In fact, we can simplify the system already if a subset of n of the weights has a common divisor
(greater than one):

Definition C.47. We’ll call the greatest common divisors

di = gcd(w0 . . . ŵi . . . wn) . (C.46)

The system of weights is called well-formed if all of the di are one.

If some di are greater than one, we can simplify. The best we can hope to achieve is that we can
divide wi by the least common multiple of all those dj that divide wi (i.e. those with j 6= i). Indeed this
is possible:

Theorem C.48 (Delorme). Let mi = lcm(d0 . . . d̂i . . . dn). Then

Pn(w0:···:wn)
∼= Pn(w0/m0:···:wn/mn) (C.47)

and the new weight system is well-formed.

Example C.49. Consider P2
(1:2:2). The greatest common divisors are d = (2, 1, 1), therefore P2

(1:2:2) = P2.

Example C.50. P4
(2:3:6:12:18) = P4

(1:1:1:2:2) because

w 2 3 6 12 18
d 3 2 1 1 1
m 2 3 6 6 6
w/m 1 1 1 2 2

.
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Theorem C.51 (More Properties of Weighted Pn).

i) A weighted projective space is a projective manifold and thus Kähler.

ii) The coordinates zi are sections of O(wi) and the Euler sequence (C.8) is modified to

0→ O →
n⊕
i=0
O(wi)→ T

(
Pn(w0:···:wn)

)+
→ 0 . (C.48)

iii) This modifies the formulae for the Chern classes etc. slightly, e.g. (more in [59, 5.1])

c
(
Pn(w0:···:wn)

)
=

n∏
i=0

(1 + wiJ) (C.49)

and c1(V ) =
∑n
i=0 wi −

∑k
a=1 qa for a complete intersection V , where the degree of the polynomial

Fa is equal to qa if it is a section of O(qa).

iv) There are singularities: Consider for example P3
(1:1:1:2), a neighborhood of (0 : 0 : 0 : 1) looks like

C3/Z2.
In general, if wi > 1, then a neighborhood of (0 : · · · : 1 : · · · : 0) will look like Cn/Zwi . Also, if
gcd(wi, wj) > 1 then the subspace of dimension one described by the coordinates zi and zj will be
singular, and so on.
Note that in a 3-dimensional weighted projective space we can only have singularities of dimension
0 or 1, because the gcd of three weights is already one by definition.

Complete intersections in (products of) weighted projective spaces have to deal with singularities of
two types: They can inherit singularities from the embedding space, but they can also acquire singularities
because the base locus in Bertini’s theorem C.37 might be non-trivial. However:

Theorem C.52 (Quoted from [59, Thm. 5.4]). For a quasismooth4 weighted complete intersection 2-
or 3-fold X in a product of weighted projective spaces, the minimal desingularization X̂ of X is a smooth
CY manifold as long as a condition analogous to (C.32) is satisfied.

4 Meaning that there are only inherited, no acquired singularities.
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Appendix D

Code

D.1 Calculating Blow-Ups
It is easy to write a short program calculating the blow-up of a toric variety as described in subsection
2.2.4. The function calculating the blow-up in such an API might look like this:

Calculating blow-ups in Java.
1 public Tor icVar ie ty blowUp( St r ing coordinateName , Set<Coordinate> locu s ) {
2 Coordinate newCoordinate = new Coordinate ( coordinateName ) ;
3

4 Sca l i ngRe l a t i on newRelation = Sca l i ngRe l a t i on .EMPTY. append ( newCoordinate , −1);
5 for ( Coordinate coord : c oo rd ina t e s ) {
6 i f ( l o cu s . conta in s ( coord ) ) {
7 newRelation = newRelation . append ( coord , 1 ) ;
8 } else {
9 newRelation = newRelation . append ( coord , 0 ) ;

10 }
11 }
12

13 Tor icVar ie ty t = this . appendCoordinate ( newCoordinate ) . appendRelation ( newRelation ) ;
14

15 MonomialIdeal s r I d e a l = t . s r I d e a l ;
16 t = t . addToSRIdeal (new Monomial ( l o cu s ) ) ;
17 for (Monomial m : s r I d e a l . g ene ra to r s ) {
18 i f ( containsAny ( locus , m. coords ) ) {
19 Set<Coordinate> newGenerator = new HashSet<>(genera tor . coords ) ;
20 for ( Coordinate coord : l o cu s )
21 newGenerator . remove ( coord ) ;
22 newGenerator . add ( newCoordinate ) ;
23 t = t . addToSRIdeal ( newGenerator ) ;
24 }
25 }
26 return t ;
27 }

This code was mainly meant to illustrate the algorithm described in subsection 2.2.4. But such simple
means are already sufficient to calculate the series of blow-ups performed in section 6.2, as demonstrated
here:

1 // . . .
2

3 Tor icVar ie ty Y4 = new Tor icVar ie ty ( coordSet , r e l a t i o n s , s r I d e a l ) ;
4 System . out . p r i n t l n (Y4 ) ;
5

6 Tor icVar ie ty T1 = Y4 . blowUp( " v1 " , new Monomial ( z5 , X, Y) . coords ) ;
7 Coordinate v1 = T1 . coordinateNamed ( " v1 " ) ;
8

9 Tor icVar ie ty T2 = T1 . blowUp( " v2 " , new Monomial ( v1 , X, Y) . coords ) ;

129



APPENDIX D. CODE

10 Coordinate v2 = T2 . coordinateNamed ( " v2 " ) ;
11

12 Tor icVar ie ty T3 = T2 . blowUp( " v4 " , new Monomial ( v1 , Y) . coords ) ;
13 Tor icVar ie ty T4 = T3 . blowUp( " l " , new Monomial (X, Y) . coords ) ;
14 Tor icVar ie ty r e s u l t = T4 . blowUp( " v3 " , new Monomial ( v2 , Y) . coords ) ;
15

16 System . out . p r i n t l n ( r e s u l t ) ;

In subsection D.3.2, we will show how to do the same in Sage.

D.2 Calculations in the SU(2) Example
One computer algebra system that can handle toric varieties quite well is Sage. All Pn are predefined
toric varieties. If we want to define the blow-up in a point, we have to analyze the fan used to represent
P4 and add the new ray −(−1,−1,−1,−1) manually:

1 > P4 = t o r i c_v a r i e t i e s .P(4 )
2 > P4 . fan ( ) . rays ( ) # Sage has no b u i l t−in f u n c t i o n s f o r b lowing up ,
3 # we have to add the ray to the fan manually
4 < N( 1 , 0 , 0 , 0 ) ,
5 < N( 0 , 1 , 0 , 0 ) ,
6 < N( 0 , 0 , 1 , 0 ) ,
7 < N( 0 , 0 , 0 , 1 ) ,
8 < N(−1 , −1, −1, −1)
9 < in 4−d l a t t i c e N

10

11 > T4 = P4 . r e s o l v e ( new_rays = [ ( 1 , 1 , 1 , 1 ) ] )
12

13 > T4 . gens ( ) # coord ina te s
14 < ( z0 , z1 , z2 , z3 , z4 , z5 )
15

16 > T4 . rat iona l_c las s_group ( ) . _project ion_matrix
17 # s c a l i n g r e l a t i o n s = mapping Div −> Div/~
18 < [ 1 1 1 1 0 −1]
19 < [ 0 0 0 0 1 1 ]
20

21 > T4 . Stanley_Reisner_idea l ( )
22 < Idea l ( z4∗z5 , z0∗ z1∗ z2∗ z3 ) o f Mu l t i va r i a t e Polynomial Ring
23 in z0 , z1 , z2 , z3 , z4 , z5 over Rat iona l F i e ld

We can easily read off the volume forms of P4 and T4 (compare the discussion around (5.50)) and
perform calculations in the cohomology of T4:

24 > P4 . volume_class ( )
25 < [ z4 ^4 ]
26 > T4 . volume_class ( )
27 < [−z5 ^4 ]
28

29 > z=T4 . d i v i s o r ( 0 ) . cohomology_class ( )
30 > w=T4 . d i v i s o r ( 5 ) . cohomology_class ( )
31 > z4=T4 . d i v i s o r ( 4 ) . cohomology_class ( )
32 > z4 == z+w
33 < True
34

35 > T4 . i n t e g r a t e ( z ^4 ) ; T4 . i n t e g r a t e ( z^3 ∗ w) ; T4 . i n t e g r a t e ( z^2 ∗ w^2) ;
36 T4 . i n t e g r a t e ( z ∗ w^3) ; T4 . i n t e g r a t e (w^4)
37 < 0 ; 1 ; −1; 1 ; −1

Also, we can check ampleness of the divisor B3

38 > B3 = T4 . d i v i s o r ( [ 3 , 0 , 0 , 0 , 0 , 1 ] )
39 > B3 . is_ample ( )
40 < True

and confirm our results about the Chern classes, (5.55).
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41 > P4 . c (1 )
42 < [5∗ z4 ]
43 > T4 . c (1 )
44 < [5∗ z4 − 3∗ z5 ]
45 > B3 . ch ( ) . part_of_degree (1 ) # 1 s t chern charac ter == 1 s t chern c l a s s
46 < [3∗ z4 − 2∗ z5 ]
47

48 > T4 . c (1 ) − B3 . ch ( ) . part_of_degree (1 ) == 2∗ z+w
49 < True

D.3 The SU(5) Model
D.3.1 Calculations Concerning T4

The toric variety T4 was defined in (6.1). First, we need to enter this variety in Sage. With a short
calculation, we find a set of rays satisfying the appropriate linear relations. Also, we write down a set
of maximal cones in such a way that the primitive collections of the fan correspond to the generators of
the SR ideal:

1 > fan = Fan( # Write down a fan f o r T_4
2 > cones =[(0 , 1 , 3 , 4 ) , (0 , 1 , 3 , 5 ) , (0 , 1 , 4 , 5 ) , (0 , 2 , 3 , 4 ) , (0 , 2 , 3 , 5 ) ,
3 (0 , 2 , 4 , 5 ) , (1 , 2 , 3 , 4 ) , (1 , 2 , 3 , 5 ) , (1 , 2 , 4 , 5 ) ] ,
4 > rays =[(1 ,0 ,0 ,0 ) , (0 ,1 ,0 ,0 ) , ( −1 , −1 , −1 ,1 ) , (0 ,0 ,1 ,0 ) , (0 ,0 ,0 ,1 ) , (0 ,0 , −1 , −1) ] )
5 > fan . p r im i t i v e_c o l l e c t i o n s ( )
6 < [ frozenset ( [ 0 , 1 , 2 ] ) , frozenset ( [ 3 , 4 , 5 ] ) ]
7

8 > T4 = Tor icVar ie ty ( fan , coordinate_names=" z1␣z2␣z3␣z4␣z5␣z6 " )
9 > T4 . rat iona l_c las s_group ( ) . _project ion_matrix

10 > T4 . Stanley_Reisner_idea l ( )
11 < [ 1 1 1 0 −2 −1]
12 < [ 0 0 0 1 1 1 ]
13 < Idea l ( z1∗ z2∗z3 , z4∗ z5∗ z6 ) o f Mu l t i va r i a t e Polynomial Ring in
14 z1 , z2 , z3 , z4 , z5 , z6 over Rat iona l F i e ld
15

16 > T4 . d i v i s o r ( [ 5 , 0 , 0 , 0 , 2 , 0 ] ) . is_ample ( )
17 < True

We also checked that B3 is an ample divisor of T4.
Let us now define basic quantities in homology, namely the [zi], the [bi] and [B3]:

18 > z1 = T4 . d i v i s o r ( 0 ) . cohomology_class ( )
19 > z2 = z1 ; z3 = z1
20 > z4 = T4 . d i v i s o r ( 3 ) . cohomology_class ( )
21 > z5 = T4 . d i v i s o r ( 4 ) . cohomology_class ( )
22 > z6 = T4 . d i v i s o r ( 5 ) . cohomology_class ( )
23

24 > b2 = 4∗ z1 + z5
25 > b3 = 3∗ z1 + z5
26 > b4 = 2∗ z1 + z5
27 > b5 = z1 + z5
28 > B3 = 5∗ z1 + 2∗ z5

This can be used to perform the calculation of U(1)X chiral indices in section 6.5, equations (6.56),
(6.57), (6.59), (6.60) and (6.62):

29 > −2∗T4 . i n t e g r a t e ( z2∗ z4∗ z5 ∗( z1−8∗z6 ) ) # Hd ~ z2 z4 z5
30 > −2∗T4 . i n t e g r a t e (B3∗( b3+b4 )∗ z5 ∗( z1−8∗z6 ) ) # H ~ B3 ( b3+b4 ) z5
31 < 3∗T4 . i n t e g r a t e (B3∗b3∗ z5 ∗( z1−8∗z6 ) ) # 5M
32 < 1∗T4 . i n t e g r a t e (B3∗b5∗ z5 ∗( z1−8∗z6 ) ) # 10M
33 < 5∗T4 . i n t e g r a t e (B3∗b2∗b3 ∗( z1−8∗z6 ) ) # 1
34 < −2
35 < 0
36 < −9
37 < 9
38 < −1095
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And also their generalizations in section 6.6, equation (6.65):
39 > a = var ( ’ a ’ ) ; b = var ( ’b ’ )
40 > a ∗ (−2∗T4 . i n t e g r a t e ( z1∗ z4∗ z5∗ z1 ) ) + b ∗ (−2∗T4 . i n t e g r a t e ( z1∗ z4∗ z5∗ z6 ) )
41 > a ∗ (−2∗T4 . i n t e g r a t e ( (B3∗( b3+b4 ) − z1∗ z4 )∗ z5∗ z1 ) ) +
42 b ∗ (−2∗T4 . i n t e g r a t e ( (B3∗( b3+b4 ) − z1∗ z4 )∗ z5∗ z6 ) )
43 > a ∗ (3∗T4 . i n t e g r a t e (B3∗b3∗ z5∗ z1 ) ) + b ∗ (3∗T4 . i n t e g r a t e (B3∗b3∗ z5∗ z6 ) )
44 > a ∗ (T4 . i n t e g r a t e (B3∗b5∗ z5∗ z1 ) ) + b ∗ (T4 . i n t e g r a t e (B3∗b5∗ z5∗ z6 ) )
45 > a ∗ (5∗T4 . i n t e g r a t e (B3∗b2∗b3∗ z1 ) ) + b ∗ (5∗T4 . i n t e g r a t e (B3∗b2∗b3∗ z6 ) )
46 < −2∗a
47 < −14∗a − 2∗b
48 < 15∗a + 3∗b
49 < a − b
50 < 65∗a + 145∗b
51

52 > # −−−−−−−−− CASE WHERE C_Hd = {z1 , z3 } −−−−−−−−−
53 > a ∗ (−2∗T4 . i n t e g r a t e ( z1∗ z3∗ z5∗ z1 ) ) + b ∗ (−2∗T4 . i n t e g r a t e ( z1∗ z3∗ z5∗ z6 ) )
54 < −2∗b

(in the last part, we calculated (6.86)).
Finally, we can use (6.72) to check the calculations (6.73), (6.75) and (6.76) that will also be done in

subsection D.3.2:
55 > Kbar = z1+z5 ; S = z5
56 > −T4 . i n t e g r a t e (B3∗S∗S∗Kbar ) # chi_lambda (5H)
57 > 2 ∗ T4 . i n t e g r a t e (B3∗b3∗ z5∗Kbar ) # chi_lambda (5M)
58 > T4 . i n t e g r a t e (B3∗b5∗ z5∗(−6∗Kbar+5∗S ) ) # chi_lambda (10M)
59 < 2
60 < 2
61 < −4

D.3.2 Calculations Concerning T6

Let us first write down T6 (see (6.14)) in Sage. To do so, we automatically generate a list of maximal
cones in such a way that the primitive collections correspond to the generators of the SR ideal:

1 > rays = [
2 > ( 1 , 0 , 0 , 0 , 0 , 0 ) ,
3 > ( 0 , 1 , 0 , 0 , 0 , 0 ) ,
4 > (−1,−1,−1, 1 , 0 , 0 ) ,
5 > ( 0 , 0 , 1 , 0 , 0 , 0 ) ,
6 > ( 0 , 0 , 0 , 1 , 0 , 0 ) ,
7 > ( 0 , 0 ,−1 ,−1 ,−2 ,−3) ,
8 > ( 0 , 0 , 0 , 0 , 1 , 0 ) ,
9 > ( 0 , 0 , 0 , 0 , 0 , 1 ) ,

10 > ( 0 , 0 , 0 , 0 ,−2 ,−3)
11 > ]
12

13 > def i s_subset ( l i s t 1 , l i s t 2 ) :
14 > return a l l ( [ ( elem in l i s t 2 ) for elem in l i s t 1 ] )
15

16 > possible_maximal_cones = Subsets (range ( 9 ) , 6)
17 > maximal_cones = [ cone . l i s t ( ) for cone in possible_maximal_cones i f not
18 > ( i s_subset ( [ 0 , 1 , 2 ] , cone ) or i s_subset ( [ 3 , 4 , 5 ] , cone )
19 or i s_subset ( [ 6 , 7 , 8 ] , cone ) ) ]
20 > fan = Fan(maximal_cones , rays )
21 > fan . p r im i t i v e_c o l l e c t i o n s ( )
22 < [ frozenset ( [ 0 , 1 , 2 ] ) , frozenset ( [ 3 , 4 , 5 ] ) , frozenset ( [ 8 , 6 , 7 ] ) ]
23

24 > names=" z1␣z2␣z3␣z4␣z5␣z6␣x␣y␣z␣v1␣v2␣v4␣ l ␣v3 "
25

26 > T6 = Tor icVar ie ty ( fan , coordinate_names=names )
27 > T6 . rat iona l_c las s_group ( ) . _project ion_matrix
28 > T6 . Stanley_Reisner_idea l ( )
29 < [ 1 1 1 0 −2 −1 0 0 1 ]
30 < [ 0 0 0 1 1 1 0 0 −1]
31 < [ 0 0 0 0 0 0 2 3 1 ]
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32 < Idea l ( z1∗ z2∗z3 , z4∗ z5∗z6 , x∗y∗z ) o f Mu l t i va r i a t e Polynomial Ring
33 in z1 , z2 , z3 , z4 , z5 , z6 , x , y , z over Rat iona l F i e ld

Now we can simply follow the blow-up route detailed in section 6.2 and get T̃6 (see (6.17)):
34 > def add2 ( v1 , v2 ) :
35 > return map( operator . add , v1 , v2 )
36 > def add3 ( v1 , v2 , v3 ) :
37 > return add2 ( v1 , add2 ( v2 , v3 ) )
38

39 > ray_v1 = add3 ( rays [ 4 ] , rays [ 6 ] , rays [ 7 ] )
40 > T6_1 = T6 . r e s o l v e ( new_rays=[ray_v1 ] , coordinate_names=names )
41 > ray_v2 = add3 ( ray_v1 , rays [ 6 ] , rays [ 7 ] )
42 > T6_2 = T6_1 . r e s o l v e ( new_rays=[ray_v2 ] , coordinate_names=names )
43 > ray_v4 = add2 ( ray_v1 , rays [ 7 ] )
44 > T6_3 = T6_2 . r e s o l v e ( new_rays=[ray_v4 ] , coordinate_names=names )
45 > ray_l = add2 ( rays [ 6 ] , rays [ 7 ] )
46 > T6_4 = T6_3 . r e s o l v e ( new_rays=[ ray_l ] , coordinate_names=names )
47 > ray_v3 = add2 ( ray_v2 , rays [ 7 ] )
48 > T6_tilde = T6_4 . r e s o l v e ( new_rays=[ray_v3 ] , coordinate_names=names )
49

50 > T6_tilde . Stanley_Reisner_idea l ( )
51 < Idea l ( z5∗v2 , z5∗ l , z5∗v3 , x∗y , x∗v4 , x∗v3 , y∗v1 , z∗v1 , v1∗ l , v1∗v3 , y∗v2 ,
52 z∗v4 , v4∗ l , z∗v2 , z∗ l , z∗v3 , z1∗ z2∗z3 , z4∗ z5∗z6 , z4∗ z6∗v1 , z4∗ z6∗v4 ,
53 z4∗ z6∗v2 , z4∗ z6∗v3 ) o f Mu l t i va r i a t e Polynomial Ring in
54 z1 , z2 , z3 , z4 , z5 , z6 , x , y , z , v1 , v2 , v4 , l , v3 over Rat iona l F i e ld

Next, let us quickly define all relevant cohomology classes. B3 and eqw are the classes of the two
equations in (6.16), the rest should be self-explanatory.

55 > z1 = T6_tilde . d i v i s o r ( 0 ) . cohomology_class ( )
56 > z2 = T6_tilde . d i v i s o r ( 1 ) . cohomology_class ( )
57 > z3 = T6_tilde . d i v i s o r ( 2 ) . cohomology_class ( )
58 [ . . . ]
59 > e l l = T6_tilde . d i v i s o r ( 1 2 ) . cohomology_class ( )
60 > v3 = T6_tilde . d i v i s o r ( 1 3 ) . cohomology_class ( )
61

62 > eq_w = v3 + v4 + e l l + 2∗y
63 > b3 = 2∗ z6 + 3∗ z1
64

65 > Kbar = z1 + z5 + v1 + v2 + v3 + v4
66 > S = z5 + v1 + v2 + v3 + v4
67 > b5 = Kbar
68 > b4 = 2∗Kbar − S
69 > b3 = 3∗Kbar − 2∗S
70 > b2 = 4∗Kbar − 3∗S

The Gλ4 and GX4 fluxes are defined as:
71 > Glambda = 5 ∗ v2 ∗ v4 + 2 ∗ v1 ∗ Kbar − v2 ∗ Kbar + v3 ∗ Kbar − 2 ∗ v4 ∗ Kbar
72 > GX = ( z1 − 8∗ z6 ) ∗ (−5∗( e l l − z − Kbar ) − 2∗v1 − 4∗v2 − 6∗v3 − 3∗v4 )

We will go through all the matter surfaces and calculate some of the χλ chiral indices. Note that
some of them were also calculated in subsection D.3.1, but others can not as easily be reduced to an
integral over T4. For each matter curve, we will in the first line compute the intersection products of
Gλ4 with the matter surfaces corresponding to the roots of the respective representation. All of these
should be zero because Gλ4 flux is orthogonal to the Cartan fluxes, (6.71), such that all components of
the representation have the same chiral index. In the second line we then compute that chiral index.

73 > # 5M s u r f a c e
74 > # ro ot s ( j u s t to check )
75 > [ T6_tilde . i n t e g r a t e (B3∗eq_w∗b3∗v1∗Glambda ) ,
76 T6_tilde . i n t e g r a t e (B3∗eq_w∗b3∗v2∗Glambda ) ,
77 T6_tilde . i n t e g r a t e (B3∗eq_w∗b3∗v3∗Glambda ) ,
78 T6_tilde . i n t e g r a t e (B3∗eq_w∗b3∗v4∗Glambda ) ]
79 > # r e s u l t ( us ing P_2ell )
80 > T6_tilde . i n t e g r a t e (B3∗ e l l ∗b3∗v2∗Glambda)
81 < [0 , 0 , 0 , 0 ]
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82 < 2
83

84 > # 10M s u r f a c e
85 > # ro ot s ( i f comparing with 1109.3454 , note t h a t e . g .
86 # P_4 = P_14 + P_24 + P_4D ~ 4 th root )
87 > [ T6_tilde . i n t e g r a t e (B3∗eq_w∗b5∗v1∗Glambda ) ,
88 T6_tilde . i n t e g r a t e (B3∗eq_w∗b5∗v2∗Glambda ) ,
89 T6_tilde . i n t e g r a t e (B3∗eq_w∗b5∗v3∗Glambda ) ,
90 T6_tilde . i n t e g r a t e (B3∗eq_w∗b5∗v4∗Glambda ) ]
91 > # r e s u l t ( us ing the component w/ P_4D)
92 > T6_tilde . i n t e g r a t e (B3∗( v2+v3+e l l+x )∗b5∗v4∗Glambda)
93 < [0 , 0 , 0 , 0 ]
94 < −4
95

96 > # (non−s p l i t ) 5H s u r f a c e
97 > # ro ot s
98 > [ T6_tilde . i n t e g r a t e (B3∗eq_w∗( b3+b4 )∗ v1∗Glambda ) ,
99 T6_tilde . i n t e g r a t e (B3∗eq_w∗( b3+b4 )∗ v2∗Glambda ) ,

100 T6_tilde . i n t e g r a t e (B3∗eq_w∗( b3+b4 )∗ v3∗Glambda ) ,
101 T6_tilde . i n t e g r a t e (B3∗eq_w∗( b3+b4 )∗ v4∗Glambda ) ]
102 > # r e s u l t ( us ing P_3H)
103 > T6_tilde . i n t e g r a t e (B3∗( b5+y )∗ ( b3+b4 )∗ v3∗Glambda)
104 < [0 , 0 , 0 , 0 ]
105 < 2
106

107 > # 5Hd
108 > # ro ot s
109 > [ T6_tilde . i n t e g r a t e (eq_w∗( z2∗ z4 )∗ v1∗Glambda ) ,
110 T6_tilde . i n t e g r a t e (eq_w∗( z2∗ z4 )∗ v2∗Glambda ) ,
111 T6_tilde . i n t e g r a t e (eq_w∗( z2∗ z4 )∗ v3∗Glambda ) ,
112 T6_tilde . i n t e g r a t e (eq_w∗( z2∗ z4 )∗ v4∗Glambda ) ]
113 > # r e s u l t
114 > T6_tilde . i n t e g r a t e ( ( b5+y )∗ ( z2∗ z4 )∗ v3∗Glambda)
115 > # f o r 5Hu = 5H−5Hd
116 > T6_tilde . i n t e g r a t e ( (B3∗( b3+b4 ) − z2∗ z4 ) ∗ ( ( b5+y) ∗ v3 ) ∗ Glambda)
117 > # −−−−−−−−− CASE WHERE C_Hd = {z1 , z3 } −−−−−−−−−
118 > T6_tilde . i n t e g r a t e ( ( b5+y )∗ ( z1∗ z3 )∗ v3∗Glambda) # 5Hd
119 < [0 , 0 , 0 , 0 ]
120 < 0
121 < 2
122 < 2

We can do the same forGX4 flux, double-checking our calculations of the χX chiral indices in subsection
D.3.1. We will leave out the roots, but they are also all zero, of course.

123 > # 5M
124 > T6_tilde . i n t e g r a t e (B3∗ e l l ∗b3∗v2∗GX)
125 > # 10M
126 > T6_tilde . i n t e g r a t e (B3∗( v2+v3+e l l+x )∗b5∗v4∗GX)
127 > # 1
128 > T6_tilde . i n t e g r a t e (B3∗b2∗b3∗ e l l ∗GX)
129 > # 5Hd
130 > T6_tilde . i n t e g r a t e ( ( b5+y )∗ ( z2∗ z4 )∗ v3∗GX)
131 < −9
132 < 9
133 < −1095
134 < −2
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