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Abstract

The aim of this thesis is to derive the consistent choices for hyper-
charge flux in the F-Theory GUT models, that were constructed in [1].
Their constraints are imposed by emerging gauge anomalies in four di-
mensions, so beforehand the chiral anomaly in quantum field theory as
well as the the concept of flux is introduced and discussed. Initially, a
short review of the representation theory of the standard model and the
Georgi-Glashow model of SU(5) grand unification will be given.

Das Ziel dieser Arbeit ist die Bestimmung von konsistenten Werten
für den Hyperladungsfluss in F-Theorie GUT Modellen, die in [1] bes-
timmt wurden. Die Wahl ist durch das Aufkommen von Eichanomalien in
vier Dimensionen eingeschränkt, daher wird zunächst die chirale Anoma-
lie in der Quantenfeldtheorie sowie das konzept von Fluss eingeführt und
diskutiert. Als erstes wird kurz die Struktur des Standardmodells und
des Georgi-Glashow Modells für große Vereinheitlichung mittels SU(5),
dargestellt.
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2 Matter Representations in the Standard Model
and the Georgi-Glashow Model

In this section we summarize the structure of the Standard Model of elementary
Particle Physics and the Georgi-Glashow Model of SU(5)-Grand Unification.
The fermionic matter content as well as its representations under the gauge
groups are presented. Additionally we will give a brief discussion of the concept
of a chiral theory and grand unification in general. Detailed investigations can
be found in [2], [3] and [4].

2.1 The Standard Model

The Standard Model (SM) is a Yang-Mills theory based on the Gauge Group

GSM = SU(3)× SU(2)L × U(1)Y , (1)

where SU(3) describes strong interactions in terms of Quantum Chromody-
namics and its 8 gluons, SU(2)L corresponds to the weak Interactions via W+,
W− and Z and U(1)Y describes Hypercharge. The fermionic matter content
consists of three generations of Quarks and Leptons, all taken as left handed
Weyl-Spinors in the ( 1

2 , 0) representation of the Lorentz Group. The latter is
possible, since iγ2ψ∗R transforms as a left handed field, so in this manner we
can identify right handed fields by left handed ones (we will keep speaking of
“right handed” fields and keep the index R, but only as an indication of the
transformation behaviour with respect to the gauge group, as will be seen mo-
mentarily). The matter content is the following:
Up-type Quarks U iH , Downtype Quarks Di

H , Leptons EiH and Neutrinos νiH ,
where i = 1, 2, 3 denotes the Generation Index and the subscript H stands for
the chirality of the field, in the above sense.

In order to decribe the coupling of these fields to the Gauge interactions, we
have to specify their transformation behaviour under representations of the SM
gauge group GSM . For the SU(2)L interactions the representation is generated
by the Pauli matrices τa and the transformation behaviour of the fields is given
by (

U iL
Di
L

)
, U iR, D

i
R (2)

for the Quark fields and (
EiL
νiL

)
, EiR, ν

i
R (3)

for the Lepton fields. So left-handed fields transform as Douplets in the
fundamental (2-) representation of SU(2)L whereas right-handed ones transform
as singlets in the trivial representation.
In case of the strong interactions, the representation is generated by the Gell-
Mann matrices λa and for the transformation behaviour under those we have
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U iL =

 U ired
U igreen
U iblue

 , U iR =

 U∗ired
U∗igreen
U∗iblue

 . (4)

Similarly for the Down-type Quarks Di
H . Left handed quarks transform as

triplets in the fundamental (3-) representation of SU(3), right handed ones in
the anti-fundamental (3−) representation, while all leptons transform as singlets
in the trivial representation of SU(3).
All fermions interact with the gauge field of the Hypercharge component U(1)Y
of the SM, i.e. they transform nontrivially in a representation of this gauge
group. Therefore one assigns to each fermion field ψ a hypercharge Yψ, which
happens to be the same for each of the generations i = 1, 2, 3. The SM is related
to the Electromagnetic Gauge Group via a Spontaneous Symmetry Breaking

SU(2)L × U(1)Y −→ U(1)E.M. (5)

By analysing the gauge interaction term of the SM Langrangian, the cor-
respondence between hypercharge and electromagnetic charge is found to be
[3]

QE.M = Y + T3 T3 =

(
1
2 0
0 − 1

2

)
(6)

where T3 is a SU(2)L generator.
The SM is therefore a chiral theory, i.e. the left- and right handed components
of the fermionic fields are in different representations of the gauge group, in this
case GSM . The fact, that the transformation behaviour under the gauge group
depends on the chirality, has an important consequence: Consider a chiral gauge
theory in the above sense of a single, massive, fermionic field with some gauge
group G and Lagrangian

L =
1

4
FµνF

µν + ψ̄(i /D −m)ψ (7)

Rewritten in terms of left and right handed fields, we get for the mass-term

m(ψ̄LψR + ψ̄RψL) (8)

If the representations of ψL and ψR differ, this may not be invariant under
gauge transformations, so in this case the term is forbidden if one assumes
gauge invariance to hold. In consequence, we have to consider all fermions to be
massless in models where this poses a problem, as long as a symmetry breaking
analogous to (2) did not occur.
Lastly, we introduce the common notation in which the matter content of the
SM is presented. A certain species of fermionic field is denoted as

(representation under SU(3), representation under SU(2)L)Hypercharge (9)
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Therefore, the matter content of the SM can be summarized in the following
table

Field SU(3) SU(2)L U(1)Y shortcut(
U i, Di

)
L

3 2 1
6 (3,2) 1

6

U iR 3 1 − 2
3

(
3,1

)
− 2

3

Di
R 3 1 1

3

(
3,1

)
1
3(

Ei, νi
)
L

1 2 − 1
2 (1,2)− 1

2

EiR 1 1 1 (1,1)1

Table 1: Matter Content of the Standard Model

2.2 The Georgi-Glashow Model

Although the low-energy behaviour of particle physics is described by the SM
with very high precision, there are indications that a theory may exist, that is
based on an underlying gauge group unifying all the gauge interactions present
in the SM, called Grand Unified Theory (GUT). In general, GUTs postulate
the existence of a gauge group GGUT describing interactions in particle physics
at high energies and is at low energies spontanously broken into the SM gauge
group.
In order to be qualified, GGUT has to satisfy certain conditions

• SU(3)× SU(2)L × U(1)Y ⊂ GGUT and
rank(GGUT ) ≤ rank(SU(3)×SU(2)L×U(1)Y ) (such that the symmetry
breaking is actually possible)

• existence of complex representations of GGUT (in order to allow a chiral
fermion spectrum)

Additionaly, it is commonly assumed to be simple. Upon others, one of the
most compelling motivations of considering such theories, is the converging be-
haviour of the coupling constants of the Standard Model gauge interactions for
very high energies (especially in supersymmetric versions of these theories) [4].
Without going into detail about this, we will just present the model.
The simplest candidate for a theory of this type was found by Georgi and
Glashow to be a SU(5) GUT, SU(5) being a simple, compact Lie Group sat-
isfying all the necessary properties. In this case, the energy scale at which the
grand unification is broken, would be about 1014 GeV.

10



SU(5) −→ SU(3)× SU(2)L × U(1)Y (10)

The gauge bosons of the SU(5) GUT are the 12 from the SM and 12 addi-
tional ones, which will be of no importance here. The fermionic matter content
is the same as for the SM, but in order to understand the theory when it comes
to gauge interactions, we, as before, have to describe how matter that couples
to the gauge fields, is arranged in representations of SU(5). As it will be seen,
it is enough to do this for one generation and repeat the reasoning two more
times for the other ones. Again, we will take all fermions to be left handed
Weyl-fermions by identifying ψ′L with iγ2ψ∗R.
One generation of SM fermions will then be composing the reducible SU(5)-
representation 5⊕ 10, build from the antifundamental- and antisymmetric rep-
resentation, in the following way:

5 = (3,1) 1
3
⊕ (1,2)− 1

2
←→


D∗red
D∗green
D∗blue
E
ν

 = (ψi)L (11)

10 = (3,1)− 2
3
⊕ (3,2) 1

6
⊕ (1,1)1

←→ 1√
2


0 U∗blue −U∗green Ured Dred

−U∗blue 0 U∗red Ugreen Dgreen

U∗green −U∗red 0 Ublue Dblue

−Ured −Ugreen −Ublue 0 E∗

−Dred −Dgreen −Dblue −E∗ 0

 = (χij)L (12)

Analogously, the right handed fields could be arranged in terms of 5 and 10.
The representation matrices are then generally 5 × 5 unitary matrices of the
form

Uij =
[
e
i
2α

aξa
]
ij

=

(
λa 0
0 τa

)
(13)

where the ξa are the 24 hermitian and traceless generators, λa the generators
of SU(3) (Gell-Mann Matrices) and τa the generators of SU(2) (Pauli Matrices).
The first three indices correspond to the SU(3) content, whereas the last two
are identified as the SU(2)L indices. One of the generators is the (properly
normalized) hypercharge operator Y . By again analysing the generators, one
can find a relation bewtween Y and Q, the standard electromagnetic charge,
which yields [4]

Q(ψi) = Qiδij Q(χij) = Q(ψi) +Q(ψj) (14)
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3 The Chiral Anomaly
in Quantum Field Theory

An important key in the understanding of a Quantum Field Theory (QFT) is the
study of symmetries and their associated conserved currents given by Noether’s
Theorem

∂µj
µ = 0. (15)

However, as we will see, it may occur, that a symmetry valid in the classical
field theory, is broken after the process of quantization. If this is the case,
the symmetry is said to be anomalous and the current is not conserved on the
operator level:

∂µj
µ 6= 0. (16)

At first glance, this should be no problem, since there are many other exam-
ples for the violation of classical laws in quantum theories. Unfortunatly, this is
not true for anomalies, at least when it comes to anomalous gauge symmetries,
as we will see.
In this thesis we will focus on one of the most important examples in this con-
text, the Chiral Anomaly, corresponding to the global chiral symmetry in the
classical theory. It is essential in the study of models that may be related to
the SM at lower energies and provides a useful tool to classify these. There
are many different possibilities of deriving the same result, but all of them have
something in common: The ultimate origin of what we will call the Anomaly is
always some subtlety involved with regularisation of a certain quantity. First,
in 2.1 we briefly recover the neccessary symmetries and conservation laws in the
associated classical theory. After that, in 2.2, 2.3 and 2.4 we will consider the
most simple setup, Quantum Electrodynamics (QED) with only one species of
fermion, which turns out to be exemplary in many aspects of the calculations
and sketch the derivation of the chiral Anomaly in three different ways: A purely
perturbative one by the investigation of special Feynman diagrams, another one
by examining the chiral current as an operator itself and the last one by using
a non-perturbative approach in the path integral formalism. Detailed investiga-
tions of all these methods can be found in [5] and [6]. In 2.5 we will generalize
the result in a quite straightforward way to more general gauge theories and
in 2.6 we finally consider anomalous gauge symmetries, the ones that actually
cause trouble but nevertheless supply a powerful criterium for the consistency
of gauge theories.

3.1 The Vector and Axial U(1) Symmetries in Classical
Field Theory

Before the examination of symmetries in QFT, we shortly discuss the classical
symmetries and conservation laws, that will later be necessary for making the
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connection to anomalies. Consider an abelian gauge theory for fermionic fields
given by

L = −1

4
FµνF

µν + iψ̄(γµ∂µ + igγµAµ)ψ −mψ̄ψ (17)

Here, as one of the most important examples in the context of anomalies,
we study the global axial symmetry, so we construct the following currents:

vector jµ = ψ̄γµψ (18)

axial j5
µ = ψ̄γµγ5ψ. (19)

Upon use of the equations of motion, we get the expressions

∂µj
µ = 0 (20)

∂µj
µ
5 = 2imP (21)

with P = ψ̄γ5ψ oftentimes called Pseudoscalar-current. The vector current
is actually the associated noether current to the global vector-U(1)V symmetry,
obtained by taking the gauge parameter globally constant

ψ −→ eiαψ (22)

ψ̄ −→ ψ̄e−iα (23)

If only massless fields are under consideration we get

∂µj
µ = ∂µj

µ
5 = 0, (24)

So for massless fermions, the axial current is equally conserved and corre-
sponds to the global axial-U(1)A symmetry

ψ −→ eiαγ
5

ψ (25)

ψ̄ −→ ψ̄eiαγ
5

. (26)

Further, we construct the left- and right handed currents

jLµ = ψ̄LγµψL = ψ̄γµ
1

2
(1 + γ5)ψ =

1

2
(jµ + j5

µ) (27)

jRµ = ψ̄RγµψR = ψ̄γµ
1

2
(1− γ5)ψ =

1

2
(jµ − j5

µ) (28)

for which the conservation laws (again in the massless case) are

∂µj
µ,L = ∂µj

µ,R = 0 (29)
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on shell.
In case of a non-Abelian gauge theory, we consider Langrangians of the type

L = −1

4

∑
a

F aµνF
aµν + iψ̄(γµ∂µ + igγµAaµT

a)ψ −mψ̄ψ (30)

Analogical to the abelian case, in this setup the currents will have the form

vector jaµ = ψ̄γµT
aψ (31)

axial j5a
µ = ψ̄γµγ5T

aψ. (32)

Upon use of the Dirac equations, one gets the the conservation laws

Dµjµa = 0 (33)

Dµj5µa = 2imP a. (34)

in terms of the covariant derivative D = ∂µ − igAaµT a and the non-abelian

pseudoscalar current P a = ψ̄γ5T
aψ. Again as in the abelian case, for massless

fermions these will become the conservation laws

Dµjµa = Dµj5µa = 0 (35)

associated to the global vector SU(N)V symmetry and the global axial
SU(N)A symmetry.

The left- and right handed currents are defined similarly as

jµLa = ψ̄LγµT
aψL =

1

2
(jµa + jµ5a) (36)

jµRa = ψ̄RγµT
aψR =

1

2
(jµa − jµ5a) (37)

For these, there is likewise a conservation law, stating

DµjµLa = DµjµRa = 0. (38)

3.2 Triangle Diagrams

In QFT, however, the validity of conservation laws is described in terms of the
Ward-Identity

∂µ〈Ω|Tjµ
n∏
i=1

φ(xi)|Ω〉 = 〈Ω|T∂µjµ
n∏
i=1

φ(xi)|Ω〉︸ ︷︷ ︸
=0

− i
n∑
i=1

〈Ω|Tφ(x1)...φ(xi−1)δφ(xi)δ
(4)(x− xi)φ(xi+1)...φ(xn)|Ω〉 (39)

14



which is the basic equation when it comes to the discussion of symmetries
in quantized theories. Now we study, how an anomaly emerges in a purely
perturbative approach, by the investigation of the QED matrix element of jµ5
between the vacuum and a two photon state at one-loop level. So consider the
correlation function in momentum space

∫
d4xe−iqx〈p, k|jµ5(x)|Ω〉 = (2π)4δ(4)(p+ k − q)ε∗ν(p)ε∗λ(k)Mµνλ(p, k), (40)

which can be visualized in terms of Feynman Diagrams as

l + p

l

l − k

k, λ

p, ν

+

l + k

l

l − p

k, λ

p, ν

(41)

to first order. This is the case, why this anomaly is often called Triangle
Anomaly. Upon use of the Feynman rules we get for the amplitude the value

Mµνλ = (−1)(−ie)2

∫
d4l

(2π)4

{
tr

[
γµγ5 i(/l − /k)

(l − k)2
γλ
i/l

l2
γν
i(/l + /p)

(l + p)2

]

+ tr

[
γµγ5

i(/l − /p)
(l − p)2

γν
i/l

l2
γλ
i(/l + /k)

(l + k)2

]}
. (42)

To check, if the Ward identity is satisfied, we analyse the equation

∫
d4xe−iqx〈p, k|∂µjµ5(x)|Ω〉 =

∫
d4xe−iqx∂µ〈p, k|jµ5(x)|Ω〉

= (2π)4δ(4)(p+ k − q)ε∗ν(p)ε∗λ(k)iqµMµνλ(p, k) (43)

which is true due to partial integration and the non-occurance of contact
terms. Therefore, the Ward identity will be satisfied, if

iqµMµνλ = 0. (44)

Using the identity

qµγ
µγ5 = (/l + /p− /l + /k)γ5 = (/l + /p)γ

5 + γ5(/l − /k), (45)

15



transforming the integration variable via l −→ (l + k) or l −→ (l + p)
and after rearrangement of some gamma matrices, both terms in (42) would
cancel. However, a more careful analysis reveals that there is a problem with
this reasoning: Since the integrals are linearly divergent, the shift is actually not
allowed, so we have to take a regularisation procedure into account. There are
many possibilities to do this, but here only dimensional regularisation will be
presented (for other methods we refer to [6]). So we first evaluate the integral in
N dimensions and all the divergences occur as poles in dimension n = 4. These
may cancel in the end by taking the limit n −→ 4. In the following, we use the
conventions:

{γ5, γµ} = 0 ;µ = 0, 1, 2, 3 (46)

[γ5, γµ] = 0 ;µ = 4, 5, ..., n− 1. (47)

with the definition γ5 = iγ0γ1γ2γ3. All other properties of the γ matrices are
inherited from the four dimensional ones. In this setup, the external momenta
p and k as well as the indices ν and λ are four dimensional, whereas the internal
loop-momentum l takes values in all dimensions i = 0, ..., n. Next, we have to
modify the integral in a suitable way, so we split the internal momentum into
components l for n = 0, 1, 2, 3 and L for i = 4, ..., n, such that the measure in
(42) becomes ∫

d4l

(2π)4

∫
dn−4L

(2π)n−4
. (48)

To repeat our previous aproach, we have to modify the identity (45) to

qµγ
µγ5 = (/l + /L+ /k)γ5 + γ5(/l + /L− /p)− 2γ5/L (49)

where we used the conventions (46) and (47). By applying the same logic
as before, the shift of the integral variables is now actually allowed due to the
regularisation, but the additional term in (49) yields a further constribution,
which can be explicitly evaluated and found to be non-vanishing, the origin of
the anomaly. We end up with

iqµMµνλ = Aνλ (50)

with the Anomaly

Aνλ = − e2

2π2
εανβλpαkβ , (51)

where the ε tensor stems from the trace over the involved γ matrices.
This contribution to the integral spoils the Ward Identity of the classical global
axial symmetry in the quantized theory and (50) is called the anomalous axial
Ward identity. To get this into a form, which we can compare to our results in
the following chapters, consider
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〈p, k|∂µj5µ|Ω〉 = − e2

2π2
εανβλ(−ipα)(−ikβ)ε∗ν(p)ε∗λ(k) =

− e2

16π2
〈p, k|εανβλFανFβλ|Ω〉, (52)

or formulated as an operator equation

∂µj
5µ = − e2

16π2
εανβλFανFβλ. (53)

This final result is called the Adler-Bell-Jackiw (ABJ-)Anomaly and it is
actually independent of the chosen regularisation method.
The next question is of course, whether there are further radiative corrections
in higher perturbation orders. The answer can be stated as follows:

In QED, the ABJ-Anomaly is one-loop exact, i.e. it recieves no contribu-
tions in higher order perturbation theory.

This was proven by Adler and Bardeen and is also true for other theories,
e.g. QCD. In more general ones, this is not necessarily the case.

3.3 The Point Splitting Method

Another method of deriving the ABJ-Anomaly is to investigate the current and
its conservation on an operator level. Consider massless QED, such that U(1)A
is a symmetry and therefore

∂µj
5µ = 0. (54)

As in the perturbative approach, there is a subtle problem with the regulari-
sation involved: Taking the dependence on spacetime coordinates and the dirac
spinor inidices into account, we get

j5µ(x) = ψ̄(x)γµγ5ψ(x) = ψ†A(x)(γ0)AB(γµ)BC(γ5)CDψ
D(x)

= ψ†A(x)ψD(x)(γ0)AB(γµ)BC(γ5)CD = δDA δ
(3)(x− x)(γ0)AB(γµ)BC(γ5)CD

− ψD(x)ψ†A(x)(γ0)AB(γµ)BC(γ5)CD (55)

Because of the delta-function the chiral current operator is actually a singular
object and is therefore reliant on regularisation. This can be done by using the
so called Point-Splitting Method : we define a regularized version of the current
operator by splitting the spacetime dependence of the fermion field apart by
some small distance εµ, using a Wilson Line. The latter is needed in order to
retain gauge invariance. So we define

17



j5µ(x, ε) = ψ̄(x+
ε

2
)γµγ5ψ(x− ε

2
)e
ie

∫ x+ ε
2

x− ε
2
dyνAν(y)

(56)

and the regularized chiral current

j5µ
reg(x) = lim

ε→0
j5µ(x, ε). (57)

To test the conservedness of the regularised current, we will first perform the
calculation with non-vanishing ε and in the end take the limit limε→0 ∂µj

5µ(x, ε).
We get

∂µj
5µ(x, ε) = ψ̄(x+

ε

2
)
←−
/∂ γ5ψ(x− ε

2
)e
ie

∫ x+ ε
2

x− ε
2
dyνAν(y)

− ψ̄(x+
ε

2
)γ5 /∂ψ(x− ε

2
)e
ie

∫ x+ ε
2

x− ε
2
dyνAν(y)

+ ψ̄(x+
ε

2
)γµγ5ψ(x− ε

2
)∂µe

ie
∫ x+ ε

2
x− ε

2
dyνAν(y)

(58)

and by using the Dirac equations for massless fields

(i/∂ + e /A)ψ = 0 (59)

ψ̄(i
←−
/∂ − e /A) = 0 (60)

we obtain

∂µj
5µ(x, ε) = −iej5µ(x, ε)

[
−∂µ

∫ x+ ε
2

x− ε2
dyνAν(y) +Aµ(x+

ε

2
)−Aµ(x− ε

2
)

]
= −iej5µ(x, ε)εν [∂νAµ(x)− ∂µAν(x)]

= −iej5µ(x, ε)ενFµν (61)

where we expanded the fields Aµ to first order. It is not yet possible to
take the limit limε→0 ∂µj

5µ(x, ε) since the expression is still singular for ε −→ 0.
For the further investigation, we look at the expectation value (the quantity we
actually care about) of (61) and treat Aµ not as a gauge field, but rather as an
external field (because we are not interested in the dynamics of Aµ itself), we
find

〈Ω|∂µj5µ(x, ε)|Ω〉 = −ie〈Ω|j5µ(x, ε)|Ω〉ενFµν . (62)

The expectation value on the right hand side is basically the fermion prop-
agator between x− ε

2 and x+ ε
2 in presence of the background field Aµ. It will

turn out to be very useful, to expand this quantity in terms of Aµ, which can
be diagramatically depicted as
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+ + + . . . (63)

The leading contribution of this series will be the second term, for it being
still divergent and all other either do not supply the right amount of γ’s or are
regular.

The evaluation of this expression via the Feynman rules yields

〈Ω|∂µj5µ(x, ε)|Ω〉 = − e2

4π2
εαβµγFαβFµν

εγε
ν

ε2
(64)

The final step of the regularisation procedure is now to take the limit ε −→ 0.
However, this has to be done with caution: Because j5µ(x, ε) has to exhibit the
same transformation behaviour under Lorentz transformations as j5µ(x) for all
ε, we have to take the limit in a symmetric way and therefore require

lim
ε→0

{
εγε

ν

ε2

}
=
gνγ
n
, (65)

where gνγ is the metric tensor and n the spacetime dimension, in our case
n = 4. Performing the limit in this manner and thereby finishing the analysis,
one ends up with the final result as an operator equation

∂µj
5µ(x, ε) = − e2

16π2
εαβµνFαβFµν . (66)

This non-vanishing, finite expression is exactly the same anomalous non-
conservation of the axial current that we already encountered in the study of
triangle diagrams, the Adler-Bell-Jackiw Anomaly. It was again a proof by
Adler and Bardeen, which ensures that equally in this method there are no
further contributions by higher perturbation orders in (63) at least, as before,
in QED. In this case the ABJ-Anomaly is a correct expression up to all orders
in perturbation theory.

3.4 The Fujikawa Method

In the path integral formalism of quantum field theory, the fundamental quantity
is the generating functional for the Green function, a path integral containing
the classical action. But since the action is invariant under symmetry trans-
formations, it must be the measure, which destroys the classical symmetry and
originates the anomaly. The derivation of the chiral Anomaly in this context
was introduced by Fujikawa [7] and is called the Fujikawa Method.
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The Ward-Identity only holds for symmetries, that leave the measure invariant,
in this way, as we will see, the non-invariance of the measure under chiral trans-
formations will cause the non conservedness of the chiral current. As always,
the transformed measure requires a regularization process in order to be wellde-
fined, which will be the cause of the problem. In this way of dealing with the
anomaly, we will not have to rely on perturbation theory, therefore this method
is also called the non-perturbative approach. Consider massless QED

L = iψ̄(γµ∂µ − igγµAµ)ψ = iψ̄ /Dψ, (67)

where the dynamics of the gauge field Aµ is omitted, since it is irrelevant for
the following.
In order to guarantee the path integrals convergence, we first perform a Wick
Rotation to euclidian space

ix0 = x4, (68)

define the metric to be

gµν =


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 = −δµν (69)

and all the γ-matrices anti-hermitian (which is always possible), such that
the Dirac operator is hermitian

/D† = (γµDµ)† = (gµνγνDµ)† = −Dµγ†µ = Dµγµ = /D (70)

As oultined in the beginning, we study the generating functional (disregard-
ing for now DA and the source terms)

Z =

∫
DψDψ̄e−

∫
d4x iψ̄ /Dψ. (71)

By applying the infinitesimal version of the chiral transformation with the
gauge parameter taken dependent on spacetime coordinates for the moment
β −→ β(x)

ψ −→ (1 + iβ(x)γ5)ψ (72)

ψ̄ −→ ψ̄(1 + iβ(x)γ5) (73)

we get the implication

δS = 0⇒ ∂µj
5µ = 0, (74)

by varying with respect to β(x).
The corresponding Ward identity can be derived by varying with respect to

the sources in the generating functional. For the latter, however, we further
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have to check, if the path integral measure DψDψ̄ stays invariant under the
transformations (72) and (73).
In order to do this, we will bring into into a more accessible form by decomposing
ψ and ψ̄ into eigenfunctions of /D

/Dϕn(x) = λnϕn(x). (75)

Because /D is hermitian, the λn are real and the {ϕn} form a orthonormal
and complete eigenbasis ∫

d4xϕ†i (x)ϕj(x) = δij (76)

∑
i

ϕi(x)ϕi(y)† = δ(x− y) (77)

such that the spinors can bewritten in terms of {ϕn} as

ψ(x) =
∑
i

aiϕi(x) (78)

ψ̄(x) =
∑
j

ϕ†j(x)b̄j (79)

where a and b̄ are independent, Grassmann valued coefficients and we leave
the spinor indices of ϕAi (x) and ϕ†iA implicit. The sum runs over the indices of
the infinite Hilbertspace basis. The path integral measure can then be defined
as

DψDψ̄ =
∏
i

daidb̄i (80)

by choosing the arbitrary normalisation factor to be unity. We find, that
under the chiral transformations (72) and (73) the measure transforms as

Dψ′Dψ̄′ =
∏
i

da′idb̄
′
i =

1

det(C)2

∏
i

daidb̄i =
1

det(C)2
DψDψ̄

= J [β]DψDψ̄ (81)

with the Jacobian J [β] and keeping in mind that Grassmann measures trans-
forming with the inverse determinant of the transformation matrix. The Jaco-
bian is given by

J [β] = e−2i
∫
d4x β(x)

∑
i ϕ
†
i (x)γ5ϕi(x) (82)

which immediately causes trouble, since upon use of the completeness rela-
tion of the eigenbasis (77) the sum becomes
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∑
i

ϕ†i (x)γ5ϕi(x) = tr(γ5)δ(4)(0), (83)

where the trace comes from the implicit spinor indices. Despite the naive
guess to assume tr(γ5) = 0, therefore the Jacobian to be trivial, the measure
to transform identically and finally the Ward Identity to hold and not to be
anomalous, the Delta function in (83) is responsible for the integral in (82) not
to be well-defined, so it actually needs to be regularised properly in a gauge
invariant way, which ultimately causes the anomaly in this method.

One possibility to do so, is to introduce the Gaussian cutoff e−
λ2
i

Λ2 , which, for
finite Λ regulates the contributions of modes with large eigenvalues. So we
rewrite the sum as∑

i

ϕ†i (x)γ5ϕi(x) = lim
Λ→∞

∑
i

ϕ†i (x)γ5e−
λ2
i

Λ2 ϕi(x), (84)

or equivalently∑
i

ϕ†i (x)γ5ϕi(x) = lim
Λ→∞

∑
i

ϕ†i (x)γ5e−
/D2

Λ2 ϕi(x), (85)

which exactly gives (84) by acting with /D2
on the right and left respectively,

so this method is gauge invariant, as required. In Fourier space, the calculation
leads to the Jacobian

J [β] = e−
∫
d4x β(x)A(x) (86)

with

A(x) =
−ie2

16π2
εµναβFµνFαβ (87)

or after performing another Wick Rotation to Minkowski Space

A(x) =
e2

16π2
εµναβFµνFαβ . (88)

So the generating functional after the full tranformation of the action and
the measure will be of the form

Z =

∫
DψDψ̄e−

∫
d4x[ iψ̄ /Dψ+β(x)(∂µj5µ+A(x))], (89)

by varying, we get the ABJ-Anomaly as a final result, like in the perturbative
approaches before, as an exact expression:

∂µj
5µ = − e2

16π2
εµναβFµνFαβ . (90)

The standard way of calculating the Green function out of the generating
functional leads to the corresponding, non-fulfilled Ward Identity.
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3.5 Generalisation

Until now, we only considered QED, so the next logical step is to expand these
concepts to more general theories, i.e. theories with some arbitrary gauge group
G. It may be, as in QED, Abelian, but with more than one generator, or non-
Abelian with more than one generator and non-trivial commutation relations[
T a, T b

]
= fabcT c. As before, the three different approaches presented be-

fore are applicable and will yield the same result. The most convenient and
straightforward way to arrive at the general result for the anomaly is to use the
perturbative method in terms of triangle diagrams, so consider the gauge theory
of massless fermions

L = −1

4

∑
a

F aµνF
aµν + iψ̄ /Dψ (91)

with Dµ = ∂µ − ieAaµT a and the generators T aR (in a certain representation
of the Lie Algebra) of the non-Abelian gauge group G, satisfying the standard
commutation relations. The associated currents to the global vector and axial
symmetry are given by (31) and (32) and in the classical massless theory both
are covariantly conserved (35). In order to compute the Anomaly we look at
the expectation value of the non Abelian curren j5µa between the vacuum and
a state of two gauge bosons

〈p, k|jµ5a(x)|Ω〉 (92)

and depict it in terms of Feynman Diagrams to first order in perturbation
theory as

l + p

l

T b

l − k T c

k, λ

p, ν

T a +

l + k

l
T c

l − p

T b

k, λ

p, ν

T a (93)

where now each vertex is equipped with an additional generator of the Lie-
Algebra Lie(G) of G in some representation R. Upon use of the Feynman rules
we get for the Amplitude

Mµνλ = (−1)(−ie)2

∫
d4l

(2π)4

{
tr[T aRT

b
RT

c
R]tr

[
γµγ5 i(/l − /k)

(l − k)2
γλ
i/l

l2
γν
i(/l + /p)

(l + p)2

]

+tr[T aRT
c
RT

b
R]tr

[
γµγ5

i(/l − /p)
(l − p)2

γν
i/l

l2
γλ
i(/l + /k)

(l + k)2

]}
, (94)

23



so after a similar evaluation as in the QED case, it only changes up to the
symmetric factor tr

[
T aR
{
T bR, T

c
R

}]
. The further calculation also proceeds as in

QED and by taking the definition of the non-Abelian Field Strength F aµν =

∂µA
a
ν−∂νAaµ−efabc

[
Abµ, A

c
ν

]
into account, the general ABJ Anomaly takes the

form

Dµj5µa = − e2

16π2
tr
[
T aR
{
T bR, T

c
R

}]
εµναβF bµνF

c
αβ . (95)

This is actually no exact result, contrary to the results in QED. There are
contributions from higher order loops like for example

(96)

However, since we are only interested in gauge anomalies, that we demand
to vanish completely anyway, this poses no further complication: If the triangle
anomaly vanishes, so do all higher order loop anomalies, therefore we do not
have to care about them [6].
If the gauge group is of the form

G = G1 × ...×Gk, (97)

for some k ∈ N, like it is the case in the SM and the theories we consider
later, the situation is like this:
If all the groups in (97) are connected (what is true for all groups we will discuss),
then Lie(G) = Lie(G1)× ...× Lie(Gk), so for a representation ρ of Lie(G) we
have

ρ(Lie(G)) = ρ(Lie(G1)× ...×Lie(Gk)) = ρ1(Lie(G1))⊗ ...⊗ρk(Lie(Gk)), (98)

where ρ1...ρk are independent representations of the different components. A
gauge theory based on such a gauge group may also produce triangle anomalies
of the type (93), but now the Lie-Algebra generators could possibly stem from
different groups in the product (98). If this is the case and e.g. T a ∈ G1,
T b ∈ G2 and T c ∈ G3, the triangle anomaly is said to be a G1 − G2 − G3-
Anomaly and is denoted as AG1−G2−G3

.
In more realistic models, where more than one species of fermionic fields are
present, i.e. the fermionic part of the Lagrangian is of the form
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Lψ = i
∑
i

ψ̄i /Dψi, (99)

the axial current is given by

jµa5 =
∑
i

jµai5 =
∑
i

ψ̄iγ
µγ5T

a
Rψi. (100)

Likewise, its conservation is anomalous. Except for the factor tr
[
T aR
{
T bR, T

c
R

}]
,

the single results coincide, so we end up with

Dµjµa5 = −
∑
R

tr
[
T aR
{
T bR, T

c
R

}] e2

32π2
εµναβF bµνF

c
αβ . (101)

Here, the sum over R is to be understood as a formal some over all fermions
ψi, in some representation of the gauge group R, that contribute to the Anomaly.
The factor tr

[
T aR
{
T bR, T

c
R

}]
is of great usefullness and denoted as A(R). It

deserves further treatment, which will become helpful later and will be done in
the next chapter.

3.6 Gauge Anomalies

All until now, although we saw that the conservation laws of these currents
were spoiled, they gave not rise to conceptual problems at all. But finally we
are capable of building the bridge to gauge anomalies and explaining the role of
the chiral anomaly in this context, using these general expressions. To do this,
we have to look at chiral theories, so consider a gauge theory of Dirac fermions
and the fermionic part of the Lagrangian

Lψ = iψ̄ /Dψ = iψ̄ /D1

2
(1 − γ5)ψ + iψ̄ /D1

2
(1 + γ5)ψ = iψ̄L /DψL + iψ̄R /DψR.

(102)

In case of a chiral theory, the ψL transform in a representation RL of the
gauge group and the ψR in a different representation RR. As in the SM and
the SU(5)-GUT, we will take all fermions as left handed Weyl-fermions by
identifying ψ′L with −iγ2ψ∗R. In this manner we can rewrite (102) as

Lψ = iψ̄L /DψL, (103)

where in this setup, ψL is in a reducible representation R = RL ⊕ R̄R 6=
R̄L ⊕RR = R̄. So the final Lagrangian will be

L = −1

4

∑
a

F aµνF
aµν + iψ̄L /DψL, (104)

which enjoys a local vector gauge symmetry U(1)V with associated current
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jµaL = ψ̄Lγ
µT aRψL, (105)

the left handed vector current (37). As in (37), this can be written in terms
of the vector-current and axial-current as

jµaL = jµa + jµa5 =
1

2
ψ̄γµT aRψ −

1

2
ψ̄γµγ5T

a
Rψ. (106)

This is the point, where the axial current and its anomaly becomes a prob-
lem:
By investigating the conservation of the involved jµa and jµa5 , we get, as before

Dµjµa = 0 (107)

Dµjµa5 = − e2

16π2
tr
[
T aR
{
T bR, T

c
R

}]
εµναβF bµνF

c
αβ , (108)

and consequently, a non-conservation of the left handed current (105)

DµjµaL = −1

2

e2

16π2
tr
[
T aR
{
T bR, T

c
R

}]
εµναβF bµνF

c
αβ

= − e2

32π2
tr
[
T aR
{
T bR, T

c
R

}]
εµναβF bµνF

c
αβ , (109)

corresponding to the triangle anomaly of left handed fields

T a
T b

T c

(110)

Note, that the generators T a, T b and T c could possibly belong to different
groups in a product like (97). The triangle anomaly would then couple to the
respective gauge bosons of these groups. Since this left handed current is the
associated Noether current to the global version of the gauge symmetry, its
anomalous non-conservation corresponds to an anomaly of the latter, a Gauge
Anomaly. This is not tolarable, because the gauge invariance is necessary for
the ghost states, that arrise in the quantisation of the theory, to decouple from
all physical processes and therefore for the consistency of the theory. Conse-
quently, we have to claim, that all gauge Anomalies of this type have to vanish
in the following sense, such that the gauge symmetry is maintained:

A chiral gauge theory is consistent only if A(R) vanishes

A(R) = tr
[
T aR
{
T bR, T

c
R

}]
= 0. (111)
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This is called the Anomaly Consistency Condition.

If more than one fermionic field are charged under the corresponding sym-
metries and contribute to the anomaly, we may use the expression (101) and
the Anomaly consistency condition gets modified to∑

R

A(R) =
∑
R

tr
[
T aR
{
T bR, T

c
R

}]
= 0. (112)

Some comments are in order:

• If T aR ∈ Lie(G) is a generator in a representation R, then it is in the
conjugate representation R

T a
R

= −(T aR)∗ = −(T aR)T , (113)

so the A(R) can be written as

A(R) = tr
[
T aR̄
{
T bR̄, T

c
R̄

}]
= tr

[
−(T aR)T

{
−(T aR)T ,−(T aR)T

}]
= −tr

[{
T cR, T

b
R

}
T aR
]

= −A(R), (114)

by using the cyclicity of the trace. So if the representation is real or pseu-
doreal R = R, the corresponding Anomaly will vanish.

• Generally, if the gauge group is SU(n) for n ≥ 3, A(R) is proportional
to a totally symmetric invariant of the group which is independent of the
representation,

A(R) =
1

2
A(R)dabc. (115)

A(R) is called the Anomaly Coefficient and groups which do not provide
such a nonzero invariant are “safe” when it comes to anomalies to begin
with. If this is not the case, the anomaly coefficient can be expressed as the
cubic Casimir operator of this representation and if one of the generators
in A(R) stems from another group, it is proportional to the quadratic
Casimir operator C(R). For the Lie groups, that commonly occur and for
later purposes, we give these invariants in the following table:
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Representation R dim(R) C(R) A(R)

F N 1
2 1

F N 1
2 −1

A N(N−1)
2

N+2
2 N − 4

A N(N−1)
2

N+2
2 −N + 4

Table 2: Quadratic and cubic Casimirs for SU(N), N ≥ 3, for the fundamental,
antifundamental, antisymmetric and the conjugate antisymmetric representa-
tions

For all gauge groups, for which complex representations exist and dabc 6= 0
there is a possibility for gauge anomalies to exist, therefore the anomaly consis-
tency condition poses a constraint on the actual matter content, that is allowed
in chiral gauge theories. It is therefore the main result in this section and will
be used later in order to pose constraints on the models from F-Theory.

Examples

• The Standard Model:
Since in the SM gauge group the conditions for the existence of gauge
anomalies are satisfied, one has to check explicitly if the contributions to
the chiral anomaly indeed cancel each other. Happily, this is the case: For
a detailed calculation see [8] or [9].

• The Georgi-Glashow Model:
Also here, gauge anomalies do occur and have to cancel. Since dabc is an
invariant we can show that this model is anomaly free in the following
way: Take as T a = T b = T c = Q the charge operator. Then

A(5)

A(10)
=

tr Q3(ψi)

tr Q3(χij)
= −1, (116)

by inserting the corresponding charges. And therefore

A(5) +A(10) = 0, (117)

which is independent of the choose of generator or representation, so the
gauge anomalies cancel for each family respectively.
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4 Chirality and Flux

Before discussing the models from F-Theory, it will be neccessary to explain
some concepts, that will be very important in this context.
As we saw in the SM and in the SU(5) GUT, one of the most distinctive
properties of realistic models of nature is, that they provide a chiral spectrum
of fermionic matter. However, in string theory this statement translates into
having a chiral spectrum of fermionic matter in four dimensions, since in order
for these theories to be consistent one has to introduce a certain amount of
additional dimensions, in our cases six. What can then be observed directly
by a four dimensional physicist are only those phenomena taking place in four
dimensions. Spacetime is then described as a ten dimensional manifold M,
which in the simplest case can be thought of as a product

M = M3,1 ×X6, (118)

where M3,1 is usually Minkowskian spacetime and X6 is a Calabi-Yau man-
ifold, i.e. a compact Kähler manifold satisfying some further properties (6 is
the real dimension).
As it turned out, the presence of chirality in M3,1 is strongly related to the
topology of X6, which essentially originates from the statement of the Atiyah-
Singer Index Theorem. Although all of the following could be equally done for
six dimensions, for our purpose it is sufficient to restrict on a two dimensional
subspace of X6 which will in general have the form of a compact Riemann sur-
face. The reason for this will be given in the next section.
After discussing what it means to be a fermion in six dimension in 3.1 as well as
outlining the general idea, we will have to switch to a more suitable formulation
in terms of differential geometry in 3.2. As it will be seen, the central object of
study is the Dirac operator in curved spacetime, its connection to topology is
given in 3.3. Lastly, the correspondence with the mathematical formulation of
magnetic monopoles will be shown in 3.4.

4.1 Fermions in Six Dimensions

In the sequel, we will consider six dimensional spacetime with a topology

M = M3,1 × Σg, (119)

where Σg is a compact Riemann surface of genus g and M3,1 is Minkowskian
spacetime. The labeling of the coordinates is given by M,N = 0, .., 5, µ, ν =
0, ...3 and i, j = 4, 5.
The Tangent space of TpM = TpM

3,1 × TpΣg on each point p ∈ M is a vector
space with orthogonal transformations given by the groups

• SO(3, 1) for TpM
3,1

• SO(2) for TpΣg
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• SO(5, 1) for TpM

so in order to specify the matter content of the theory when it comes to
the spin of the fields in M, we have to choose a representation ρ of SO(5, 1).
The main interest lies on the spinor representation, so we introduce the gamma
matrices in six spacetime dimensions ΓM and demand them to satifsy the anti-
commutation relations {

ΓM ,ΓN
}

= 2gMN . (120)

With this choice, the spinor representation of SO(5, 1) will be analogously
to the four dimensional case given by

SMN =
i

4
[ΓM ,ΓN ] , (121)

where the Dirac spinors are elements of the corresponding representation
space of dimension 23 = 8.
The representation of the Clifford Algebra Cliff(5, 1) itself, can be chosen in
such a way, that for the components in Minkowskian spacetime Γµ the represen-
tation matrices Sµν coincide with the usual ones in four dimensions. Therefore,
fields transforming in the spinor representation of SO(5, 1) will also transform
in the spinor representation of SO(3, 1). By an analogous argument, these fields
will also transform in the spinor representation of SO(2).
Now, what we are really interested in, are the irreducible representations of
Spin(5, 1) in order to specify the matter content. We therefore have to take a
brief discussion of chirality into account.
The chirality operators are defined as

Γ(6) = Γ1...Γ6 six dimensional chirality operator

Γ(4) = iΓ1...Γ4 four dimensional chirality operator

Γ(K) = −iΓ5Γ6 “internal” chirality operator.

(122)

Their eigenvalues determine the chiralities of the six, four and two dimen-
sional subspaces respectively. The conventional factors of ±i has been chosen
in such a way, that (

Γ(6)
)2

=
(

Γ(4)
)2

=
(

Γ(K)
)2

= 1 (123)

Γ(6) = Γ(4)Γ(K). (124)

Because of
(
Γ(6)

)2
= 1, the eigenvalues of Γ(6) must be ±1. So by specifiying

the chirality of a given fermion as +1 in six dimensions, we have

Γ(4) = Γ(K), (125)

so the four dimensional and internal chiralities have to coincide [10]. As
always, the positive and negative chirality subspaces of the Dirac spinor repre-
sentation will be irreducible representations of Spin(5, 1).
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It turns out, that there is a remarkable correspondence between mass of fermions
in four dimensions and the dynamics of fermions on the Riemann surfaces, that
can be seen by analysing the Dirac equations in the respective components of
M. In the following, DM is the Dirac operator in curved spacetime, as it is
defined later. A Dirac fermion Ψ6 in six dimensions obeys the Dirac equation
(possible mass terms in six dimensions are ignored)

i

6∑
M=1

ΓMDMΨ6 = i /D6Ψ6 = 0, (126)

which can be written in four and six dimensional components as

i(/D4 + /DK)Ψ6 = i(
4∑

µ=1

ΓµDµ +
6∑
k=5

ΓkDk)Ψ6 = 0. (127)

To solve this equation, we introduce the operators

/̃D4 = Γ(4)D4 /̃DK = Γ(4)DK (128)

which commute and can therefore be diagonalized simultanously. They are
equivalent to the operators before, by a redefinition of the Γ matrices. One can
rewrite (127) as

i( /̃D4 + /̃DK)Ψ6 = 0 (129)

and its solutions are given by

Ψ6(xµ, yk) =
∑
i

ψi(x
µ)φi(y

k), (130)

which satisfy the equations

i /̃DKφi(yk) = miφi(y
k) (131)

(i /̃D4 +mi)ψi(x
µ) = 0. (132)

So by comparing this to the standard Dirac equation

(i /D4 +m)ψ4 = 0, (133)

it is natural to interpret /DK as an operator whose eigenvalues are the masses
of fermionic fields, measured in four dimensions.
Although we have not introduced gauge fields yet, it is assumed, that the physics
in four dimensions is governed by the gauge group SU(3) × SU(2)L × U(1)Y
or SU(5), dependent on the energy scale, but anyhow, as we mentioned in the
discussion of the SM, until the corresponding gauge symmetries are not broken,
we have to assume that the fermions in these theories are massless, in order for
gauge invariance to hold. By this reasoning, what we are actually interested in,
are the solutions of these equations, that correspond to massless fermions, i.e.
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i /DKφ0
i (y

k) = 0 (134)

such that the Dirac equation for massless fermions in four dimensions

i /D4ψi(x
µ) = 0 (135)

is satisfied. Our ultimate goal is to explain how chirality for these massless
fermions arises, for which we have to investigate the projection onto negative
and positive chirality eigenspaces

i /DKφ0
i± =

1

2
i /DK(1± Γ(K))φ0

i = 0. (136)

The integer quantity

#{φi+} −#{φi−} = n+ − n− := ind(i /DK), (137)

where #{φi±} denotes the cardinality of the bases of eigenspaces of positive
and negative chirality solutions, is called the Index of the Dirac Operator. In
general the index is a characteristic invariant of a differential operator, that is
strongly connected to the topology of the space over which it is defined. So
in order to further discuss this dependence on the topology of Σg, we have to
reformulate all this concepts in the more suitable terms of differential geometry.

4.2 The Fiber Bundle Viewpoint

It turned out, that the geometric properties of fiberbundles mirror interesting
physical phenomena especially for gauge theories. The occurence of chirality
will reveal itself to be one of those. In this setup, the union of all tangent spaces
defines the tangent bundle ⊔

p∈Σg

TpΣg = TΣg (138)

which is together with the canonical projection TΣg
π−→ Σg a vector bundle

with fiber metric g given by the metric tensor on TpΣg. Since Riemann surfaces
are orientable, the structure group of this bundle is given by SO(2), rather than
O(2). Each bundle of this type has an associated frame bundle LΣg in which
the fibers at p ∈ Σg are the sets of all vector space bases of TpΣg. This is found
to be a principal bundle over Σg.
The transition functions of the bundle tij : Ui ∩ Uj → SO(2) satisfy the consis-
tency conditions

tijtjktki = I and tii = I. (139)

The manifold Σg is said to admit a spin structure if for t̃ij ∈ Spin(2) the
consistency conditions are equally satisfied and additionally the diagramm
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Spin(2)

ϕ

��
Ui ∩ Uj

tij //

t̃ij
99

SO(2)

(140)

commutes, i.e. ϕ ◦ t̃ij = tij , where ϕ : Spin(2) → SO(2) is the double
covering map.
Such a lift t̃ij may in general not exists, but for Riemann surfaces, it does
(there is a criterium for this using the Stiefel-Whitney characteristic classes
[11]). The set of the t̃ij define a principal Spin(2) bundle over Σg, called the
Spin Bundle S(Σg). A dirac spinor is an element of a section of this bundle
ψ ∈ ∆(Σg) = Γ(Σg, S(Σg)). These can again be seperated according to their
eigenvalues

Γ(K)ψ± = ±ψ± ψ± ∈ ∆±(Σg), (141)

so we have a splitting into eigenspaces

∆(Σg) = ∆+(Σg)⊕∆−(Σg) (142)

by the standard projection operators.

Including the gauge symmetries can also be done in this context quite similar.
Omitting for now the spin structure on Σg, we consider a gauge theory with some
gauge group G on Σg. In the geometrical language, we have a principal fiber

bundle P
π−→ Σg, where the structure group as well as the fiber at each point

p ∈ Σg is given by the gauge group G. The further properties of P are as always
determined by the transition functions tij : Ui ∩ Uj → G.
In order to specify the representation of the matter content, we have to consider
the associated vector bundle. Let V be a vector bundle, for which the group G
has a representation ρ on the fibers F of V . The associated vector bundle is
then given by

E(Σg) = P ×G V = P × V/ ∼, (143)

where (pg, f) ∼ (p, ρ(g)f), for p ∈ P , g ∈ G and f ∈ E. the projection is
defined by πE(p, v) = π(p) and the transition functions are given by ρ(tij).

Both the spin structure and the gauge theory structure can be incorporated
simultanously by taking at each point p ∈ Σg the tensor product of the fibers of
S(Σg) and E(Σg) which yields the product bundle F (Σg, S(Σg)⊗E(Σg)). The
Dirac operator in curved spacetime is defined to be

Dkψ = [∂k + Ωk +Ak]ψ, (144)

by gauging with respect to local Lorentz transformations as well as local
gauge transformations. Ωk is the connection 1-form of the spin bundle, called
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spin connection, and Ak the connection 1-form of the bundle describing the
gauge theory. In local coordinates, this can be written as [11]

Dkψ =

[
∂k +

1

2
iΓαβk Sαβ +Ak

]
ψ, (145)

where Γαβk are the Christoffel symbols of the Levi-Civita connection on Σg,
Sαβ is the spinor representation of the Lorentz group and Ak is the Yang-Mills
gauge field.

4.3 Index Theory of the Dirac operator

In general, the Dirac operator is a map

/Dk : Γ(Σg, S(Σg)⊗ E(Σg))→ Γ(Σg, S(Σg)⊗ E(Σg)), (146)

and since all the vector bundles are equipped with fiber metrics, the adjoint

Dirac operator /D†k exists. The analytical index can now be defined as

ind(/Dk) = dim(ker(/Dk))− dim(ker(/D†k)), (147)

which is a finite integer quantity, at least for compact spaces like Σg (because
then /Dk is a Fredholm operator). However, as in the Fujikawa method for
deriving the chiral Anomaly, we can choose the metric and the gamma matrices

in such a way, that the Dirac operator is hermitian /Dk = /D†k, which immediately
implies, that the index vanishes ind(/Dk) = 0. So studying the index of the Dirac
operator itself, will not give any further insight and since the aim is to explain
the origin of chirality anyway, it is natural to introduce the following operators:

/D+
k := /DkP+ /D−k := /DkP− (148)

Where the P± denote the standard projection operators. These are called
Weyl Operators and their adjoints are given by

(/D+
k )† = (/DkP+)† = (P+)†(/Dk)† = P+ /Dk = /DkP− = /D−k (149)

and equally (/D−k )† = /D+
k .

The Weyl operators are mappings

/D+
k : ∆+(Σg)⊗ E(Σg)→ ∆−(Σg)⊗ E(Σg) (150)

/D−k : ∆−(Σg)⊗ E(Σg)→ ∆+(Σg)⊗ E(Σg), (151)

as can be seen by application on an eigenfunction and using the anticommu-

tativity of Γ(K) and /D±k . One ends up with a two component complex

∆+(Σg)⊗ E(Σg)

/D+
k ..

∆−(Σg)⊗ E(Σg)

/D−k

nn (152)
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called twisted spin complex. The index of the Weyl operator yields

ind(/D+
k ) = dim(ker(/D+

k ))− dim(ker((/D+
k )†))

= dim(ker(/D+
k ))− dim(ker(/D−k )) = n+ − n−, (153)

which is exactly the difference between positive and negative chirality eigen-
states, as before.
The index as it is defined in this context turned out to be a topological invariant
of the fiber bundle on which the Dirac operator (or generally, every Fredholm
operator) is defined. In fact, it can be completely written in terms of certain
characteristic classes of the bundle, which is the remarkable statement of the
Atiyah-Singer Index Theorem (ASIT). For an arbitrary Fredholm operator, it
is much more general than we actually need, so we will only give the result for
our setup [11]:

Theorem 1 (Atiyah-Singer Index Theorem). For a twisted spin complex over

a compact manifold M , the index of /D+
k is given by

ind(/D+
k ) =

∫
M

Â(TM)ch(E(M))
∣∣
vol
, (154)

where Â(TM) is the Â-roof genus of the tangent bundle and ch(E(M)) the
total Chern character of the vector bundle E(M).

The total Chern character can be written in terms of the curvature 2-form
F as

ch(E(M)) = tr

(
exp

[
i

2π
F
])

. (155)

The Â-roof genus is a topological invariant of the tangent bundle, that in the
case of compact Riemann surfaces will always have the value Â(TM) = 1. The
reason is, that it can be written as a polynomial in the Pontrjagin characteristic
classes in a form like

Â(TM) = 1− 1

24
p1 +

1

5760
(7p2

1 − 4p2) + ... (156)

However, the Pontrjagin classes are elements of the cohomology pi ∈ H4i(M ;R)
and since dim(Σg) = 2 for all g, the cohomology groups vanish in all degrees
bigger than 2. Therefore, the final result supplied by the ASIT is

ind(/D+
k ) =

∫
Σg

ch(E(M))
∣∣
vol

=

∫
Σg

ch1(E(M)) =
i

2π

∫
Σg

tr (F) , (157)

with ch1(E(M)) beeing the first term in the Taylor series of the exponential
function called the first Chern character. It is the only term in (155) we have to
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consider, since in the integration only forms of the same degree as the dimension
of M are picked up. It is worth mentioning, that in the case where no gauge in-
teractions are present at all, the contribution of the total Chern character drops
out and there are no forms of suitable degree, so the index will vanish in this case.

It is useful to further study the representation of the gauge group G. If
the fermions are in some representation R of G, the index for this specified

representation is denoted as indR(/D+
k ). The index in the representations R and

R are related by

indR(/D+
k ) = −indR(/D+

k ), (158)

which can be seen, by noting that the curvature 2-form is Lie-Algebra val-
ued, i.e. F ∈ Λ2(E(Σg)) ⊗ Lie(G), so it may be written as F =

∑
a T

a
RFa in

case of the representation R. However, the generators of the Lie-Algebra are
conventionally chosen in such a way, that T aR = −(T a

R
)T . Since the transposition

has no impact on the trace, the expression (157) will change by a sign. So for a
real or pseudoreal representation of the fermions the index will always vanish,
because R = R. Additionally, if the group G is semisimple, the Lie-Algebra is a
sub algebra of the special linear Lie-Algebra Ŋln(R). In this case, the generators
T aR ∈ Ŋln(R) are traceless, so the trace in (157) vanishes, as does the index. Con-
sequently, the only interesting results are given by non-semisimple Lie groups,
in our case by U(1).
Until now, we only found a relation between the topology of the additional di-
mensions and the difference between positive and negative chirality eigenstates,
however by being more explicit with the representations, a similar correspon-
dence can be found for the chiral asymmetry in four dimensions. Let G be
the gauge group of the theory in six dimensions and Ak be the gauge fields
corresponding to a subgroup J ⊂ G. If these fields are assumed to have vac-
uum expectation values 〈A〉 6= 0, these will only be nonzero in the compact-
ified dimensions. This is true, because there exists a Lorentz transformation

〈A〉 Λ−→ 〈−A〉 and by Lorentz invariance 〈A〉 = 〈−A〉 = 0. According to [10]
such fields appear as Higgs-like bosons in four dimensions and break the gauge
group G to the subgroup H ⊂ G that commutes with J . H is the gauge group
governing the four dimensional gauge interactions. Fermions in six dimensions
are required to be in the adjoint representation of G, because the gauge bosons
are and supersymmetry is assumed to hold. The adjoint representation has a
decomposition

A ∼= ⊕iLi ⊗Qi (159)

with representations Li of H and Qi of J . It can then be argued, that a
fermion transforming in a representation Li of H, transforms in a representation
Qi of J and their chiralities coincide because of (125). So with these arguments
follows, that massless, four dimensional fermions in the Li representation of H
arise as zero-modes of the Dirac operator on Σg in the representation Qi of J .
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If one defines the chiral asymmetry of some fermionic state in a representation
Li as

χ [ψ(Li)] = # {ψ(Li)} −#
{
ψ(Li)

}
, (160)

the final result is given by

χ [ψ(Li)] = indQi /DK . (161)

So for a given representation of the fermion fields, the chiral asymmetry can
be exclusively expressed in terms of topological invariants of some bundle over a
compact space, in this case a compact Riemann surface. By specifying the actual
type of this bundle, one has now the possibility to influence the chiral fermion
spectrum of a given theory when building models in string theory. However, as
we saw before, the resulting chiral spectrum might give rise to gauge anomalies
that we demand to vanish in one way or the other. We will use this final result
later to classify which choices are therefore allowed in this sense for given models.

4.4 Connection to Magnetic Monopoles

This setup, of a U(1)-bundle over some Riemann surface Σg is actually a gen-
eralisation of the geometric description of a magnetic monopole in the following
sense. Under the assumption of the existence of magnetic monopoles, we get a
modification of the maxwell equations

~∇ ~B = ρM . (162)

For a magnetic charge density of ρM = 4πmδ(3)(~x), the magnetic field will
be of the form

~B =
m

r2
êr. (163)

If we now seek a vector potential ~A on R3 − {0}, such that ~∇ × ~A = ~B,
a problem arises: After some analysis, it turns out, that it is impossible, to
construct a vector potential that is singularity free everywhere in R3−{0}. On

the other hand, however, the magnetic field strength ~B is defined globally on
R3 − {0}, so it is natural to assume, that there might be some mathematical
description in which these non-physical singular expressions will not be involved.
The solution to this problem is, to define potentials A±, that are defined on
certain overlapping subspaces of R3 − {0}, but not globally. Again, to further
analyse this problem, we will switch our viewpoint to differential geometry.
We ultimately want to use our previous result for the index (157), given by
the integral over the first Chern character. Since the first Chern character is
an element of the de-Rham cohomology ch1(E) ∈ H∗dR(R − {0};R), which is a
homotopy invariant, we have the freedom to simplify our problem by using that
three dimensional Euclidian space, with the origin removed, is homotopic to the
two sphere,
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R3 − {0} ' S2, (164)

so, at least up to homotopy, we can describe this gauge theory by a principal
U(1) bundle over S2, P (S2, U(1)). Note, that S2 is just the compact Riemann
surface of genus 0, Σ0. S2 can be covered by two charts, HN and HS being the
northern and the southern hemispheres (with a little overlap over the equator).
Since these are homotopy equivalent to a point HNS ' pt. they provide local
subspaces for which the bundle is trivial.The orientations are chosen as shown
in the picture.

Figure 1: Covering of the Sphere S2

Therefore we have local sections

sN/S : HN/S → P (165)

and if ω is an Ehresmann connection on P , we get the local potential 1-forms

AN/S = s∗N/Sω. (166)

At this point one could give explicit expressions for these potentials, as it is
done in [12]. However, for our purpose this will not be necessary. Since U(1) is
abelian, the curvature 2-form is in terms of the connection 1-form just

F = dAN/S (167)

So F is closed, but not exact, because the AN/S are not defined globally.
The intersection of the northern and southern hemispheres is given by the equa-
torial cirlce HN ∩ HS ' S1, parametrized by the angle ϕ. So the transition
functions tN/S(ϕ) are given by
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tN/S : HN ∩HS ' S1 −→ U(1) ∼= S1. (168)

They are of the form tN/S = einϕ with integer n, such that tN/S(2π) = idS1

and the fibers are glued together in the right way. The gauge transformation
(compatibility condition) of the AN/S are

AN = t−1
N/SAStN/S + t−1

N/Sd tN/S = AS + in dϕ, (169)

by using the Abelianity of U(1) and applying the differential d.
The mappings defined by the transition functions can be, again up to homotopy,
classified by an integer quantity, the winding number, according to π1(U(1)) =
π1(S1) = Z, since these mappigs exactly coincide with the fundamental group.
This can also be seen by explicitly evaluating the Chern character:

− ind(/D+
k ) = − i

2π

∫
S2

F = − i

2π

[∫
HN

dAN +

∫
HS

dAS
]

= − i

2π

[∫
∂HN

AN +

∫
∂HS

AS
]

= − i

2π

∫
S1

(AN −AS) =
1

2π

∫ 2π

0

dϕ n = n,

(170)

by using Stokes’ theorem and the orientation defined above. It is worth
mentioning, that the classifying integer n does not depend on the potenials
at all. It is only determined by the gauge transformation in between, i.e. the
transition functions, that govern the actual topological properties of the bundle.
In the trivial case, where n = 0, the transition functions are equal to the identity
and therefore the trivial sections of the bundle coincide, which means that the
bundle is globally trivial, in our case P = S2×S1. The integral over the Chern
character yields

i

2π

∫
S2

F =
i

2π

∫
S2

dA =
i

2π

∫
∂S2=∅

A = 0, (171)

because now A is globally defined and F exact. Replacing F with ~B and A
with the vector potential ~A, this means that the magnetic flux through S2 van-
ishes. If n 6= 0, the transition functions are not trivial, the bundle is “twisted”,
i.e. its topology is nontrivial and the integral over the Chern character gives a
result analogous to (170). Translating into to magnetic monopole context, this
means that there is a nonzero magnetic flux through S2 characteristic for the
topology of the bundle. That is the reason, why the phenomenon of obtaining
chirality in four dimensions through a nontrivial U(1) fiberbundle over some
compact surface is referred to as “Flux”.
This procedure could be done for Riemann surfaces of higher genus quite sim-
ilar. In case of the torus, g = 1, one can think of a quotient space or lattice
T 2 = R2/Z2. By covering R2 in a suitible way by open sets {Ui}, such that after
taking the quotient, these are homotopically trivial Ui ' pt., one can analyse
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the transition functions in a similar way and obtains an analogous result for
the flux. For higher genus, g ≥ 2, there is a slight complication: A Riemann
surface of this genus can be viewed as a 4g-gon, with edges identified in the
right way, but in this case it is not generally possible to build a non-overlapping
lattice as for the torus. Therefore, in this cases we have to take the quotient
in the hyperbolic plane, i.e. Σg = H/Z2g. However, the further treatment is
essentially the same.
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5 Constraints on F-Theory GUTs

Finally, we are able to discuss the models of the SU(5) Georgi Glashow GUTs
in the F-Theory context, that were derived in [1] and calculate the restrictions
by gauge anomalies in four dimensions on the involved flux.
To do that, we first give an informal describtion of how these models are actually
constructed in 4.1. In 4.2 the contraints originating from the requirement of
gauge anomaly cancellation in four dimensions are derived and the results for
the contraints on the hypercharge flux are presented in the appendix.

5.1 String Theory Description of SU(5) GUTs

A gauge theory is described in this context in the following way: The open
strings are propagating through ten-dimensional spacetime M = M3,1 × X6

according to certain equations of motion. These require, that the endpoints
satisfy Dirichlet boundary conditions, which restrict the movement of the end-
points to hyperplanes of spatial dimension p which are subspaces of M. In our
case the dimension will be p = 7 and these geometrical objects are called D7
branes. The strings are specified by their endpoint’s position as well as by their
orientation if they are stretched between different branes.

Figure 2: Open Strings and Branes

Those strings, whose endpoints are moving along the same D7 brane corre-
spond to the massless U(1) gauge fields in the adjoint representation of U(1),
whereas those with endpoints on differentD7 branes correspond to massive fields
in the bifundamental representation of U(1). Whether the string has mass or
not, essentially depends on the “tension” between the endpoints. This descrip-
tion can be generalised by considering a stack of N different D7 branes. In this
case, all strings with endpoints on one of these branes will be massless, since
they have “no tension” and after taking the orientation of these strings into
account one ends up with N2 different types of massless strings, matching the
dimension of the adjoint representation of U(N). Strings connecting two such
stacks of branes, are massive fields in the bifundamental (N,M) representation
of U(N) and U(M).
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Figure 3: Stacks of Branes

The models that are studied in [1] describe gauge theories with gauge group
SU(5) ×

∏
i U(1)i and an initially massless, fermionic matter content as de-

scribed in the first section. To obtain such models in this language consider a
stack of five D7 branes and for the sake of simplicity only one additional D7
brane, that both cover whole of M3,1 and two different subspaces of the Calabi-
Yau manifold X6. These subspaces are assumed to be 4-cycles, in particular
divisors (subvarieties of complex codimension 1) in order to maintain supersym-
metry, according to [13]. Both of these 4-cycles intersect in a 2-cycle or complex
curve, that in this case has the form of a compact Riemann surface Σg. This
intersection may be schematically illustrated as follows:

Figure 4: Intersection in a Riemann Surface
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The open strings streching between the stack of branes and the single brane
describe massive fields in the bifundamental representation (5,Q), i.e. they
transform in the fundamental representation of U(5) and are charged under
the additional U(1). However, those whose endpoints stay on the intersection
surface again have “no tension” and are therefore massless. So finally, these
fields describe the massless spectrum which is governed by the gauge group
U(5)× U(1). After identifying U(5) = SU(5)× U(1) and forgetting about this
new U(1), since it plays no role in the sequel, this describes the desired gauge
theory given by SU(5)×

∏
i U(1)i by generalising to more than one additional

U(1). Until now, this only includes the matter which is in the 5 of SU(5), but in
order to have a realistic model, one also has to explain how the antisymmetric
representation 10 arises in this formulation, because it also contains a subset of
the SM matter. To do this one has to include certain orientifolds in this picture
and describe the connection between those and the divisors wrapped by the D7
branes. These intersections will also be complex curves, but in general not the
same ones as for the 5. They are called 5-matter curves and 10-matter curves
respectively. A detailed investigation can be found in [13].
This is actually the reason, why we could restrict ourselves to the simpler case
of 6 = 4 + 2 dimensions in the discussion around flux. Since the matter content,
which we are interested in, is localised on a subspace given by Σg, this restriction
provides a toy model for these theories in which many problems can be more
easily handled with.

5.2 Anomaly Constraints

A theory that is constructed in such a way is apriori non chiral [13]. The
four dimensional spectrum, can be influenced by introducing suitable fluxes,
which determine the specific chirality. But consequently, they may lead to the
emergence of possible gauge anomalies which are required to cancel in some way,
in order for the theory to be consistent. As in the standard Georgi-Glashow
model for the SU(5) GUT, these models are related to the SM by a symmetry
breaking

SU(5)×
∏
i

U(1)i −→

SU(3)× SU(2)L × U(1)Y︸ ︷︷ ︸
SM

×∏
i

U(1)i. (172)

So in the geometrical language, one obtains a vectorbundle associated to the
principal SU(3)×SU(2)L×U(1)Y ×

∏
i U(1)i fiberbundle overM, i.e. a product

bundle of the respective associated vectorbundles. By virtue of the arguments
before, we ignore all contributions from the non-Abelian groups, since they all
are simple and the flux will vanish. So it is sufficient to look at the vectorbundle
LY
⊗

i Fi,5 for the 5-matter curves and LY
⊗

i Fi,10 for the 10-matter curves.
Here LY denotes the bundle for the hypercharge U(1)Y , the Fi,10 and Fi,5 denote
the bundles for the additional U(1)s along both matter curves. “Turning flux
on” along these curves, i.e. making a choice how the bundle looks topologically
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will yield an integer number A, which is now a sum of the integrals over the
curvature 2-forms. As we saw before, it equals the chirality of a certain species
of matter on those curves. So we get for the 5 curves after the GUT breaking
the flux

χ[(3,1)
Qj5
− 1

3

] = −1

3
N +

∑
j

Qj5M
j
5 = A

χ[(1,2)
Qj5
1
2

] =
1

2
N +

∑
j

Qj5M
j
5 = A′

(173)

where the Qj5s are the charges under the additional U(1)s, N is the flux

associated to the hypercharge, called hypercharge flux, M j
5 is the flux associated

to the j’th additional U(1) for the 5 and we now take the coupling constant,
i.e. the charge into account.
However, there is a problem involved: If the hypercharge flux is chosen wrong,
it may induce chirality of the additional gauge bosons, that are present after
breaking the SU(5) GUT symmetry which should not be the case. We will not
go into detail about this and just state, that this can be solved by choosing the
hypercharge flux in such a way, that it would equally be well defined as flux for
the bundle L 5

6Y (without additional U(1)s) where the representation of U(1)Y
is fixed as ± 5

6 , which is the charge of these bosons [14]. To achieve this in the
above expressions we have to demand

N =
5

6
N ′. (174)

But under this assumption, we cannot be sure anymore, whether the above
fluxes A and A′ are still integers at all. As we saw, they must be, so we have
to adjust the choice of the fluxes along the additional U(1)s in such a way, that
they are. A little algebra reveals, that the combination

χ[(3,1)
Qj5
− 1

3

] = A

χ[(1,2)
Qj5
1
2

] = A+N5

(175)

will do it. The same logic applies to the 10 curves and the possible fluxes
are

χ[(3,2) 1
6
] = B

χ[(3,1)− 2
3
] = B −N10

χ[(1,1)1] = B +N10,

(176)

where B is the chirality of (3,2) 1
6

given by the flux of the bundle LY
⊗

i Fi,10.
The notation N5 and N10 is defined as the restriction to the respective curves
C5,10
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N5/10 =

∫
ch1(L

5
6

Y )
∣∣
C5,10

. (177)

There are several constraints on these fluxes and their charges that where
derived in a geometrical way originally [15], but as it was pointed out in [16],
they are also strongly related to gauge anomaly cancellation in four dimensions.
The triangle anomalies that may be present could contain SM gauge groups
and a combination of the additional U(1)s. However, following the arguments
in [16][17][15], one finds that most of them will not pose any constraints on the
spectrum.
First of all, it is important that all anomalies that are present after turning on
flux and the GUT symmetry breaking, must be proportional to the correspond-
ing ones before. It turnes out, that the only interesting ones, that impose the
constraints on the spectrum are

ASU(3)2−U(1),ASU(2)2−U(1),AU(1)2
Y −U(1) (178)

ASU(3)3 ,ASU(2)3 (179)

AU(1)Y −U(1)A−U(1)B (180)

which satisfy

ASU(3)2−U(1) ∝ ASU(2)2−U(1) ∝ AU(1)2
Y −U(1) ∝ ASU(5)2−U(1) (181)

ASU(3)3 ∝ ASU(2)3 ∝ ASU(5)3 = 0 (182)

AU(1)Y −U(1)A−U(1)B ∝ ASU(5)−U(1)A−U(1)B = 0. (183)

In (178), there is no requirement of cancellation in the standard way, since
this taken care of by a string theory process, called the Green-Schwarz anomaly
cancellation mechanism (GSM), which results in the vanishing of these anoma-
lies and provide the gauge bosons of the U(1)s with a so called Stückelberg
mass, what is no problem in this case. At the GUT level, the anomalies (179)
must vanish automatically, because the GUT is anomaly free. However, after
the breaking and turning on flux, this may not be true and the GSM will help
us neither, because it does not effect the non-Abelian groups. So we have to
demand these anomalies to cancel in the standard way to ensure the propor-
tionality (182). For (180), it is a similar situation, since the GSM would give
rise to a Stückelberg mass of the U(1)Y gauge boson, the photon, which we
should avoid. Consequently, because of (183) and the vanishing trace of any
generator of SU(5), we have to demand the cancellation of this anomaly, also
in the standard way.
Additionaly, there is a simplification when it comes to the fluxes in (175) and
(176):
The fluxes given by the integers A and B do not contribute to these anomalies
at all. Turning on one of them will give a full representation of SU(5) and
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by using these proportionalities they will not have any effect and we have the
freedom to set them to zero. Therefore, we are only interested in the spectrum,
that is induced by the hypercharge flux defined in (177), which is given by

Cj5 : χ
[
(1,2)

Qj5
+ 1

2

]
= N j

5

Ci10 : χ
[
(3,1)

Qi10

− 2
3

]
= −N i

10

Ci10 : χ
[
(1,1)

Qi10
+1

]
= N i

10,

(184)

for a given number of 5 and 10 matter curves indexed by i and j.
From the proportionalities (180) one can derive the requirement∑

Ci10

Qi10N
i
10 +

∑
Cj5

Qj5N
j
5 = 0, (185)

which is a constraint on the hypercharge flux, that also occures in the geo-
metrical description. This is equally true for∑

Ci10

N i
10 =

∑
Cj5

N j
5 = 0, (186)

which origins in the anomaly cancellation approach by requiring the cancel-
lation of the SM anomalies (179). The last constraint, which is for now only
found by considering gauge anomaly cancellation is obtained by simply apply-
ing the anomaly consistency condition for the anomaly (179) in case of this
spectrum:

3
∑
Ci10

(Qi10)A(Qi10)BN i
10 +

∑
Cj5

(Qj5)A(Qj5)BN j
5 = 0. (187)

So all in all, since the models in [1] involve one, two or three, additional U(1)s
one has respectively four, six or nine constraints on the introduced hypercharge
flux supplied by the necessity of anomaly cancellation. These are given by the
system of equations in N i

10 and N j
5

3
∑
Ci10

(Qi10)A(Qi10)BN i
10 +

∑
Cj5

(Qj5)A(Qj5)BN j
5 = 0

∑
Ci10

Qi10N
i
10 +

∑
Cj5

Qj5N
j
5 = 0

∑
Ci10

N i
10 = 0

∑
Cj5

N j
5 = 0.

(188)
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The matter content, together with the charges of the 5 and 10 representa-
tions in these models is taken from [1]. Plugging these data in the system (188)
gives the results in the appendix for the possible choices of hypercharge flux and
the requirement of consistency when it comes to anomalies.
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A Consistent Choices for the Hypercharge Flux

A.1 One U(1) Models

{2, 2, 1}
Curve Charge Flux

C1
10 -4 0

C2
10 1 0

C1
5 3 0

C2
5 -2 0

{2, 3, 2}
Curve Charge Flux

C1
10 -3 N1

C2
10 2 −N1

C1
5 6 0

C2
5 1 N1

C3
5 -4 −N1

{3, 3, 2}
Curve Charge Flux

C1
10 -1 N1

C2
10 0 N2

C3
10 1 −N1 −N2

C1
5 1 N1 + 2N2

C2
5 0 −3N2

C3
5 -1 −N1 +N2

{3, 4, 3}
Curve Charge Flux

C1
10 -4 N1

C2
10 1 N2

C3
10 6 −N1 −N2

C1
5 8 N3

C2
5 3 3N1 + 3N2 − 3N3

C3
5 -2 −4N1 − 5N2 + 3N3

C4
5 -7 N1 + 2N2 −N3
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{4, 5, 4}
Curve Charge Flux

C1
10 -8 N1

C2
10 -3 N2

C3
10 2 N3

C4
10 7 −N1 −N2 −N3

C1
5 11 N4

C2
5 6 N5

C3
5 1 3N1 + 5N2 + 4N3 − 6N4 − 3N5

C4
5 4 −3N1 − 8N2 − 7N3 + 8N4 + 3N5

C5
5 9 3N2 + 3N3 − 3N4 −N5

{5, 7, 6}
Curve Charge Flux

C1
10 -2 N1

C2
10 -1 N2

C3
10 0 N3

C4
10 1 N4

C5
10 2 −N1 −N2 −N3 −N4

C1
5 3 N5

C2
5 2 N6

C3
5 1 N7

C4
5 0 N8

C5
5 -1 10N1 + 12N2 + 11N3 + 7N4 − 15N5 − 10N6 − 6N7 − 3N8

C6
5 -2 −16N1− 21N2− 20N3− 13N4 + 24N5 + 15N6 + 8N7 + 3N8

C7
5 -3 6N1 + 9N2 + 9N3 + 6N4 − 10N5 − 6N6 − 3N7 −N8

{3, 4, 3}2
Curve Charge Flux

C1
10 -4 0

C2
10 1 N1

C3
10 1 −N1

C1
5 3 N2

C2
5 3 −N2

C3
5 -2 N3

C4
5 -2 −N3
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{4, 5, 5}2
Curve Charge Flux

C1
10 -3 N1

C2
10 -3 N2

C3
10 2 N3

C4
10 2 −N1 −N2 −N3

C1
5 6 0
C2

5 1 N4

C3
5 1 N1 +N2 −N4

C4
5 -4 N5

C5
5 -4 −N1 −N2 −N5

{5, 7, 7}2
Curve Charge Flux

C1
10 -4 N1

C2
10 -4 N2

C3
10 1 N3

C4
10 1 N4

C5
10 6 −N1 −N2 −N3 −N4

C1
5 8 N5

C2
5 3 N6

C3
5 3 3N1 + 3N2 + 3N3 + 3N4 − 3N5 −N6

C4
5 -2 N7

C5
5 -2 −4N1 − 4N2 − 5N3 − 5N4 + 3N5 −N7

C6
5 -7 N8

C7
5 -7 N1 +N2 + 2N3 + 2N4 −N5 −N8

{5, 7, 8}3
Curve Charge Flux

C1
10 -3 N1

C2
10 -3 N2

C3
10 2 N3

C4
10 2 N4

C5
10 2 −N1 −N2 −N3 −N4

C1
5 6 0

C2
5 1 N5

C3
5 1 N6

C4
5 1 N1 +N2 −N5 −N6

C5
5 -4 N7

C6
5 -4 N8

C7
5 -4 −N1 −N2 −N7 −N8
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{5, 7, 7}2,2
Curve Charge Flux

C1
10 -4 0

C2
10 1 N1

C3
10 1 N2

C4
10 1 N3

C5
10 1 −N1 −N2 −N3

C1
5 3 N4

C2
5 3 N5

C3
5 3 N6

C4
5 3 −N4 −N5 −N6

C5
5 -2 N7

C6
5 -2 N8

C7
5 -2 −N7 −N8

A.2 Two U(1)s Models

{3, 4, 4}
Curve Charge Flux

C1
10 (-3,-1) 0

C2
10 (1,0) 0

C3
10 (0,1) 0

C1
5 (3,0) 0
C2

5 (2,1) 0

C3
5 (-1,-1) 0

C4
5 (-2,0) 0

{3, 5, 6}
Curve Charge Flux

C1
10 (-2,-2) 0

C2
10 (1,0) N1

C3
10 (0,1) −N1

C1
5 (2,1) −N1

C2
5 (1,2) N1

C3
5 (-1,-1) 0

C4
5 (-2,0) 0

C5
5 (0,-2) 0
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{4, 6, 7}
Curve Charge Flux

C1
10 (-1,2) N1

C2
10 (0,-4) 0

C3
10 (1,0) N2

C4
10 (0,1) −N1 −N2

C1
5 (1,2) N3

C2
5 (1,-3) −N1 − 2N2 −N3

C3
5 (0,3) N1 −N2 − 2N − 3

C4
5 (0,-2) 2N1 + 4N2 + 2N3

C5
5 (-1,4) −N1 +N2 +N3

C6
5 (-1,-1) −N1 − 2N2 −N3

{4, 6, 8}
Curve Charge Flux

C1
10 (-2,-2) N1

C2
10 (0,1) N2

C3
10 (1,0) N3

C4
10 (3,3) −N1 −N2 −N3

C1
5 (4,4) N1 + 2N2 + 2N3

C2
5 (2,1) −N2 − 2N3

C3
5 (1,2) −2N2 −N3

C4
5 (-1,-1) −N1 +N2 +N3

C5
5 (-3,-4) 0

C6
5 (-4,-3) 0

{5, 8, 12}
Curve Charge Flux

C1
10 (-4,6) N1

C2
10 (-1,1) N2

C3
10 (0,1) N3

C4
10 (2,-4) N4

C5
10 (3,-4) −N1 −N2 −N3 −N4

C1
5 (5,-7) N5

C2
5 (4,-7) N6

C3
5 (2,-2) N1 + 2N2 + 2N3 + 3N4 − 2N5

C4
5 (1,-2) −3N4 −N5 − 3N6

C5
5 (-1,3) −N2 − 2N3 − 2N4 +N5

C6
5 (-2,3) −2N2 −N3 + 2N4 + 2N5 + 3N6

C7
5 (-3,3) 0

C8
5 (-5,8) −N1 +N2 +N3 −N5 −N6
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{5, 8, 12}2
Curve Charge Flux

C1
10 (-2,-2) 0

C2
10 (1,0) N1

C3
10 (0,1) N2

C4
10 (1,0) N3

C5
10 (0,1) −N1 −N2 −N3

C1
5 (2,1) N4

C2
5 (1,2) N5

C3
5 (-1,-1) N6

C4
5 (2,1) −N1 −N3 −N4

C5
5 (1,2) N1 +N3 −N5

C6
5 (-1,-1) −N6

C7
5 (-2,0) 0

C8
5 (0,-2) 0

A.3 Three U(1)s Models

{4, 7, 12}
Curve Charge Flux

C1
10 (-2,-1,-1) 0

C2
10 (1,0,0) 0

C3
10 (0,1,0) 0
C4

10 (0,0,1) 0

C1
5 (2,1,0) 0

C2
5 (2,0,1) 0

C3
5 (1,1,1) 0

C4
5 (-1,-1,0) 0

C5
5 (-1,0,-1) 0
C6

5 (0,-1,-1) 0

C7
5 (-2,0,0) 0

54



{5, 9, 18}
Curve Charge Flux

C1
10 (-2,-2,0) 0

C2
10 (1,0,0) N1

C3
10 (0,1,0) N2

C4
10 (0,0,1) N3

C5
10 (1,1,-1) −N1 −N2 −N3

C1
5 (2,2,-1) 2N1 + 2N2 +N3

C2
5 (2,1,0) −2N1 −N2

C3
5 (1,2,0) −N1 − 2N2

C4
5 (-1,-1,0) 0

C5
5 (-1,0,-1) 0

C6
5 (0,-1,-1) 0

C7
5 (1,1,1) N1 +N2 −N3

C8
5 (-1,-2,1) 0

C9
5 (-2,-1,1) 0
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