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Abstract: This thesis is a study of string theory compactifications to four dimensions
and the constraints the Effective Field Theories must exhibit, exploring both the closed and
open sectors. In the former case, we focus on axion monodromy scenarios and the impact the
backreaction of the energy density induced by the vev of an axion has on its field excursions.
For all the cases studied, we find that the backreaction is small up to a critical value, and
the proper field distance is flux independent and at most logarithmic in the axion vev.

We then move to the open sector, where we use the framework of F-theory. We first
explore the relation between the spectra arising from F-theory GUTs and those coming from
a decomposition of the adjoint of E8 to SU(5) × U(1)n. We find that extending the latter
spectrum with new SU(5)-singlet fields, and classifying all possible ways of breaking the
Abelian factors, all the spectra coming from smooth elliptic fibration constructed in the
literature fit in our classification. We then explore generic properties of the spectra arising
when breaking SU(5) to the Standard Model gauge group while retaining some anomaly
properties. We finish by a study of F-theory compactifications on a singular elliptic fibration
via Matrix Factorisation, and find the charged spectrum of two non-Abelian examples.

Zusammenfassung: Diese Arbeit befasst sich mit Stringtheorie Kompaktifizierungen und
ihren Bedingungen an effektive Feldtheorien in vier Dimensionen, wobei sowohl der Sektor
geschlossener als auch offener Strings berücksichtigt wird. Im Fall geschlossener Strings
liegt unser Fokus auf Axion Monodromie Szenarien und dem Einfluss der Rückkopplung der
durch den Axion Vakuumerwartungswert induzierten Energiedichte auf die entsprechenden
Feldwerte. In allen untersuchten Szenarien finden wir, dass die Rückkopplung bis zu einem
kritischen Wert klein ist, wobei die Feldreichweite unabhängig vom Fluss ist und höchstens
logarithmisch vom Axion Vakuumerwartungswert abhängt.

Den Sektor offener Strings betrachten wir im Rahmen von F-Theorie. Zunächst un-
tersuchen wir den Zusammenhang zwischen den Spektren von F-Theorie GUTs und den
entsprechenden Spektren aus Zerlegungen der adjungierten Darstellung von E8 nach SU(5)×
U(1)n. Wir finden heraus, dass durch Erweiterung letzteren Spektrums durch zusätzliche
SU(5) Singlet Felder und durch eine Klassifizierung aller Möglichkeiten, die zusätzlichen
Abelschen Faktoren zu brechen, alle bereits in der Literatur konstruierten Spektren von glat-
ten elliptischen Faserungen in unsere Klassifizierung fallen. Weiterhin untersuchen wir gener-
ische Eigenschaften dieser Spektren nach Brechung von SU(5) auf die Eichgruppe des Stan-
dardmodells, während wir einige Anomalie Eigenschaften beibehalten. Abschliessend be-
fassen wir uns mit F-Theorie Kompaktifizierungen auf einer singulären elliptischen Faserung
mittels Matrix Faktorisierung und berechnen das geladene Spektrum für zwei nicht-Abelsche
Beispiele.



A la mémoire de l’Abner et du Raymond.
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Chapter 1

Introduction

In the late 19th century, most of the observed physical phenomena were described to good
accuracy by Newtonian Physics. The motion of objects, from solids to stars, were governed by
Newton’s laws of motion, charged particles by Maxwell’s electrodynamics, and the collective
behaviour of complex systems could be described by the laws of thermodynamics. This led
many members of the scientific community to think that they were close to the Holy Grail of
Physics: a complete description of Nature in terms of first principles. In fact, an apocryphal
quote often misattributed to William Thomson, 1st Baron Kelvin epitomises this school of
thought:

There is nothing new to be discovered in physics now. All that remains is more
and more precise measurement.

This way of thinking was in fact quite wrong, as within a few years, new experimental meth-
ods led to observations that could not be explained by Newtonian Physics, demanding a new
framework to explain them. Two paradigms arose simultaneously to try to understand the
discrepancy between the theoretical and experimental worlds. On the one hand, Quantum
Mechanics began explaining phenomena occurring at short distances, while Special Relativity
arose as a description of those having a high velocity.

These two new theories were not completely ex nihilo, in the sense that they did not
replace Newtonian Physics, but rather built upon it to generalise it. Indeed, when quantum
fluctuations are small compared to the size of the observed object, it can be described by
the rules of Newtonian Physics. Similarly, if the velocity of an object is slow with respect to
the speed of light, the Newtonian framework is sufficient to characterise it to good accuracy.

These two new theories were soon combined into Quantum Field Theory, describing
objects of high velocity exhibiting a quantum behaviour. This framework has been one
of the most celebrated theoretical achievements of the past century, and is one of the two
cornerstones on which our current understanding of the Universe is built. The other, General
Relativity, is a generalisation of Special Relativity and Newton’s law of gravitation. All
of these theories supersede Newtonian Physics, and are characterised by a fundamental
constant. For Quantum Mechanics, it is the reduced Planck constant ~, while Special and
General Relativity are characterised by the speed of light c and Newton’s constant GN .
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These three constants have been experimentally measured to a high degree of accuracy [1]

~ = 1.05× 10−34 Js,

c = 3.00× 108 ms−1,

GN = 6.67× 10−11 m3kg−1s−2, (1.1)

and define expansion parameters measuring the deviations from Newtonian Physics. For
observable quantities where the zeroth order of the expansion dominates, the Newtonian
framework is enough to describe the phenomenon up to small corrections, and can be pic-
torially represented by Okun’s cube, see figure 1.1. Quantum Field Theory corresponds
to deviations into both the c and ~ directions, as it is associated to a unified description
of Special Relativity and Quantum Mechanics, and General Relativity deviates from the
Newtonian framework in the c and GN directions.

We have so far not discussed two corners of the cube: one is corresponding to Quantum
Gravity, while the other encompasses theories where the deviations from classical mechanics
are done in all directions, called Theories of Everything. In the former case, such theories are
necessary to understand systems that intrinsically exhibit both quantum and gravitational
features, such as black holes, the Big Bang or the Cosmological Microwave Background.
Much of the research effort in the past thirty to forty years has been devoted to better
understand Quantum Gravity and aspects related to Theories of Everything. Unlike for

Figure 1.1: Okun’s cube. Each direction represents a deformation away from Newtonian
Physics.

Quantum Field Theory with Quantum Mechanics and Special Relativity, it is not possible
to unify General Relativity and Quantum Field Theory in a simple manner, as physical
quantities diverge in a way that cannot be controlled using the standard tools [2]. To this
day, the question of how to merge these two frameworks into a mathematically self-consistent
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theory has yet to be settled. There are however candidates for such a description, of which
the most successful is arguably string theory.

String theory was first introduced in the late nineteen-sixties as a formulation of the
strong force. While it naturally had a spin-2 field necessary to Quantum Gravity in its
spectrum, it also had a number of problems, such as being gauge anomalous and requiring
spacetime to have more than four dimensions, and string theory slowly fell out of fashion,
to be abandoned in favour of Quantum Chromodynamics in 1973. It was however brought
back to life about a decade later during the epoch now known as the first string revolution,
when Green and Schwarz discovered an anomaly cancellation mechanism [3], combined to
the possibility of obtaining spin one-half states by introducing fermionic strings. Since then,
string theory has grown into a subfield of Physics standing on its own, and has had influences
in all of theoretical physics.

One of the great successes of string theory has been a deeper understanding of Quantum
Field Theories in various dimensions. For instance, string theory is naturally invariant
under supersymmetry, a transformation relating bosonic states and their fermionic partners.
Supersymmetry is a priori not related to string theory, but has shown to greatly constrain
the properties of, for instance, gauge theories, and string theory has been the designated
laboratory for their study. As an example, it has been proven by Seiberg and Witten [4, 5]
that certain supersymmetric gauge theories are related to each other by dualities, in a way
explained very naturally by string theory (see [6] for a review). This discovery started
yet another second string revolution, as it was realised that these properties were not only
relating gauge theories, but all regimes of string theory in many ways through a web of
dualities, and the proposal of a theory superseding string theory, called M-theory, followed.

This crucial observation by Witten [7] has surprisingly enabled many results in math-
ematics as well. It was shown that superstring theory is only consistent in ten spacetime
dimensions, and if it had any connection to Nature, the extra six dimensions must be small
and form a compact space to have escaped experimental detection. We will be more precise
in chapter 2 on why this is the case, but this compact manifold is generally required to be
of Calabi–Yau type, and the extra dimensions have to be compactified, a procedure called
Kaluza-Klein reduction, to obtain a four dimensional Quantum Field Theory. It was found
that two different manifolds could give the same Quantum Field Theory, in yet another form
of duality. Armed with that observation, mathematicians started to investigate the source
of this intriguing fact and realised that these pairs, called mirror duals, were obtained by ex-
changing some topological quantities. String theory provided numerous “experimental data”
to mathematicians by constructing physically motivated Calabi–Yau manifolds, or obtain-
ing results using physical arguments alone. For instance, demanding the absence of gauge
anomalies prompted a physicist’s proof of the Atiyah-Singer index theorem, and enabled a
generalisation of the original proof [8].

Interestingly, from Newton’s Principia to the dawn of Quantum Mechanics, progress
in theoretical physics has mainly been in response to the discovery of a new phenomenon.
Quantum Mechanics has indeed been developed in the early twentieth century in response
to the Ultraviolet Catastrophe, where the equipartition theorem failed to predict the spec-
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tral radiance of a black body at short wavelength. Another example is Special Relativity,
developed to explain the absence of luminiferous aether after the famous Michelson-Morley
experiment. Ironically, the quote above is misattributed to Lord Kelvin’s 1900 speech [9] at
the Royal Institution of Great Britain. He actually argued quite the opposite, pointing out
that those two experiments were two clouds obscuring the skies of Newtonian Physics, and
needed more attention from the scientific community.

Since then, theoretical physics has however known a faster development than its experi-
mental sibling, and started branching out to a more independent subfield of physics. Theories
were developed as generalisations or unifications of others, and emerged as solutions to theo-
retical problems rather than experimental conundra. For instance, while observations of the
perihelion of the planet Mercury contradicting the predictions of Newtonian gravity were
a well-known result in Einstein’s time, the infancy of General Relativity arose from a need
to generalise Special Relativity and provide a unified description of gravity and the concept
of spacetime, rather than to explain these experimental results. Even the Standard Model,
the theory explaining our current understanding of Nature at small distances, started as an
attempt to better classify baryons and mesons, and unify three of the fundamental forces
into a common description, and it was not until 2012 that its missing keystone, the Higgs
boson, was discovered [10, 11]. The source of the discrepancy between the rapidly evolving
theoretical realm and the comparatively slower experimental world stems from the evermore
complexity of experiments. While Classical Physics was developed in small collaborations,
if not by people working alone in their study, experiments nowadays necessitate the partici-
pation of hundreds or thousands of scientists and engineers.

Together, the Standard Model and the ΛCDM model of cosmology are the state-of-the-
art description of our understanding of the Universe. They however both have shortcomings:
neither elucidate the nature of dark matter or dark energy, explain why the Universe looks
the same in all directions and expands (horizon and flatness problems), or hint to why the
electroweak scale is so small compared to the Planck scale (the hierarchy problem). There
are many elegant models explaining diverse phenomena, but there is not yet an experiment
to confirm or infirm their validity, and no consensus on a model explaining all of them
simultaneously. In the case of string theory, the matter is even worse, as the characteristic
energies involved are of orders of magnitude far beyond the current experimental capabilities.

Confronted with that thought, it seems hopeless to verify the validity of string theory
in our lifetime. However, there is a glimmer of hope coming from effective theories. This
concept arose from Wilson’s work on the Renormalisation Group [12–14], but is in fact
more general. When one first encounters Quantum Field Theory, one expects to describe
phenomena for all energy scales. It however turns out that physical observables are functions
of that energy scale. In some cases, called non-renormalisable theories, the physical quantities
are well-behaved in the infrared regime (IR) corresponding to low energies, but start to
diverge and run out of control at high energies, called the ultraviolet regime (UV). On the
other hand, another class of theories, called renormalisable, are well-behaved and do not
exhibit singularities at higher energies. In the early days of Quantum Field Theory, the
condition that a theory should be renormalisable was sacrosanct and any theory that was
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not was considered non-physical. Following Wilson, it was however soon realised that this
point of view is incorrect and that the singularities are all but unphysical: they signal a
breakdown of the description at high energy, as new degrees of freedom become relevant.
A non-renormalisable theory is then simply an effective description valid in a given regime,
where the characteristic energies are below a certain breakdown scale. Knowledge about
the effective theory can however be powerful when used in conjunction to experimental
data. A celebrated example is the charm quark, which had been conjectured to exist as
an explanation of Kaon oscillations [15], for which the effective description was shown to
break down at a scale of at most 10 GeV, predicting that the mass of this new particle was
of at most that magnitude [16]. A few months later, collaborations at the Stanford Linear
Accelerator Center and the Brookhaven National Laboratory discovered the charm quark,
with a mass mc = 1.29 GeV [17,18].

This point of view is very powerful: It enables one to focus on a particular regime adapted
to a given energy scale of a more complicated theory without worrying about all the details
of its UV features that can be highly non-trivial. Such theories are typically simpler, as they
have fewer degrees of freedom, and exhibit many more symmetries than their UV parents.

An analogy is that of cattle grazing in a field, looked upon by distant hikers. From their
point of view, these cows appear as spherically symmetric points at first, but as they come
closer (corresponding to an increase in the energy scale), they will start to observe horns,
tails, and much more complicated patterns, corresponding in this analogy to the details of the
UV theory and the appearance of new degrees of freedom. From this effective perspective,
a very interesting question arises: the proverbial cows themselves are a complicated systems
made of cells, who in turn are made of atoms, etc. . . Where does it stop? In this thesis, we
shall take the easy way out and invoke Occam’s razor: String theory is a candidate for a
Theory of Everything, and will therefore be the ultimate destination of the hiker’s voyage.

Indeed, featuring properties such as UV finiteness, the presence of a graviton and a robust
mathematical framework, it is by far the most studied and well-established of the candidates.
Moreover, it is very easy to engineer Quantum Field Theories with various features from
string theory, such as non-perturbative gauge or conformal theories, and it therefore acts as
a sort of experimental laboratory for mathematics. This is one reason among many to study
string theory even if it is not realised in Nature, as it has already taught us so much about
Mathematics and Physics, and cannot be too easily discarded.

The possibilities for compactifying the extra six dimensions required by string theory
down to a four dimensional effective theory are enormously vast, and form the so-called
landscape of string theory. However, as numerous as they are, they do not encompass all
the effective theories, and this has led to the notion of swampland of string theory [19],
containing effective theories that cannot be obtained from string theory. For instance, there
is some evidence that theories of Quantum Gravity do not allow the presence of global
symmetries [20, 21], and field theories exhibiting global symmetries that cannot be gauged
in the UV to be consistent lie in this swampland. Taking string theory as a candidate for
a Theory of Everything, we can reverse the argument and ask what properties an effective
description descending from string theory must display to lie in the landscape.
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This is the main motivation for this thesis: We want to perform a study of some of the
constraints that a four dimensional effective Quantum Field Theory descending from string
theory must exhibit. Our analysis will cover different aspects of string theory, involving two
kinds of sector coming from the boundary condition a one dimensional object, the string,
can have. They can be either closed or open, and depending on which sector one considers,
one will find different phenomena. For instance, closed strings give rise to gravity, while
open strings mainly involve gauge theories in the effective description.

The first part of our analysis will be dedicated to the closed sector. The compactifica-
tion procedure for this sector gives rise to an important number of massless scalars in four
dimensions that have to obtain a large mass to have avoided detection already. Some of
these scalars are endowed with a shift symmetry, and are called axions. Their shift sym-
metry is a very powerful tool, as it shields them against perturbative and non-perturbative
quantum corrections, and is a key ingredient to probe Quantum Gravity phenomena, such as
those present during the infancy of the universe, where quantum fluctuations were as strong
as gravity and can be used to describe models of inflation [22]. String theory axions were
however initially thought to be poor candidates for inflation, despite having a precious shift
symmetry, as their decay constant was generally too small [23], but several mechanisms have
since been found to enhance it up to the desired scales, and are are currently under great
scrutiny [24–26].

We will focus our attention on quantifying the difficulty to displace axions away from their
minimum by studying the gravitational backreaction on their vacuum expectation values in
string theoretic setups. More precisly, we will study them in the context of axion monodromy
scenarios, where the shift symmetry is broken by turning on fluxes in such a way that
they induce a mass term. We will find that the backreaction makes it difficult to travel
super-Planckian distances. As the Lyth bound [27] relates the scalar-to-tensor ratio to the
displacement of the inflaton away from its minimum, our results puts constraints on the
possibility of having large values of the ratio if the inflaton is a stringy axion, which is
currently being tested experimentally by several collaborations.

We will then turn to the open sector of string theory. As we have already mentioned,
this sector corresponds in the IR regime to gauge theories. The most celebrated example
of a gauge theory is the Standard Model, where the gauge group is SU(3)× SU(2)× U(1),
corresponding to the strong, weak, and hypercharge forces respectively. While we saw that
the Standard Model has shortcomings, it also gives indications to what is the first step in its
UV completion: a study of the running of the gauge coupling reveals that they are almost
intersecting at energies of the order of 1015 GeV: if one requires supersymmetry, hinting at
a common origin. As the Standard Model spectrum fits into larger groups, such as SU(5),
a realistic possibility is that these three forces merge into a single force in the UV. This
description in terms of a single gauge group is called a Grand Unified Theory (GUT), and
was first theorised by Georgi and Glashow [28].

To study these Grand Unified theories, we will use F-theory, a description of Type IIB
string theory in a non-perturbative regime, introduced by Morrison and Vafa in 1996 [29–31],
which proved to be a particularly adapted framework to study gauge theories. In this context,
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the physical data of the effective theory is encoded in the singularity structure of a singular
elliptically fibered Calabi–Yau. For instance, the type IIB D7-branes—giving the gauge
group in the IR—are associated to codimension one singularities, while higher codimension
loci, such as curves and points, give some information about the spectrum and interactions
of the lower dimensional theory.

After experiencing a revival in 2008, when novel mechanisms that could be applied to
phenomenology [32–34] were discovered, F-theory proved to be a successful tool to study
systems usually difficult to analyse, including both phenomenological and formal setups. For
instance, a classification of most six dimensional Supersymmetric Conformal Field Theories
(SCFTs) has been achieved using F-theory [35]. Progress has also been made towards a
better comprehension of Abelian [36–38] and discrete symmetries [39,40], and their relations
to the geometry of the elliptic fibration. Using them as a stepping stone, we will explore the
relations between SU(5) F-theory GUTs and the exceptional group E8, in order to classify
a class of GUT theories.

We will then pursue our analysis of Grand Unified Theories by exploring the possibilities
of breaking the GUT group to that of the Standard model using Hypercharge flux. We
will find that if we want to avoid some undesirable features, we will need to introduce new
exotic states not lying in the spectrum of the Standard Model. We will then explore a
new mechanism to solve the µ-problem and give a large mass to these exotics by using an
additional symmetry.

Finally, we will explore a formal aspect of F-theory. The most common way of obtaining
the low energy data in F-theory compactifications on a singular space is to first resolve its
singularities. However, doing so obscures data of a large portion of some theories. A proposal
appropriate to study these theories was recently introduced by Collinucci and Savelli [41]
using Matrix Factorisation. This proposal has the advantage that it encompasses naturally
the data about fluxes in the description, but the authors did not make explicit global con-
structions involving non-abelian gauge groups. We will study two examples involving the
group SU(2), and explain how the spectrum charged under the gauge group arises in that
case and show how the flux data can be obtained. We will then check our results by taking
a limit where one can use the perturbative regime, and compare with the results obtained
in F-theory.

This thesis is organised as follows: We begin the study of effective theory and string
theory by reviewing their basic features in chapter 2, in order to show that the geometry is
a language particularly adapted to discussing Effective Field Theory, and set the ground for
F-theory. In chapter 3, we discuss the constraints of string theory on axion field ranges in
the context of Type IIA supergravity. As it explores the closed sector of string theory while
the rest of the thesis focuses on the open sector, it is therefore more standalone than the
other chapters.

In chapter 4, we turn ourselves to F-theory by giving the mathematical basics of elliptic
fibrations, and explain how to extract the physical data from a given geometry. This chapter
is also introductory in nature, and can be skipped by the cognoscenti. Chapter 5 starts
our analysis of Grand Unified Theories, focussing on their relation with the group E8, while
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chapter 6 focuses on breaking SU(5) GUTs to the Standard Model gauge group, and explores
some mechanisms associated to hypercharge flux breaking. Finally, chapter 7 then studies
examples of non-Abelian F-theory models via Matrix Factorisation methods, and we give
our conclusions in chapter 8. In the appendix, we give a mathematical glossary that could
be useful to the reader.

The study of the consequence of gravitational backreaction on axion field ranges discussed
in chapter 3 is part of published work in collaboration with Eran Palti [42], while the role of
E8 in F-theoty GUTS (chapter 5), in collaboration with Eran Palti and Sebastian Schwieger,
has first been discussed in [43]. Moreover, chapters 6 and 7 are part of work in progress at
the time of the submission of this thesis. During the elaboration of this thesis, a study of
Renormalisation Group flows and the a-theorem has been published in collaboration with
Boaz Keren-Zur, Riccardo Rattazzi, and Lorenzo Vitale [44], but will not be discussed in
this thesis.
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Chapter 2

Four Dimensional Effective Actions
and Geometry

In order to establish the various constraints that will be explored throughout this thesis,
we start by reviewing the deep and beautiful relations between σ-models and various areas
of mathematics. We will argue that in such models, everything can be associated with
geometric quantities related to either spacetime or the space of physical configurations, with
observables being differential-geometric invariants. This remarkable observation, dubbed the
Geometric Principle by Cecotti [45], will have far reaching implications and make clearer
the origin of the constraints established throughout this thesis.

Effective Field Theories (EFTs) describe a physical system up to a certain energy scale, Ω,
called the cut-off of the theory. If the various observables of this system can be described as a
formal expansion of a set of small parameters, we say that it admits a Lagrangian description
in terms of a Lagrangian L. Such a Lagrangian consists of an a priori infinite series, in terms
of the fields describing the degrees of freedom of the system and their derivatives whose
coefficients are called coupling constants. If the processes considered have a characteristic
energy reaching order Ω, the effective description breaks down, as one might need to consider
new degrees of freedom.

Using naive dimensional analysis, coupling constants of terms in the Lagrangian with
more than two derivatives have to be suppressed by an adequate power of the cut-off. If
we stay at characteristic energies far beneath that of the cut-off, these terms contribute
only negligibly amount to observables, and can be ignored in an effective description. This
arguments simplifies the Lagrangian description of EFTs as we can separate between terms
containing up to two derivatives, called kinetic terms and terms depending only on the field,
the potential. It turns out that in the (perturbative) effective approach to physics, matter
can always be described by this class of theories. By matter, we mean degrees of freedom
whose spin is at most one-half, i.e. scalar or fermions.
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2.1 Sigma-models and their Symmetries

We now turn our attention to the geometric properties of such EFTs. As we argued above
the scalar sector of such theories is described by a two-derivative kinetic term and a potential.
Such a description is called a non-linear σ-model. Ignoring possible symmetries for now, it
is described by a collection of scalar fields ϕi, whose dynamics are controlled by the action

Sσ =

∫
Σ

ddx
√
−hLσ Lσ =

1

2
gij(φ)∂µφ

i∂µφj − V (φ), (2.1)

where (Σ, h) is a (pseudo-)Riemannian manifold of dimension d describing spacetime. In this
section we have adopted the conventions of [45]. Physical observables should not depend on
the fields used to parameterise a given configuration, and observables should therefore be
invariant under a reparametrisation of the fields φi → ϕi(φ). In particular, to preserve the
form of the two-derivative term in (2.1), the tensor gij must transform as gij → ∂iϕ

k∂jϕ
lgkl.

This transformation is reminiscent of that of the metric of a manifoldM under local diffeo-
morphisms. Moreover, if we want to have any meaningful sense of probabilities, we need the
theory to be unitary, forcing gij to be symmetric positive-definite.

This leads us to interpret the scalar fields as local coordinates of a manifoldM equipped
with a Riemannian metric g. The full σ-model then comes endowed with two manifolds:
A spacetime Σ which can a priori be curved, and the target manifold M. A classical field
configuration is then a smooth map Φ : Σ → M, which in local coordinates is given by
φi(xµ) and whose kinetic term is then simply the trace of the pull-back metric Φ∗g.

As hinted at the beginning of this section, the invariance of physical quantities under field
redefinition in such models will translate to differential-geometric invariants of the target
manifold. This simple observation is the first building block of the Geometric Principle.

This geometric interpretation says even more: Let us imagine the Lagrangian to be
invariant under the global action of a continuous group G acting on the fields φi. Such an
action in particular requires to leave the kinetic term, and therefore the target space metric
invariant. In other words, G must be a subgroup of the isometry group Iso(M) of M.
The presence of symmetries therefore restricts the set of possible manifolds. For instance,
symmetric Riemannian spaces, whose isometry groups are Lie groups, have been completely
classified [46,47].

In many of the relevant physical cases, at least part of G is gauged, and one requires the
presence of spin-1 vector fields AAµ , A = 1, · · · , dim(G), in the spectrum. The coupling of
these fields to the σ-model is achieved by considering the associated Killing vectors Ki

A, A =
1, · · · , dim(G), generating the gauge transformation. One then simply promotes the usual
derivative to a covariant one: ∂µφ

i → Dµφ
i = ∂µφ

i − AAµKi
A. The gauged σ-model

L =
1

2
gijDµφ

iDµφj − V (φ), (2.2)

is then guaranteed to be invariant under gauge transformations. Infinitesimally, they are
given by

δφi = εAKi
A δAAµ = Dµε

A = ∂µ + fABCA
B
µ ε

C , (2.3)
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with fABC the structure constants of the Lie algebra g of G. In a local chart ofM, the vector
fields transform as both spacetime vectors and as elements of the Lie algebra, i.e. they are
elements of TM⊗ g. Globally, we must allow for possible twists of the topology, which in
mathematical terms is to consider them as sections1 of a principal G-bundle over M.

Note that the full dynamics involve terms in the Lagrangian containing derivatives of the
gauge fields. While these are not part of the σ-model per se, they have important physical
implications, such as anomaly terms, and should not be discarded when considering a full
theory.

So far, we have argued that everything in equation (2.2) has a geometric interpretation.
However, any model expected to have any connection with the real world has to contain
fermions, and we are thus lead to wonder how they are connected to the target manifold point
of view. In the following, we focus on the four dimensional, case where the minimal fermions
(the smallest fermionic representation) are of Weyl type, but the results can be obtained
mutatis mutandis to other dimensions by finding the corresponding minimal spinors.

The most general one derivative term2 for Weyl fermions is

Lψ = ifab(φ)χaα̇σ
α̇αµ∂µχ

b
α. (2.4)

Locally, the right- and left-handed fermions χα, χα̇ transform as functions of S± × Σ with
S± the vector space associated to the (1

2
, 0) or (0, 1

2
) representation of SO(1, 3) respectively.

We are therefore in a similar situation to that of vector fields, albeit for the fact we consider
spacetime transformations and not gauge ones. We must also account for non-trivial global
topologies of the spacetime manifold and are led to rather interpret fermions as sections of
vector bundles over Σ with fibre S±. Moreover as fab is again positive-definite by unitarity,
and is interpreted as a fibre metric. This means that the bundles are in turn pull-backs of
bundles V± over M with fibre metric f .

The interpretation of fermions as sections of vector bundles was established using solely
the fermionic kinetic term. One may wonder about potentials involving both fermions and
scalars. Consider for instance a potential of the Yukawa type V ⊃ yab(φ)χa ·χb. For this term
to be reparametrisation invariant, yab must transform in such a way that the transformation
of both fermions is cancelled. Almost by definition, the coupling must be an element of the
(pull-back) of the dual bundles V∨− ⊗ V∨−, see appendix A for definitions.

This argument is straightforwardly generalised to arbitrary potential terms as well as
arbitrary spins and leads us to the General Lesson:

General Lesson 2.1. The physics of the matter sector of an Effective Field Theory is
encoded in the geometry of the target manifoldM describing scalar fields, and a collection of
vector bundles VR overM describing higher spin fields. These higher spin fields are sections
of

SR ⊗ Φ∗V −→ Σ, (2.5)

1The mathematical term for the elements of a bundle is section, see appendix A.
2To ensure covariance under field parameterisation, one should consider a covariant derivative with a

metric connection associated to gij . For brevity, we will not consider such a term here as it does not change
the spirit of the analysis. Similar terms are discussed in [45,48].
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with SR → Σ the vector bundle associated with the appropriate spin representation R. The
couplings in the potential between scalar and higher spin fields can be seen as maps be-
tween these bundles and their duals. Any physical quantity then corresponds to differential-
geometric invariants of the target manifold and its bundles.

This collection of observations is called the Geometric Principle [45].

To show the power of the Geometric Principle, let us consider a σ-model with only a
scalar kinetic term for simplicity. The β-function of the metric, βij = ∂

∂ lnµ
gij, must be a

covariant symmetric tensor made out of the metric and its Riemann tensor. At first order
in Rijkl—corresponding to a one-loop computation—it can only be written as3

βij = cGRij + (higher orders) (2.6)

to respect differential-geometric properties. As we will see in section 2.3, this very simple
result obtained only by geometric arguments will have interesting consequences for string
theory.

For a general QFT, the vector bundles over M are a priori unrelated and arbitrary, as
interactions between fields of different spins are also unrelated. In that context, the geometric
approach to effective actions seems not to be the most convenient, and one might ponder
over the usefulness of what we have achieved so far. However, if a symmetry were to relate
fields or different spins, the vector bundles would in turn be related to the geometry of the
target space, which can be as we saw very constrained.

It has been known for a long time [49,50] that the only such possibility is supersymmetry
(SUSY). Originally, the motivation for supersymmetry was to alleviate problems in Renor-
malisation Theory and partly address the hierarchy problem. Indeed supersymmetry leads
to non-renormalisation theorems [51,52] curing the problems of potential infinities occurring
e.g. in corrections to the Higgs mass. While having very interesting consequences for low
energy model building, this feature is not why supersymmetry is of such importance in this
thesis. Starting with the works of Seiberg and Witten [4,5], it was realised, as we shall argue
shortly, that supersymmetric theories exhibit a deep relation with geometry, constraining
the geometry of M so much that it allows one to make non-perturbative exact statements
about the structure of some EFTs. Furthermore, it made clear the existence of a rich net-
work of dualities relating a priori unrelated theories, which have nowadays been extended to
non-supersymmetric cases, see [53] and references therein for an historical account.

The precise structure of the SUSY algebra depends on its representation on spacetimes of
different dimensions and signatures, and we will focus here on four dimensional Minkowski
spaces4, where in that case the algebra is generated by [51]{

QI
α, Qα̇J

}
= 2σµαα̇Pµδ

I
J

{
QI
α, Q

J
β

}
= εαβZ

IJ , (2.7)

where Pµ is the generator of translation, ZIJ , I, J = 1, . . .N , the so-called central charge
and we left the possibility for multiple supersymmetries.

3A term proportional to R is identified as zero by noting that the result must be independent ofM, and
in particular must vanish for flat space.

4For a discussion in various dimensions see [45].
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The fields of the theory then organise themselves into multiplets according to their spin.
In this work we will be mainly interested in chiral multiplets, containing a complex scalar φi

and a left-handed Weyl fermion χiα, whose infinitesimal SUSY transformation is

δφi =
√

2εαχiα δχiα = i
√

2εα̇σµαα̇∂µφ
i + (non-derivative terms). (2.8)

Under a field redefinition φi → ϕi(φ), it appears that the fermions must transform as χiα →
∂jϕ

iχjα to be consistent with (2.8). This transformation rule is that of a vector, or in more
mathematical terms, a section of the tangent bundle of M. Supersymmetry thus forces the
vector bundles V± to be identified with the tangent bundle of the target space (twisted by
the appropriate spacetime spin bundle)! This result has an immediate consequence: By the
Geometric Principle, if the theory contains only scalars and fermions, interactions between
fields are uniquely fixed by the scalar potential V (φ).

Supersymmetry does even better: In four dimensions, the invariance of the supercharges
(2.7) under U(N ) transformations, and the fact that the minimal spinors are either left- or
right-handed forces M be a Kähler manifold5.

This has two consequences: First, M has to have even (real) dimensions, and we can
therefore switch to complex coordinates i, ̄ = 1, . . . , dimC(M), and the metric gi̄ locally
descends from an Hermitian Kähler potential K(φ, φ):

gi̄ = ∂i∂ ̄K(φ, φ) K(φ, φ)† = K(φ, φ) (2.9)

Secondly, while a bit more involved, it is straightforward to show that any deformation
of the supercharges, which are equivalent to turning on a potential term, must descend from
an holomorphic function W (φ):

V (φ, φ) =
∑
i

∂iW∂iW. (2.10)

There is also the possibility of having local supersymmetry, called supergravity (SUGRA).
This happens when there is an invariance of the σ-model under supersymmetry with an in-
finitesimal transformation depending on the coordinates of spacetime. It forces the spacetime
metric to be part of the representation of the SUSY algebra called the gravity supermultiplet.

For N = 1, it contains the spin 2 metric, as well as a spin-3
2

fermionic partner called
the gravitino ψµα. For brevity, we will not go into the details of constructing supergravity
invariants, but rather illustrate its geometric constraints on the target manifold, and how
quantities useful in the rest of this thesis arise.

The presence of a gravity supermultiplet restricts further the set of admissible spacetime
manifolds, and leads to the condition that the target manifold must be Hodge Kähler [54].
Such a manifold is characterised by the existence of a line bundle overM whose first Chern
class is represented by the Kähler form and whose fibre metric is the exponential of the
Kähler potential eK (see appendix A for more details). By the Geometric Principle, the
scalar potential has to be M-geometric invariant, and keeping the four dimensional scalar

5This can be seen by observing that one can define a complex structure on spacetime [45].
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potential to be of the form (2.10) is not tenable anymore: To take a well-defined derivative
of the superpotential, one needs a connection on the line bundle. It is given in this case
by Ki = ∂iK. Similarly, to take the norm one needs both the fibre eK and target space gi̄
metrics. This reasoning leads to the following form of the scalar potential in supergravity
[45,48]:

V (φ, φ) = eK
(
giDiWD̄W − 3WW

)
, Di = ∂i +Ki (2.11)

where the second term comes from the additional gravity supermultiplet. We see again the
power of geometry in dealing with EFTs, as it allowed us to guess correctly the potential by
knowing the structure of the target space.

Supergravity has one more interesting consequence: As fermions are sections of bundles
over Σ, they transform non-trivially under spacetime coordinate redefinitions. We should
then require that the fermions have vanishing vev to avoid any spontaneous breaking of
spacetime symmetries. In the supergravity case, this means that the variation of the gravitino
given by δεψ

I
µ ∼ ∇µε

I must vanish. The presence of such covariantly constant spinors
restricts the possible holonomy Hol0(Σ) of the spacetime manifold. Luckily, the holonomy of
irreducible Riemannian manifolds have long been classified by Berger [55], and the possible
cases, while depending on the dimension of Σ and the number of supersymmetries, are all
known [45,56].

In section 2.3, we shall see that in string theory, spacetime is required to be 10 dimen-
sional. For phenomenological reasons, we will have to require that it splits into the usual
four dimensional Minkowski space and a compact six dimensional compact manifold with
SU(3) holonomy, called a Calabi–Yau manifold. This particular feature will be one of the
keystones of the constraints on the four dimensional low energy effective actions that will
be derived in this thesis, and they will depend directly on the properties of the Calabi–Yau
manifold. These characteristics are expanded upon in the followings sections, as well as in
appendix A.

The results we obtained in this section can be summarised by the following general lesson:

General Lesson 2.2. Supersymmetry selects the bundles in which the fermionic superpart-
ners and the scalar fields φi live. It follows that for supersymmetric EFTs, the couplings of
the Lagrangian are given by canonical geometric objects of M. In particular, in four dimen-
sions the target space is Kähler, and the scalar potential (2.10) (or (2.11) for supergravity)
descends from an holomorphic superpotential.

Furthermore, the possible spacetime manifolds compatible with supergravity are classified
by their holonomy group.

2.2 Compactification of Field Theories

In the last sections, we saw that very general arguments on symmetries impose stringent
restrictions on the geometry of the target manifold as well as the spacetime manifold. A
natural question is then if there can be relations between them beyond symmetries, and in
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particular their topology. Considering string theory will lead us to spacetimes that have a
compact component, constraining the 4D effective actions.

To illustrate the implications of having a compact component in Σ, we start with the
simplest five dimensional toy-model: Spacetime is taken to be Σ = R1,3×S1 with a real field
φ. The compact coordinate y of the circle has the equivalence relation y ∼ y + 2πR, where
R is the radius of the circle, and we choose the Lagrangian to be that of a free field:

L5D(φ) =
1

2
(∂µφ)2 (2.12)

As the compact dimension is periodic, we can expand the field in a Fourier basis, φ(x, y) =∑
k φk(x)eik·y/R. Integrating over the S1, we get a tower of increasingly massive fields, called

a Kaluza-Klein (KK) tower:

S =

∫
R1,3×S1

d4xdyL5D =

∫
R1,3

d4xL4D =

∫
R1,3

d4x
1

2

∑
k≥0

(
(∂µφk)

2 − k2

R2
φ2
k

)
(2.13)

The compactification procedure thus starts with a one dimensional target space M5 in five
dimensions to an infinite dimensional one,M4, from the point of view of a four dimensional
σ-model. It seems that we started from a very simple system and the compactification
procedure made it unnecessarily complicated. If we take the Wilsonian approach however,
the compactification introduced a scale R in a previously scale invariant Lagrangian. If we
are probing energies much lower than the inverse radius of the S1, we can then discard the
whole Kaluza-Klein tower, getting back to a one dimensional target manifold. For more
complicated systems, we will be able to discard interactions, and reduce the number of
degrees of freedom in the effective description.

In string theoretical cases, this procedure will allow us to go from a theory of various
fields and spins to a more manageable four dimensional EFT with fields of maximum spin
two, and with interactions described by a σ-model whose couplings are geometrical quantities
related to those of the Calabi–Yau.

While the case of a single S1 is straightforward, it is natural to ask how to generalise
to the case of an arbitrary compact n-dimensional manifold Y , and how many massless
fields one obtains upon compactification. What we are after are fields that are massless,
and therefore annihilated by the Laplacian6, ∆φ(x) = 0. The solution to this problem is
cohomological in nature, and can be solved in an abstract way. Denoting the set of n-forms
valued on a module7 R as Ωn(Y,R), there are two important maps relating these sets: the
differential d, raising the degree of a form by one, and the codifferential δ, decreasing it
by one. It is then possible to define the de Rham cohomology group Hn(Y,R) as the set of
n-forms that are closed but not exact. In the sequel, we will sometime need to differentiate
between cohomology groups defined over the real numbers R or a different module R, and it

6Note that for curved spacetimes, the Laplacian involves non-trivial terms involving the metric.
7A module is a generalisation of a vector space, see appendix A.
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is useful to define them in the language of homological algebra, as cokernels8 of the map d:

Hn(Y,R) = Coker(d) := Ker(d)/Im(d), d : Ωn(Y,R)→ Ωn+1(Y,R). (2.14)

This definition of the cohomology groups in terms of the cokernel of a map can be generalised
and will be reappear in chapter 7, and is explained in appendix A. The Laplacian on Y ,
defined as ∆ = dδ+ δd, does not change the degree of a form in Hn(Y,R), and can therefore
be considered as a map from the groups to themselves, called an automorphism. When
R = R, it is possible to prove Hodge’s theorem, stating that the cohomology group Hn(Y,R)
of smooth manifolds is isomorphic to the group of harmonic n-forms

Hn(Y,R) ∼= Hn = {ω ∈ Ωn(Y,R)|∆ω = 0} . (2.15)

It has the consequence that each element of the de Rham cohomology group is represented
by a unique harmonic form. We thus reduced our problem of finding harmonic forms to an
algebraic one: that of finding the cohomology groups of Y .

For Kähler manifolds, the presence of a complex structure leads to simplifications: One
can decompose the differential into the Dolbeault operators ∂, ∂, acting on the sets of degree
(p, q)-forms Ω(p,q)(Y ), and it can be proved that the de Rham cohomology groups are related
to those of Dolbeault in the following way:

Hn(Y ) =
⊕
p+q=n

H
(p,q)

∂
(Y ), H

(p,q)

∂
= Coker(∂ : Ω(p,q) → Ω(p,q+1)). (2.16)

The dimensions of the cohomology groups h(p,q) = dimCH
(p,q)(Y ) are called the Hodge

numbers and satisfy various symmetry properties, recalled in appendix A.
As we will see in the next section, some of the Hodge numbers control part of the numbers

of scalar fields in the compactified IR theory. In that sense, we already see that the choice
of the spacetime manifold Σ constrains the possible structure of the target manifold, as it
selects at least part of the scalars and their possible symmetries.

The advantage of this somewhat more abstract approach is that it opens us to the tech-
nology developed in the area of algebraic geometry. Such techniques are very powerful and
allow computations without the knowledge of the metric of Y , and enables one to construct
Calabi–Yau manifolds in an elegant fashion [57]. Moreover, we emphasise again that (co)-
homological groups are topological quantities that do not require an explicit knowledge of
the metric. As we will soon see, string theory will require Y to be of Calabi–Yau type,
for which the metric is not known in all but a few simple cases. The number of fields of
a given type in the reduced theory is then simply given by the dimension of the associated
cohomology groups of the compact space.

There are many applications of these methods to physics. Another important example
is the Dirac quantisation condition: let us consider a (p − 1)-form Cp−1, i.e. an element

8To avoid cluttered notation, we will never differentiate between an element of Hn(Y,R) and a rep-
resentative, in the sense of equivalence class. Moreover, when the module is unambiguous, we will omit
it.
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of the pull-back of TM on Σ. If Σ has a non-trivial topology and admits the presence of
non trivial (p − 1)-cycles Σp−1 ⊂ Σ, there will be line operators exp(iq

∫
Σp−1

Cp−1) in the

spectrum. Using Stokes theorem, it is possible to write the operator in terms of the field
strength Fp = dCp−1 integrated over a p-cycle Πp whose boundary is Σp−1. On an oriented
manifold, there are two possible choices, as one can choose Πp to be the either the “interior”
or the “exterior” of Σp. The two choices must lead to equivalent physics, and thus force the
field strengths to satisfy the Dirac quantisation condition:

Fp
2π
∈ Hp(Σ,Z). (2.17)

The simplest example being the Wilson line, where a 1-form is integrated over a circle. This
circle can then be thought of as the border of either the northern or southern hemisphere
(see figure 2.1). In the familiar example of electrodynamics this is the statement of the
quantisation of the electric and magnetic charges. This illustrates the power of homological
algebra in physics, and this section can be summarised thusly:

Figure 2.1: Example of how a circle can be written as the border of two different 2-cycles,
the hemispheres.

General Lesson 2.3. Finding the low energy spectrum of a higher dimensional theory on
a compact manifold Y is a cohomology problem. Massless scalar fields are determined by
topological invariants whose study is well suited for algebraic geometry. If Y is Kähler, the
massless fields are counted by the Hodge numbers of Y .

Moreover, the presence of non-trivial cycles on Y leads to the quantisation condition
(2.17).

2.3 String Theory: Space-time as a Target Space

So far we have argued that couplings of a σ-model have to behave properly under diffeo-
morphisms and bundle morphisms of the target manifold. The Geometric Principle 2.1 can
indeed be interpreted as seeing the couplings between fields of various spins as local fields
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having general covariance, similar to General Relativity and gauge transformations if we
were discussing spacetime.

String theory takes this deep insight seriously and considers the target space to be space-
time itself ! The spacetime manifold of the σ-model is then only a mere auxiliary space
parametrising the whole theory. For General Relativity, this paradigm is known as the
worldline formalism, where a point-particle takes a one-dimensional trajectory Σ across
spacetime [58]. A question one may ask is what happens the point-like elementary par-
ticles are replaced with higher dimensional objects. The next natural case is to replace the
worldline by a two-dimensional world-sheet. This choice offers a richer realm of possibilities
as there are two kinds of possible strings: It can be either open or closed—as Σ can be a
closed or open surface—and leads to different spectra upon quantisation.

The two dimensional case turns out to be incredibly constrained. The σ-model describ-
ing the propagation of the string through spacetime is a Conformal Field Theory (CFT).
Such theories are more manageable than usual QFTs and the conformal group is infinite
dimensional in two dimensions, making the quantisation of a string in a flat background
completely solvable.

Another motivation for considering strings rather than points is that strings naturally
come with a length scale `s. It offers a natural ultraviolet cutoff to the quantum theory,
and is in principle the only dimensionful parameter of string theory. The presence of such a
natural cutoff indicates that string theory can be used to describe all energy scales, as it is
not plagued by the infinities encountered in usual Quantum Field Theories, and makes it a
potential candidate for a UV complete Theory of Everything.

In order to set the notation and lingo that shall be used extensively throughout this
thesis, we now shortly review the well-known properties of string theory. To avoid confusion
with the now familiar idea of a target manifold as a collection of fields representing particles,
as described in the previous sections, we denote the target space of the string as the d-
dimensional pseudo-Riemannian manifold (X , G), with local coordinates XM , M = 1, . . . , d,
and the 2-dimensional world-sheet as a Riemannian manifold (Σ, h) with local coordinates
xa, a = 1, 2.

As we will require the presence of fermions in the spectrum of the string, for phenomeno-
logical reasons among others, we will directly consider supersymmetric strings, whose bosonic
part, the Polyakov action, is nothing other than the linear σ-model

SP = − 1

4πα′

∫
Σ

d2x
√
−hGMNh

ab∂aX
M∂bX

N . (2.18)

where α′ = (`s/2π)2—the so-called Regge slope—is the only dimensionful parameter of the
theory. As hinted previously, the Polyakov action has two very important symmetries in
addition to general covariance: it is invariant under an SO(1, d− 1) transformation of XM ,
and under a Weyl rescaling of the metric hab → Ω(x)hab, making it a CFT. The latter is of
paramount consequence: Classically, the conservation law associated to Weyl symmetry is
the tracelessness of the world-sheet energy momentum tensor T aa = 0. Quantum dynamically,
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it can in principle get anomalous contributions9

〈T aa (x)〉 = cR(x) + βMNh
ab∂aX

M∂bX
N . (2.19)

However, anomalies associated to gauge symmetries are well-known to be inconsistent and
we must therefore ensure that they vanish, leading to the conditions c = 0 = βMN . The
vanishing of the metric β-function is astonishing: From the Geometric Principle, we argued
that it is given at leading order by (2.6), and therefore naturally incorporates Einstein
vacuum equations.

The c-function on the other hand is a topological invariant and is known to be propor-
tional to (d−10) in the supersymmetric case [60]. This is a remarkable result: The dimension
of the physical spacetime is a consequence of considering a quantum modelling of strings!
It means that, whereas in usual Quantum Field Theories the physical spacetime is chosen
arbitrarily, panning to the string theoretical paradigm we are no longer free to start with
four dimensional models. This result might be a drawback of string theory rather than a
success, as we observe only four dimensions. However, we saw in the last section that if the
extra six dimensions are sufficiently small, we can use compactification techniques to find an
EFT valid at distances where the resulting KK tower can be neglected.

For a flat spacetime X = R1,9, the spectrum of the Polyakov action (2.18) can be found
exactly, and one finds a tower of fields of higher and higher spins and masses. Moreover,
in the presence of world-sheet fermions, boundary conditions lead to two possible sectors
for either end of the string, called the Neveu-Schwarz (NS) and Ramond (R) sectors. In
the presence of all four possible combinations, the theory contains a tachyon, which has
to be removed in order to avoid truncating the spectrum, in a procedure called the GSO
projection. To make a rather long story short, we will only state that there are two types
of projection with a supersymmetric massless spectrum, named Type I and II, after the
number of supersymmetries their spectrum exhibits. In the latter case, there are then two
possibilities to make the GSO projection, dubbed A and B.

In this thesis, we will focus on Type II theories, as they can be shown to be dual to
type I theories, in a sense that shall be explained in section 2.4.2. Both Type II theories
share a common feature: Their massless spectrum are N = 2 supergravities, whose bosonic
sectors contain a scalar field, the dilaton Φ, a symmetric 2-tensor GMN , a 2-form BMN called
the Kalb-Ramond field, as well as so-called RR p-forms of various degrees, named after the
sector from which they originate. The spectra are summarised in table 2.1.

We started with a flat background and an immediate question is that of more arbitrary
backgrounds. Arguments about scattering amplitudes of strings [61] show that a modification
of the Polyakov action is necessary, but that the massless spectrum holds and that GMN has
to be identified with the metric of X . This means that string theory is a theory of quantum
gravity, which is in part what prompted the phenomenal body of work in string theory since
the eighties. For phenomenological reasons, we are led to demand that spacetime factors
into four large dimensions (which we take to be Minkowski space)) and another compact

9This is valid only in a particular renormalisation scheme. For a discussion of scheme independent
quantities in two and four dimensions, see [44,59] and references therein.
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Type IIA field Name Type IIB field
Φ Dilaton Φ

GMN Metric GMN

BMN Kalb-Ramond 2-form BMN

C1, C3 RR p-forms C0, C2, C4

Table 2.1: Massless bosonic spectrum of the Type II superstring theories.

six dimensional manifold Y3 that has to have a small volume to have eluded experimental
constraints so far:

X = R1,3 × Y3 (2.20)

From General Lesson 2.2, the possible manifolds Y3 are restricted as we need to preserve
supergravity. A careful inspection of the gravitini SUSY variation shows that the holonomy
group of spacetime has to be SU(3) [60]. Such manifolds are of the Calabi–Yau type and
have been the focus of a great body of research of both mathematics and physics (see e.g. [57]
for reviews).

So far we have only discussed the closed sector of string theory, where the world-sheet
is a compact surface. If it admits a boundary, the string spectrum admits a richer zoology
of fields. Pictorially, the string is open-ended, and its ends can span a p + 1-dimensional
submanifold of X , called a Dp-brane. Upon quantisation, the spectrum admits a U(1) vector
field AM . We can also imagine stacks of n Dp-branes on top of each other, enhancing the
U(1) gauge group to U(n). In the semi-classical limit, they can be understood as the degrees
of freedom associated to the fluctuating strings “pushing and pulling” the branes.

One may wonder if it is possible to obtain gauge fields charged under other groups than
U(n). A possibility is to consider X to be an orientifold, a manifold quotiented by a discrete
group. The invariant points in the space time manifold under the discrete groups are called
O-planes and lead to SO(n) or Sp(n) groups. In fact, the presence of O-planes is required
to have a consistent theory. Branes carry a positive tension —a generalisation of the charge
for one dimensional objects—which has to be cancelled so that the total charge in the
compact space vanishes as a consequence of Gauss’s law, and generically leads to only one
supersymmetry in four dimensions and therefore offers a nice way to reduce supercharges to
a more phenomenologically desirable number.

String theory computations on an arbitrary spacetime manifold X are two-dimensional
CFTs that, while very constrained, are often ill-suited for practical purposes. It however
admits two expansions: The first is an expansion in α′, which allows us to discard the tower
of increasingly massive particles. This leaves us with an effective description in terms of
fields falling in supergravity multiplets, but we are still left with an a priori non-perturbative
description. However, when computing partition functions, one notices that there exists
a second expansion controlled by the vacuum expectation value of the dilaton, through a
quantity called the string coupling gs = e〈Φ〉. In the limit where gs is small, an inspection
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of the correlation functions shows that there is a 10D supergravity description in terms of a
Lagrangian.

For instance, the Lagrangian for Type IIB admits the so-called democratic formulation
[62]. The bosonic part of the closed sector is given by

`8
s

2π
SIIB ⊃

∫
X
d10xe−2Φ

√
−G

(
R + 4∂MΦ∂MΦ

)
− 1

2
e−2Φ

∫
X
H3 ∧ ∗H3

− 1

4

4∑
p=0

∫
X
F2p+1 ∧ ∗F2p+1 −

∫
X
C4 ∧H3 ∧ F3, (2.21)

where the field strengths are defined as

H3 = dB2, F1 = dC0, F3 = dC2 − C0dB2,

F5 = dC4 −
1

2
C2 ∧ dB2 +

1

2
B2 ∧ dC2. (2.22)

This Lagrangian however does not quite reproduce correlation function computations ob-
tained from path integrating the string σ-model, and has to be supplemented by the relations
F9 = ∗F1, F7 = − ∗ F3, F5 = ∗F5 at the level of the equations of motion. The open sector
can also be described by an action through the Chern-Simons and DBI terms, omitted for
brevity

We saw that string theory is a very powerful framework encapsulating various features
of field theory naturally, which are summed up by:

General Lesson 2.4. String theory uniquely sets the possible dimensions and supersymme-
try forces the compact extra dimensions to be a Calabi–Yau manifold. Upon quantisation,
the massless excitations of the strings contain a graviton, making string theory a candidate
for Quantum Gravity. We note that in the presence of fluxes, this condition can be modified,
see section 2.4.1.

Moreover, the massless spectra admit a supergravity Lagrangian description in the limit
where gs is small. The action for Type IIB is given in equation (2.21).

We note that the literature is quite cavalier regarding the terminology and often uses
Type II string theory and Type II supergravity interchangeably, as the massive tower can
be omitted in most of the semi-realistic constructions, as well as sometimes blurring the
lines between perturbative and non-perturbative statements. In this thesis, we attempted to
differentiate the terms as best as we could, in order to allow one to understand the conditions
where a given statement is valid.

2.4 Compactification of Type II Supergravity

In the previous section, we saw that the presence of gravitini in Type II string theories
requires the compact dimensions to be a Calabi–Yau 3-fold (Y3, g). We can now combine this
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result with General Lesson 2.3 to Type II supergravities compactified to four dimensions. We
are interested in quantum regimes, and the metric will hence fluctuate from its background
value gµν → gµν + δgµν , µ = 1, · · · , 6. We thus have to require that it does not change the
Calabi–Yau condition, which is equivalent to Ricci flatness. After having fixed a gauge —in
our case the Lorenz gauge ∇µgµν = 0—to avoid overcounting degrees of freedom, one is led
to the condition

R(g + δg) = 0 −→ ∆δgµν + 2R ρ σ
µ ν δgµν = 0. (2.23)

Switching to complex coordinates xµ → (zi, z ı̄) we have to separate between two cases:

1. Deformations with one index of each type, corresponding to a deformation of the Kähler
(1, 1)-form J = gi̄dz

i ∧ dz̄ ̄, named Kähler deformations. The condition (2.23) is then
that δg = δgi̄dz

i∧dz ̄ is an harmonic form and by Hodge’s theorem, we can decompose
it on a basis {ωa} of H(1,1)(Y3,R)

δg
h1,1∑
a=1

taωa, ωa = ωai̄dz
i ∧ dz ̄. (2.24)

2. The part of the metric δgı̄̄ that has only anti-holomorphic indices, for which (2.23) is
equivalent to

∆∂ δg
i = ∆∂ δg

i
̄dz

̄ = 0.

This means that δgi ∈ H(0,1)(Y3, TY3), as the coefficients carry an index i. We cannot
directly use Hodge’s theorem as in the previous case, as the ring is TY3 and not R
or C. Using the holomorphic (3, 0)-form Ω however, one can define an isomorphism
between this cohomology group and H(2,1)(Y3,C) that can be expanded over a basis
{bα} of harmonic (2, 1)-forms:

Ωijkδg
k
l

=
h2,1∑
α=1

Uαbαijl. (2.25)

Now that we have catalogued the possible deformations, what happens from the point of
view of the four dimensional EFT? Considering the full spacetime R1,3×Y3, the deformation
of the Calabi–Yau metric will give rise to two types of scalar fields, called moduli, in four
dimensions. We will have h2,1 complex structure moduli coming from the holomorphic three-
form, as well as h1,1 real fields from the Kähler form.

In the closed string sector, we however also have the Kalb-Ramond two-form B. We can
thus combine it with the Kähler form into a complexified two-form

Jc = B + iJ. (2.26)

The argument above generalises straightforwardly, and we are left with h1,1 complex scalar
fields Uα. We have thus found the following property of the target manifold of the four
dimensional EFT:

22



General Lesson 2.5. The target manifold of the effective field theory of Type II supergrav-
ity compactified on a Calabi–Yau three-fold Y3 contains a sector controlled by the possible
deformations of the metric of the compact dimensions called moduli. In the absence of O-
planes, there will be h1,1 Kähler moduli T a = ba+ita, as well as h2,1 complex structure moduli
Uα = uα + iνα. In the presence of O-planes, this number is smaller.

In chapter 3, we will consider a concrete example of Type IIA compactification in the
presence of O-planes, but before doing so, we will however need an additional ingredient.

2.4.1 Flux Compactification

By construction, the moduli are massless and therefore appear at first to be ill-suited for
semi-realistic models as the Hodge numbers for many Calabi–Yau 3-fold can be of order one
hundred, which would induce a significant number of fields that would be observed at low
energies. The may however acquire a mass when the field strengths associated to p-forms
have a non-trivial vacuum expectation value, called fluxes.

In Type II compactifications, which are the ones that are of interest in this work, we will
encounter two types of fluxes: Those associated to the Kalb-Ramond three-form, H3 = dB2,
and those coming from the Ramond sector, p-forms Fp = dCp−1. We will refer to them as
NS and RR fluxes respectively, from the sector they arise. One may also encounter metric
fluxes, but those can be shown to be dual to NS-fluxes. As there are terms of the schematic
form

√
−G(Fp)

2 in the ten dimensional supergravity action, see e.g. (2.21) for Type IIB, the
moduli will acquire a potential upon reduction—and therefore a mass—in the effective four
dimensional theory.

Fluxes can have vacuum expectation values that depend on the coordinates of the inter-
nal manifold Y3 as they do not induce a breaking of four-dimensional Poincaré invariance
and satisfy a quantisation condition (see General Lesson 2.3). However, the presence of
spatial coordinates will modify the supersymmetric variation of the gravitini (see e.g. [63]
for a review). In General Lesson 2.2, we saw the possible spacetime manifold supporting
supergravity are related to the presence of covariantly constant spinors. The presence of
non-vanishing fluxes therefore modifies this condition and restricts the structure group of
the internal manifold, i.e. the group of transformations needed to patch the orthonormal
frame bundles together10, rather than its holonomy group. For Calabi–Yau manifolds, the
structure group is SU(3), i.e. equal to its holonomy group. It has to be noted fluxes will
generically preserve only N = 1 supersymmetry. This is however not problematic, as we
have already seen that the presence of O-planes already reduces the number of spacetime
supersymmetries.

10For a Riemannian d-manifold, the group is SO(d), as the respective coordinates of two overlapping
patches are related by an SO(d) transformation.
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2.4.2 Unification of String Supergravities

As hinted in section 2.1, it was realised in the mid-nineties that there exist theories that are
a priori unrelated yet describe the same physical processes. An illuminating example is to
consider coupling a σ-model to (p− 1)-forms Cp−1 that appears only in the Lagrangian via
its kinetic term in a covariant derivative Fp = dCp−1:

L = Lσ +
1

2
τ(φi)Fp ∧ ∗Fp. (2.27)

The equations of motion depend only on the field strength

dGp =0, Gp =
∂L
∂Fp

= τ ∗ Fp, (Equation of motion) (2.28)

dFp =0. (Bianchi identity) (2.29)

These equations are clearly invariant under the exchange Fp ↔ Gp. Furthermore, any linear
combination also leaves these equations invariant. We conclude that classically, this system
has modularity, namely an invariance of the dynamics under an SL(2,R) redefinition of the
degrees of freedom. Quantum mechanically, a consequence of General Lesson 2.3 is that
only linear combinations with integer coefficients are allowed, reducing the duality group to
SL(2,Z). In the sequel, we will always consider duality groups of quantum systems.

It is furthermore possible to show that under such a duality transformation, the function
τ transforms as

τ −→ aτ + b

cτ + d

(
a b
c d

)
∈ SL(2,Z). (2.30)

A particular example is the S-duality, where we make the changes(
Fp
Gp

)
−→

(
F̃p
G̃p

)
=

(
0 1
−1 0

)(
Fp
Gp

)
τ −→ τ̃ = −1

τ
. (2.31)

The duality sends a system described by the degree of freedom Fp with a coupling τ to

a system described by F̃p with a coupling τ̃ . If we choose τ to be a small constant, the
S-duality sends it to a system that does not admit a perturbative description. This is one
of the simplest example of the so-called weak-strong duality.

The arguments presented here generalise to any Lagrangian involving only field strengths.
In that case it is possible that the dual dG̃p = 0 does not admit a solution descending
from a Lagrangian. The duality thus relates the non-perturbative, non-Lagrangian sector of
theory space to the more manageable sector consisting of σ-models coupled to p-forms. Such
dualities are however very difficult to find in practice, as one does not only need to find the
dual degrees of freedom, but also establish the duality for the whole dynamics.

Type IIB string theory exhibits a similar duality, where the role of τ is given by the
axio-dilaton

τ = C0 + ie−Φ = C0 +
i

gs
(2.32)
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We have already argued in the last section that if gs is small, then the massless fields can
be described in terms of ten-dimensional supergravity. The duality group will then take
Type IIB supergravity to system with large gs, indescribable by supergravity. In chapter
4, we shall see that the appropriate description for the non-perturbative dual of Type IIB
supergravity is F-theory, where all the physical information is encoded in terms of a torus
fibration over the compact extra dimensions Y3.

There is another type of duality through compactification of string theories. It can be
shown that the reduction of Type IIB string theory on a circle of radius R produces the same
spectrum as that of Type IIA on a circle of radius α′/R. This non-trivial result attracted a
lot of attention and it was soon realised that such dualities were in fact ubiquitous in the su-
pergravity regime and beyond, relating Type II, type I and heterotic supergravities—another
type of string theory containing a mix of bosonic and superstrings—as well, depending on
the type of compactification.

In fact, all supergravities coming from string theory can be obtained via compactification
of eleven dimensional supergravity on a one-dimensional compact space, see [60] for explicit
computations. Eleven is the highest dimension that can host supergravity and has led
string theorists to think that this is the sign of something deeper. Its bosonic content is
extremely simple, as it contains only a metric and a 3-form C3, leading to the simple bosonic
Lagrangian11:

S11 =
1

κ2
11

∫
d11x
√
−g
(
R− 1

2
|G4|2

)
G4 = dC3, (2.33)

where G4 is the field strength associated to the 3-form and is commonly referred to as the
G4-flux. The different supergravities can be obtained from this action. However we know
that the supergravity regime is appropriate only when the string coupling gs is small. The
question is then whether this regime is the low-energy limit of a theory of 11-dimensional
quantum gravity. The precise structure of this conjectured M-theory is yet unknown. Despite
the tremendous progress made since its inception [7,64,65], most of what is known has been
discovered via duality arguments similar to those discussed above, and a full non-perturbative
description is still missing.

Now that we have explained the relationship between the geometry of the Effective Field
Theories target manifold and the structure of the compact dimensions, we are ready to
explore the constraints given by string theory on the geometry of M. In the next chapter,
we will study the closed sector of type IIA, while the rest of the thesis will focus on the open
sector of type IIB.

11There is also a topological Chern-Simons term that we can safely ignore in our discussion.
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Chapter 3

Constraints From Field Ranges

In the previous section we have seen in string theory, there two are different sectors depending
on whether the string is closed or opened. In this section we will explore constraints on four
dimensional Effective Field Theories (EFTs) associated to the closed sector. As described in
section (2.4) the dimensional reduction of the massless excitations of such strings give rise
to a myriad of massless fields that need to be given a mass in a procedure called moduli
stabilisation. The moduli can then be used to build semi-realistic model of inflation, see [26]
for a review of inflationary models in the context of string theory.

Field theoretic models of inflation can be categorised in two main classes, depending on
whether the inflaton φ is displaced over distances that are super-Planckian, called large field
inflation, or sub-Planckian, dubbed small field inflation. From a purely effective perspective,
large field inflation is more attractive than its small field field counterpart, as it can be
realised by extremely simple potentials and does not require any fine tuning of the initial
value of the field.

Such models however predict significant primordial tensor modes and as of the time
of writing, no such modes have been observed [66]. A possible explanation for this lack
of experimental results could be that the effective approach is misleading because there
are Quantum Gravity effects actually obstructing this naively natural possibility, by for
instance limiting the available field range over which the potential remain flat enough to be
sub-Planckian. Through their connections to primordial tensors, possible field excursions
therefore offer a interesting area to explore the constraints on four dimensional EFTs from
string theory.

A possible objection to super-Planckian field displacements from an effective point of
view is that after UV degrees of freedom have been integrated out, one expects the potential
of the inflaton φ to be an infinite tower of Planck scale suppressed operators

Veff(φ) =
∑
n>0

cn
φn

Mn−4
Pl

, (3.1)

and thus when the field displacement is of order MPl, control over the theory is lost and
the EFT breaks down. A possible way around it could be that the UV physics is invariant
under an additional symmetry controlling the tower beyond naive dimensional analysis. On
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the other hand, it is expected that there are no global symmetries in Quantum Gravity [21],
and at this point, the way to proceed is not clear as the UV theory of gravity is not known
and we cannot therefore perform an analysis of quantum corrections.

A way to tackle the problem is to use general expectations of properties of Quantum
Gravity such as the Weak Gravity Conjecture (WGC) [20, 67–75] or analyses of entropy
bounds [76,77]. In this chapter we shall use string theory as the UV completion and explicitly
study these questions in such a framework.

We will be mainly interested in fields arising from the closed sector of string theory
compactification as candidates for fields that can support super-Planckian excursions and
therefore possibly large field inflation. Such fields split in two categories, moduli and axions
differing in a number of ways: The most important is that axions do not appear non-
perturbatively as an expansion in the moduli vacuum expectation value (vev) in the Kähler
potential due to a shift symmetry. Moduli fields have been considered as possible inflaton
candidates that could support super-Planckian excursions, see [26] for a review, [78] for
earlier work.

Models where the role of the inflaton is played by moduli however have two problems:
First, controlling Planck suppressed operators remains an obstacle in the absence of a UV
symmetry, and second, moduli values are also parameters controlling the EFT and their
possible range is bounded within the controlled setup. If their values are too small there
are large corrections, while for too large values the cut-off scale of the theory—the string or
Kaluza-Klein scale for instance—becomes too low.

Even worse, the Kähler potential depends on the moduli and thus so does their target
space metric, in such a way that the canonically normalised fields are logarithmic in the
moduli value. Schematically, for a model with only one modulus c, we have

gcc(c) = ∂c∂cK(c) ∼ c2 ⇒ φ ∼
∫

dc
√
gcc
∼ log c. (3.2)

The displacement distance of the canonical field is exponentiated as a modulus variation
and therefore one is fighting for control against an exponential. This fight could be won
if the coefficient in the exponent can be controlled in some way, but it typically depends
on geometric invariants of the Calabi–Yau, rather than flux numbers which could be tuned
more easily. It is thus hard to have full control over super-Planckian field excursions in those
cases while keeping a high cutoff scale, although we are not aware of a general proof against
such scenarios.

Conversely closed string axions—fields coming from the reduction of RR of Kalb-Ramond
p-forms—do not naively appear to suffer from such difficulties: Their vevs do not control
any EFT expansions and they do not appear in the (perturbative) Kähler potential, and
therefore their target space metric is also independent of their vevs. Moreover these axions
come from p-forms and keep a remnant continuous shift symmetry broken to a discrete one
by non-perturbative effects.

This symmetry makes them attractive candidates to get control over super-Planckian
displacements. On the other hand, this periodicity appear at the same time to make super-
Planckian periods impossible, see [23] for the key original paper and [79] for the most recent
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analysis (while for example [80, 81] study possible exceptions). A way around it might be
to consider mixing of two (or more) axions in such a way that their combined contribution
reaches an effective super-Planckian decay constant, called the alignment mechanism [24].
This mechanism has been extensively studied for string theory axions, see [26] for a review
and [82–88] for recent work. More relevant for us is the study by Palti [87] of such mechanism
in the context of Type IIA supergravity compactifications, where it was shown that when
taking backreaction effects into account, the target space metric of the axions is modified so
as to precisely cancel any enhancement of the axion periodicity.

The main focus of this chapter will be on a different idea for realising super-Planckian
displacements with axion, termed axion monodromy [25,89]. The basic idea is to induce terms
in the superpotential breaking the shift symmetry, by for instance turning on a mass term,
and “decompactify” the axionic target manifold, therefore enabling large field excursions as
the metric is constant from point of view of the axions. For an axion field ρ we have by
opposition to the modulus case

gρρ = ∂ρ∂ρK = const ⇒ φ ∼ ρ, (3.3)

and excursions of the canonical field are only linear in the axion variation, allowing for
greater control.

In the case of closed-string, this effect can be generetaed with D6-branes in the Type IIA
case [90], D5-branes in Type IIB [25], or with background fluxes. Background fluxes have
long been known to induce shift breaking potentials, but have only recently applied to large
field inflation [91–103]. Recent work has also studied axion monodromy induced by non-flux
effects [90, 104].

Both mechanisms share the feature that there exists an integer parameter we shall call
N such that for N = 1 the field remain sub-Planckian and is then parametrically increased
to super-Planckian values by tuning N to be large. We shall focus here on the backreaction
of N on the target manifold metric, as it exhibits the right properties to form part of cen-
sorship mechanism for large field displacements in string theory. The backreaction involves
gravitational physics and modify the metric of the axion target manifold, thus determining
the distance it can travel. Further, from the EFT point of view we are free in choosing
the target space metric, and it is typically considered to be constant, but the target mani-
fold of string theory—or more precisely supergravity—is highly structured and constrained,
e.g. the Kähler potential has a logarithmic behaviour due to supergravity, and its singu-
larity structure captures highly non-trivial non-perturbative quantum gravitational physics.
The cancellation of N found in [87] for alignment scenarios are examples of this behaviour
for which the form of the Kähler potential plays a key role, and blindly taking the target
manifold metric to be constant, or even arbitrary, one would not be made aware of those
effects.

For axion monodromy the parameter N is associated with the number of periods that
the axion traverses and its backreaction effects thus the backreaction of the energy density
induced by its vev as it moves along its potential. For sufficiently smooth and diluted flux
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background, the backreaction of N is captured at leading order by its effect on other moduli1.
To study this effect and determine its consequences on the possible axion excursions, one
must be careful to account for any Quantum Gravity feature of string theory that affect this
calculation.

We therefore restrict ourselves to a framework as clean and simple as possible and choose
to study moduli stabilisation in Type IIA flux compactification on a Calabi–Yau manifold
[106,107] or its twisted torus cousin [108,109] (we again refer to [63] for a more complete list
of references on these topics).

In this setting, moduli stabilisation is realised by a perturbative process, and one only
need to consider tree-level expressions for the Kähler potential and superpotential. This will
enable us to solve the backreaction of N explicitly and precisely for several semi-realistic ex-
amples and is moreover a setting for which the uplift to 10-dimensional supergravity solutions
is well-understood, adding a further level of control.

In particular, we will focus on the backreaction of the axion vev on its target space metric
and thereby its excursion distance. We note that there are several studies of backreaction
of axions vevs for axion monodromy scenarios in the literature for different settings focusing
instead on the flattening effect of the potential or on possible destabilisation of the vacuum.
See for example [100, 101, 110–114]. Perhaps most similar in a technical sense to our Type
IIA settings are the non-geometric compactifications studied in [96–98,102] which appear to
share some features with our constructions.

This chapter is structured as follows: After a short review of Type IIA flux compactifi-
cation in section 3.1, we study backreaction effects in axion monodromy scenarios in section
3.2. Our results are summarised in section 3.3.

3.1 Type IIA Flux Compactification

We have argued in chapter 2 that Type II supergravity compactifications lead to an N = 1
supersymmetric effective action in four dimensions, characterised by a superpotential K and
a superpotential W depending on the moduli of the three-fold. However, while General
Lesson 2.5 gave us information on the field content of the four dimensional EFT, it did
not tell us anything about its dynamics, namely the functional form of K and W . We here
shortly review how to obtain these quantities in a Type IIA setting, starting with Calabi–Yau
and then orientifold compactifications, and finally turning on fluxes.

For a Calabi–Yau without any fluxes or O-planes, the compactification preserves enough
supercharges to obtain an N = 2 supersymmetric four dimensional Effective Field Theory,
and the relevant quantities can be constructed by counting the massless fields coming from
the IIA supergravity spectrum. We already know from General Lesson 2.5 that there are
h1,1 Kähler and h2,1 complex structure moduli. Additionally, we have to take into account
the fields coming from the dimensional reduction of the two RR forms, which admit a

1See [105] for an analysis of backreaction in a non-dilute region within the context of large field inflation.
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Type number Bosonic Content
Gravity multiplet 1 (gµν , A0)
Vector multiplets h1,1 (Aa, ba, ta)

Hypermultiplets h2,1 (uα, να, ξ
α, ξ̃α)

Tensor multiplet 1 (Bµν ,Φ, ξ
0, ξ̃0)

Table 3.1: Supermultiplets arising from the closed sector of Type IIA compactified on a
Calabi–Yau three-fold. Note that the bosonic content is given in terms of real fields.

decomposition into harmonic forms using Hodge’s decomposition2 (2.16) :

C0 = A0(x), C3 = Aa(x) ∧ ωa + ξK(x)αK − ξ̃K(x)βK , (3.4)

where {ωa} is the basis of H1,1(Y3) already used in section 2.4 and
{
αK , β

K
}
, K = (0, α) =

0, 1, · · · , h2,1 forms a symplectic basis basis of H3(Y3), satisfying
∫
Y
αK ∧ βL = δLK . The

real fields appearing in this decomposition can be combined into N = 2 supermultiplets,
as summarised in table 3.1. Note that in four dimensions, one can use Poincaré duality to
transform the 2-form Bµν into a 1-form, giving rise to an additional hypermultiplet.

In the absence of fluxes, there is no potential and the target space splits into a direct
product Mhyper ×Mvector. As a consequence of General Lesson 2.2, N = 2 supersymmetry
imposes constraints on the two factors and therefore their Kähler potentials. For a Calabi–
Yau three-fold, it can be shown that they take the form [115]

KCS = − ln

(
i

∫
Y3

Ω ∧ Ω̄

)
, KK = − ln

(
4

3

∫
Y3

J ∧ J ∧ J
)
. (3.5)

In the absence of a superpotential, this totally fixes the effective field theory coming from
the closed sector. We however want to now consider an orientifold, to generically get N = 1
supersymmetry, which projects out some of the fields. The Kähler potential will therefore
be inherited from the extended supersymmetry of the original theory and will be of the form
(3.5).

In Type IIA, the orientifold projection is chosen to be a combination of world-sheet parity,
the fermion number (−1)F and an anti-holomorphic involution3 σ of the three-fold Y3 [106].
The involution is a map that acts on the local coordinates of Y3 as σ : zi → z̄ ı̄, and globally
acts on the Kähler and holomorphic forms as

σ∗J = −J, σ∗Ω = Ω, (3.6)

An invariance of the massless fields of table 2.1 under the orientifold projection requires the
involution to act on them as

σ∗B2 = −B2 σ∗Φ = −Φ σ∗C1 = −C1 σ∗C3 = C3 . (3.7)

2We follow the usual notation of [106,107]
3An involution on X is a map σ : X → X satisfying σ2 = IdX .
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One of the results of General Lesson 2.5 was that Kähler moduli arise from the complex-
ified Kähler form Jc = B2 + iJ by expanding it on a basis of harmonic (1, 1)-forms. The
involution has no effect on this space, as there have the same numbers of holomorphic and
anti-holomorphic coordinates, so we can separate the cohomology groups in even and odd
subspaces H1,1(Y3) = H1,1

+ (Y3)⊕H1,1
− (Y3) of respective dimensions h1,1

+ and h1,1
− . The expan-

sion of Jc is therefore performed only over odd forms, and give rise to h1,1
− < h1,1 complex

scalars T a = ba + ita. The Kähler potential (3.5) for that sector is thus given by

KK = − ln

(
4

3
κabct

atbtc
)
, κabc =

∫
Y3

ω−a ∧ ω−b ∧ ω
−
c (3.8)

where κabc is called the triple intersection number of Y3.
The hypermultiplet sector, on the other hand, can be shown to be summarised by the

reduction of the complexified 3-form [106]

Ωc = C3 + 2iRe(CΩ), C =
√

8e−(Φ+KK)/2, (3.9)

and an argument similar to that of the Kähler sector can made, as we can also separate H3

into an even and odd part, each of dimension h2,1 + 1. This can be seen from the Hodge
diamond of a Calabi–Yau three-fold, see appendix A, and using equation (2.16). Ωc being
even under the involution, we deduce that the orientifold projection projects out half of the
h2,1 + 1 N = 2 hypermultiplets, containing two complex scalars each. The surviving scalars
reorganise with their fermionic partners to form h2,1 + 1 N = 1 supermultiplets. A careful
analysis reveals that the Kähler potential for that sector is given by the simple formula

KCS = −2 lnV ′ − ln(S + S) +O(e−u), (3.10)

with S = s+ iσ a complex scalar field coming from a hypermultiplet and

V ′ = dαβγ
6
vαvβvγ, uα =

V ′

∂vα
. (3.11)

vα are fields related to the local coordinates ofMCS. From now on, we will work in the large
complex structure limit uα � 1 and we can therefore neglect the exponential corrections.
One may wonder about the striking resemblance between the first term of KCS and equation
(3.8). This is in fact not an accident: We have seen that Type IIA string theory compactified
on a circle is dual to its Type IIB counterpart compactified on a circle of inverse radius.
A generalisation of this duality, called mirror duality, relates Type IIA compactified on a
Calabi–Yau Y3 to Type IIB compactified on a different Calabi–Yau Y ′3 . This manifold, called
the mirror manifold of Y3, has the property that its Hodge diamond is the mirror of the
original manifold: hp,q(Y3) = h3−p,q(Y ′3). This has for effect to exchange the Kähler and
complex structure moduli, and V ′ can be interpreted as the volume of Y ′3 .

At this stage of the discussion, we have not yet turned on any fluxes, and the moduli
remain massless. The fluxes can also be written in terms of harmonic p-forms compatible
with the orientifold projection:

〈H3〉 = hαα
α + h0β

0, 〈F2〉 = −maω−a , 〈F4〉 = eaω̃
a
+, (3.12)
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where H3 = dB3, Fi = dCi, and we used Poincaré duality to define a basis
{
ω̃a+
}

of H2,2
+ .

The expectation value is taken over the coordinates of the compact manifold, and the flux
numbers hα,ma, e0 are integers by General Lesson 2.3. The superpotential is then obtained
by reducing the Type IIA ten dimensional action. We note that the presence of RR fluxes,
the Kalb-Ramond field acquires a mass m0 through a Stückelberg-like mechanism and one
has to reduce the ten dimensional action of massive supergravity. Its precise form is not
relevant to our purpose, and the resulting superpotential is found to be given by [106]

W = e0 + ih0S − ihαUα + ieaT
a − 1

2
qabT

aT b + i
mabc

6
T aT bT c. (3.13)

where we defined qab = κabcm
c, mabc = m0κabc. To summarise, we have found that

General Lesson 3.1. The compactification of Type IIA supergravity on a Calabi–Yau ori-
entifold Y3 gives rise to h1,1

− Kähler moduli T a = ba + ita and additional h2,1 + 1 complex
scalar fields U i = ui + iνi and S = s + iσ coming from the dilaton and complex structure
moduli. The full Kähler potential associated to the scalar manifold M in the large complex
structure limit is given by

K = KCS +KK = − ln
(
S + S

)
− 2 lnV ′ − ln

(
4

3
κabct

atbtc
)

(3.14)

with V ′ is defined in equation (3.11). Turning on fluxes, a perturbative superpotential

W = e0 + ih0S − ihαUα + ieaT
a − 1

2
qabT

aT b + i
mabc

6
T aT bT c (3.15)

is generated.

Additionally, there are non-perturbative effects, coming in particular from Euclidean
2-branes4 wrapping even three-cycles. The induced superpotential looks like

WNP =
∑
I

AIe
−aI0−aIαUα (3.16)

with I running over the different instantons, while the constants aI0, a
I
λ refer to combinations

of 3-cycles wrapped by the instanton. Notice that in the absence of fluxes, the imaginary part
of the moduli have a discrete shift symmetry, and are named axions after their QCD coun-
terpart proposed by Peccei and Quinn [116]. In the presence of fluxes, this shift symmetry is
broken by the perturbative potential. If the real part of the moduli has large enough values,
the non-perturbative terms are exponentially suppressed and the perturbative superpotential
dominates.

4A Euclidean 2-brane, named E2 brane, is a membrane filling only the compact dimensions, and looking
like an instanton from the four dimensional point of view.
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3.2 Axion Monodromy and Backreaction

In this section we study the backreaction on the axion target space in different models of
Type IIA string theory. As reviewed in the last section, flux compactification on a Calabi–
Yau orientifold includes two types of axions, the RR axions ImUα coming from the complex
structure sector, as well as the NS axions ImT a from the Kähler sector. Turning on RR
fluxes induces a potential for the NS axions and vice versa, as can be seen from (3.15) and
the definition of the fluxes (3.12).

The superpotential (3.15) makes them so-called monodromy axions, as the original shift
symmetry is now completely broken. The parameter N introduced at the beginning of the
chapter describes in this case the number of times they traverse their original period and is
measured by their vev. Therefore, in order to take into account the effect of N on the target
space metric, we need to study the backreaction on the moduli of the axion vev.

Before quantifying this backreaction for various models, we expand on the methodology
used throughout this chapter. The notion of a bound on a single field variation—tracing
a path in the target space—is not well-defined in the presence of multiple fields since such
a target manifold supports a path of infinite length. In principle, it might be possible to
formulate a constraint on the volume ofM, but not knowing the full structure of the target
manifold, we adopt a different approach: Once a potential has been turned on, we can
consider the dimensionality of the vacuum space of the theory rather than the field space
M.

At the non-perturbative level, one expects all fields to get a potential and therefore the
space of vacua is a collection of points (if not empty). We can also consider the perturbative
vacuum space which can be continuous, but still typically has a smaller dimensionality than
the target space space M.

Within this framework there are two natural ways to identify a one-dimensional subman-
ifold on which we can test field excursions: The first is the lightest direction in field space,
and can be thought of in Wilson’s approach as integrating out all the heavier fields to obtain
an EFT for a single field. One can then use the knowledge of its UV origin to see how the
effective field range is constrained, and has been studied in the context of axion alignment
in [42].

Conversely, another possibility is to drop the requirement for one field to lie in the
vacuum, displace it by hand away from its minimum, and ask how far one can go. This is
the approach we shall adopt in this section, with the field displaced away from its vacuum
being the massive axion. In this setting, one should not think of integrating out the other
fields to get an EFT with only field, but rather keeping them in the theory and carefully
tracking their continuously changing minima as a function of the displaced field, capturing
the backreaction effect. If the other fields are much more massive than the field which is
displaced, they will not change much over the traveled distance, but this does not have to be
imposed for the procedure to be well-defined. We note that there might be cases where after
being displaced far away from its stable vacuum, one reaches a point where the minima for
the other fields disappear and the whole system becomes unstable. In this case, it undergoes
a phase transition to a different, more stable vacuum. While we will show examples of such
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behaviour, they will not be the of key interest in our study, and we shall focus on cases where
the other fields have well-defined minima.

For a space spanned by local coordinates given by axions νi and their moduli partners
ci, and endowed with a metric gij, we will denote the path γ taken during the excursion of
an axion as the embedding γ : ρ→ νi(ρ), whose proper path length is then given by

∆φ ≡
∫
γ

√
gij
∂νi

∂ρ

∂νj

∂ρ
dρ. (3.17)

Here, ρ takes the role of a world-line element along the path γ and, as discussed above, the
backreaction effect of the axion vev is is captured by studying how the vev of other fields
react to a displacement of ρ, that is to say they satisfy the following system of equations, we
will call the stabilisation equation:

∂V

∂ci
= 0,

∂V

∂ψj
= 0, (3.18)

where ψj are the directions orthogonal to the combination ρ. After imposing these equations,
a key point is that the metric gij is a function of ρ, and this has to be taken into account
when computing the proper length. Applying this to the Type IIA string theory setting
we will be interested in cases where the path in (axion) field space is along a certain linear
combination of fields

ρ =
∑
i

hi ν
i. (3.19)

In such cases, the integral (3.17) simplifies and is written only in terms of the inverse metric
and the coefficients hi related to flux number in our setup:

∆φ =

∫ ρf

ρi

(
hig

ijhj
)− 1

2 dρ. (3.20)

This is seen to be the integration of the canonical normalisation factor5 for the field ρ from
its initial values ρi to its final one ρf .

General Lesson 3.2. The backreaction of an axion vev on the target manifold is captured by
studying the stabilisation equations (3.18) on the vacuum space. The backreaction introduces
a dependency of the axions in the metric, which in turn modifies the proper field length, given
in Type IIA flux compactification by an equation of the form (3.20).

3.2.1 Ramond-Ramond Axions

We begin our analysis with the displacement of a massive combination of RR axions from
their minima. We will initially study a simplified version of General Lesson 3.1 where each

5Note that in this section we work for convenience in conventions where a real scalar field has canonical
kinetic terms (∂φ)

2
, with no 1

2 prefactor.

35



sector (complex structure, Kähler, and dilaton) have only one representative. This captures
the behaviour of the system under a universal scaling of the moduli, and can be thought
of as restricting the moduli values to be equal. We will see that the important physics is
already manifest in this simple setting. In section 3.2.1 we will then generalise the results to
realistic Calabi–Yau systems of moduli in the RR axions sector. In section 3.2.1 we further
generalise the setting to the case of a twisted torus.

Single Field Models

The starting point is the model studied in [87], which consists of a simplified version of
General Lesson 3.1

K = − ln s− 3 lnu− 3 ln t, W = e0 + ih0S − ih1U +
i

6
mT 3, (3.21)

S = s+ iσ, U = u+ iν, T = t+ iv. (3.22)

There are two simplifications which enter this construction. The first is that, as discussed
above, we have taken only a single modulus in the Kähler and complex-structure moduli
sector. The second simplification is that at this point we have turned off some fluxes, but we
shall come back to the case with all fluxes shortly. From (3.21), it is easy to see that there
is one combination ρ of RR axions which becomes massive due to the fluxes and therefore
suffers a monodromy effect

ρ = e0 − h0σ + h1ν. (3.23)

From General Lesson 3.2, the backreaction effect of this axion combination is encoded in the
stabilisation equations (3.18), which in this case reduces to solving

∂TV = ∂uV = ∂sV = 0 (3.24)

as a function of the vev of ρ. Here V is the scalar potential descending from the superpotential
(3.21) using the supergravity formula (2.11). We do not impose the stabilisation equations
for the two axion combinations of σ and ν, as one combination is perturbatively massless
and satisfies them trivially, while the other is the one we would like to displace from its
minimum.

The solution to these equations was presented in [87] and reads

s = α
ρ

h0

, u = −3α
ρ

h1

, t = 1.96
( ρ
m

) 1
3
, v = 0, (3.25)

with α ' 0.38. Note that this solution is only valid for sufficiently large values of ρ. In
fact the solution does not flow to a physical minimum for any value of ρ, which can be
seen by noting that there is no physical supersymmetric vacuum for the system (due to the
restriction on the superpotential). It nonetheless serves as a useful example capturing the
axion backreaction, as the crucial point is that the axion field space metric

√
gρρ ∼ s−1 ∼ ρ−1

depends on the axion combination. This means that the metric on the field space of the
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axion is modified so that the canonically normalised field distance is only logarithmic in the
vev of ρ [87]. More precisely we obtain from (3.20)

∆φ =

∫ ρf

ρi

1

2

(
(h0s)

2 +
1

3
(h1u)2

)− 1
2

dρ ' 0.7 ln

(
ρf
ρi

)
. (3.26)

There are two qualitative features of (3.26) to highlight: The most important is that the
proper field distance is only logarithmic in the axion variation, which by comparing (3.2)
and (3.3) is the type of behaviour we expect from moduli fields and not axions. In this sense,
once backreaction is accounted for, inducing a superpotential makes an axion behave like a
modulus. The second important feature is that the prefactor 0.7 does not depend on any
flux parameter. There is therefore no possible way to adjust the model to make the field
excursion large while keeping the logarithmic term small.

While formally the field distance is unbounded, as discussed earlier, it is not likely to
be possible to obtain super-Planckian displacements in such a setting. Indeed it is precisely
this logarithmic behaviour of moduli which is attempted to be avoided when working with
axions. An exponentially large variation of the moduli is difficult to support in a controlled
EFT and from (3.25) we see that indeed the moduli scale exponentially with the proper
axion field distance.

Let us consider the generality of the result of ∆φ ∼ ln ρ. To do this, it is useful to notice
that the equations encoding the backreaction (3.24) are invariant under a rescaling of the
variables

ρ→ λρ, s→ λs, u→ λu, T → λ
1
3T. (3.27)

When we solve for the moduli in terms of ρ and the fluxes, the only parameter carrying a non-
trivial weight under rescaling is the field ρ, and therefore s and u, carrying weight one, must
be proportional to it. This argument is sufficient to establish the behaviour (3.26) up to a
constant of proportionality factor. Now consider a general Calabi–Yau compactification with
an arbitrary number of complexified moduli. The system is still invariant under the scale
symmetry (3.27), with the weight choices being obvious due to the logarithmic behaviour
of the Kähler potential (3.14). Therefore, there must be an overall proportionality of all
the uα moduli to ρ which is sufficient to establish the logarithmic behaviour of (3.26). The
proportionality factor 0.7 in the universal behaviour (3.26) can however in principle depend
on dimensionless fluxes, such as the hi, in the case of an arbitrary Calabi–Yau manifold. In
section 3.2.1, we study this problem and show that it is flux independent and of order one.

For the superpotential (3.21), the only flux parameter which carries weight under the
scaling symmetry (3.27) is e0. This case is particularly simple, since it can just be absorbed
into the definition of ρ. Yet, if we consider the most general superpotential for Type IIA
on a Calabi–Yau with one field of each type, there are additional fluxes breaking the scaling
symmetry (3.27):

W = e0 + ih0S − ih1U + ie1T − qT 2 +
i

6
mT 3. (3.28)

In the spirit of dimensional analysis, we can restore the scaling symmetry by assigning a
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spurious weight to each additional fluxes

e1 → λ
2
3 e1, q → λ

1
3 q . (3.29)

The introduction of those additional parameters implies a number of important changes:
First, as we will show, the theory now develops physical minima. Secondly, they imply a
modification to the general argument leading to the behaviour (3.26) to account for the
dimensionful fluxes. The solutions for the moduli in terms of ρ now fall into two classes:
those for which the limit {e1, q} → 0 reduce to the previous solution, and those breaking
down in this limit.

The solutions will be studied in detail soon, but let us first make some general statements
about the first class, for which {e1, q} → 0 reduces to (3.26). These solutions must have
some functional form for the moduli in terms of ρ, such that when ρ is larger than some
critical value ρcrit set by the magnitude of the fluxes which break the symmetry

ρcrit ∼
(
e

3
2
1 + q3

)
, (3.30)

they converge to (3.25). The first thing to observe is therefore that by taking large fluxes,
one can delay the onset of the scaling behaviour (3.25) arbitrarily far in ρ distance. The
fluxes therefore naively seem to shield the moduli from the axion vev backreaction. However,
even though the variation in ρ can be extended parametrically far through this method, it
does not necessarily imply an arbitrarily large proper field distance.

The rough argument is that if we assume that the vevs of the moduli controlling the
axion field space metric—s and u—remain approximately constant up to ρ ∼ ρcrit, then at
ρcrit, their values go like s(ρcrit) ∼ ρcrit and this will be their approximate value over the
regime ρ . ρcrit. The proper axion field distance ∆φ up to ρcrit will therefore behave as

∆φ ∼ ∆ρ

{s, u}|ρcrit
∼ ρcrit

ρcrit

∼ 1. (3.31)

While ρcrit may be arbitrarily large, controlling the backreaction for arbitrarily large field
distances, its value cancels in the proper field distance. The argument presented is quite
general but imprecise, and the rest of this section will be dedicated to essentially filling in
the missing details. There will be two steps to improving the argument just presented for
the structure of the proper length field variation: we would like to make it more quantitative
by keeping track of the relevant coefficients, and then determine the actual values of these
coefficients.

It is useful to introduce some coordinate redefinitions. We first absorb some of the fluxes
into the definition of the moduli and other fluxes

s̃ = h0s, ũ = −h1u, T̃ = Tm
1
3 ,

ẽ1 = e1m
− 1

3 , q̃ = qm−
2
3 , (3.32)

and introduce the flux combination

f ≡ −ẽ1 − 2q̃2 . (3.33)
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An important role in our analysis will be played by the particular moduli values which
correspond to a physical supersymmetric vacuum of the system. In this vacuum, the fields
take the values

s̃0 =
ũ0

3
=
t̃30
15

=
2

9

√
10

3
f

3
2 , ρ0 =

2

3
q̃
(
3f + 2q̃2

)
, ṽ0 = −2q̃ , (3.34)

where we take h0 > 0, h1 < 0 and m > 0. In analysing the potential it is convenient to shift
the axion definitions by their supersymmetric minimum values

ρ′ ≡ ρ− ρ0 , v′ ≡ ṽ − ṽ0 . (3.35)

The reason for introducing those shifted and rescaled quantities is that, recasting the po-
tential in terms of those new variables, one finds that, up to an overall constant factor, it
depends explicitly on the single flux parameter f

V = h0h
3
1mṼ

(
s̃, ũ1, t̃, v

′, ρ′, f
)
. (3.36)

Therefore solutions to the equations (3.24) will depend on only ρ′ and f . The dependence
of the potential on only one flux parameter f can be understood as follows: Three flux
parameters in the superpotential can be absorbed into a rescaling of the moduli as in (3.32),
leaving three parameters e0, e1 and q. As we saw in section (3.1), the theory respected
two shift symmetries, one for the RR axions and one for the NS axion broken by fluxes for
which e0 and q play the role of order parameters. They can also be assigned a spurious shift
transformation which can be used to absorb two more flux parameters, leaving only one flux
parameter, which is f in our notation.

Coming back to the quantity of interest to us, the proper distance traversed by the
massive axion field ρ up to its critical value as given in (3.20), we find that

∆φ =

∫ ρf

ρi

(
hig

ijhj
)− 1

2 dρ =

∫ ρ′crit

0

1

2

(
s̃2 +

1

3
ũ2

)− 1
2

dρ′ = G

(
ρ′crit

f
3
2

)
= k, (3.37)

where G is some arbitrary function depending only on the shown ratio of ρ′crit and f , and k is
a flux-independent number. The important non trivial step is the third equality: while s̃ and
ũ are some complicated functions of ρ′, they have to scale properly under the transformation
(3.27), under which f carries the weight 2

3
. As ∆φ must have a trivial weight, it can only be

constructed out of the unique dimensionless combination of ρ′crit and f . Finally, ρ′crit must

be proportional to f
3
2 as it is the only parameter breaking the original symmetry. We are

thus left with a flux independent coefficient which is expected to be of order one.
To find its precise value, we proceed to an analysis of the structure of the scalar potential

in detail to determine the precise value of r in (3.37). Consider the following combination of
(3.24)

− 3

4
e−K

(
3s̃
∂Ṽ

∂s̃
− ũ∂Ṽ

∂ũ

)
= (3s̃− ũ)

(
6s̃− t̃3 + 2ũ

)
= 0 . (3.38)

39



The factorisation shows that turning points of the potential split into two branches

Branch 1 : ũ = 3s̃,

Branch 2 : ũ = −3s̃+
1

2
t̃3. (3.39)

From (3.34), we see that only the first branch supports a supersymmetric minimum, and only
for f > 0. However a turning point of the potential occurs for both branches, for either sign
of f , at the point ρ′ = v′ = 0. These correspond to non-supersymmetric minima in general.
Analysing the Hessian at these turning points shows that for the supersymmetric turning
point of branch 1 there is one negative eigenvalue, while for the non-supersymmetric minima
of branch 2 all the eigenvalues are positive. In the case of a negative eigenvalue, it lies above
the Breitenlohner-Freedman bound and so all these turning points are stable minima. These
minima will form the starting points for our axion excursions in ρ′. As we move away from
the minimum in ρ′, the stability with respect to the other directions continues to hold. For
clarity, we will henceforth restrict ourselves to f > 0 so that the minimum of branch 1 is
supersymmetric, while the branch 2 minimum is non-supersymmetric.6

As we move ρ away from its supersymmetric minimum the other moduli will adapt
according to the stabilisation equations (3.24). Let us consider branch 1 of equation (3.39).
The system is quite complicated but we could solve it numerically and match the result onto
a function. We find that to good accuracy, the following function matches the numerical
analysis

s̃ =
[
(αρ′)

4
+ βf 3 (ρ′)

2
+ s̃4

0

] 1
4
. (3.40)

Here α is as in (3.25), α ' 0.38, and β ' 0.05.7 This shows the interpolating behaviour
between the supersymmetric minimum value for ρ′ and the large vev limit (3.25). We can
therefore define ρ′crit as the value of ρ′ for which the first term in (3.40) becomes equal in
magnitude to the sum of the other two, i.e.

ρ′crit ' 1.7f
3
2 . (3.41)

Evaluating the critical proper field excursion by plugging back this value in (3.37) yields

∆φ ' 0.9. (3.42)

This gives the precise numerical evaluation of the general structure discussed previously.
The key result is that the canonically normalised field distance is independent of any fluxes
and is of order one.

6We have also analysed the cases for f < 0. We find similar behaviour with the only key difference being
that for this sign of flux excursions for large ρ′ along branch 2 destabilise the potential such that the turning
points in the moduli disappear and the theory then undergoes a phase transition to a new vacuum. While
interesting, this limits the excursion distances in field space and is not the focus of this work.

7For f < 0 we find a similar fit but with β ' 0.03.
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Figure 3.1: Plots showing the moduli s̃ and ũ as a function of ρ′ = ρ−ρ0 for displacement of ρ′

along branch 2 of (3.39). The plots are for flux value f = 6 and show the same function over

two different ranges so as to show the behaviour up to ρcrit ' f
3
2 ' 15, and the asymptotic

behaviour of ũ.

We performed a similar evaluation for the non-supersymmetric branch 2 in (3.39). While
we did not derive an analytic expression for the moduli as a function of ρ′, we studied it
numerically and found that for s̃, the large ρ′ scaling regime takes the form

s̃ ' 1.7

(
ρ′

f

)3

. (3.43)

The critical value of ρ′ where this regime begins is again around f
3
2 , while the modulus ũ

instead asymptotes to zero for values of ρ′ � ρcrit, as shown in figure 3.1. We can approximate
to a decent accuracy the distance traveled by the canonical field up to ρ′crit by taking s̃ and
ũ to be constants over that distance, giving ∆φ ' 0.5.

Note that because s̃ scales with a cubic power of ρ′ after the critical point, the distance
up to ρ′ → ∞ is not even logarithmically divergent, but finite. It gets cut off very quickly,
giving an increase in ∆φ of order a percent.

41



General Lesson 3.3. The stabilisation equations defined by the super- and Kähler potential
(3.21) are homogeneous under the rescaling (3.27), (3.29). Upon field redefinitions, they
reduce to a one parameter system. It is possible to show that the proper field distance up to
a certain critical value are flux independent and of order one. After the critical value, the
proper field distance receives corrections that are at most logarithmic in the axion vev.

The cancellation of the flux parameters of the proper length in General Lesson 3.3 is
strikingly similar to a flux cancellation found in the case of axion alignment in [87]. There is
in fact a natural relation between the two: We can approximate the moduli to be independent
of ρ′ for values ρ′ < ρ′crit and write the distance that the axion traverses before strong
backreaction as

∆φ ∼ ρ′critfρ′ ∼ Nfρ′ N = f
3
2 (3.44)

Here fρ′ is the normalisation factor appearing in the proper field distance (3.20) evaluated
at ρ′ < ρ′crit, which can be defined as the axion decay constant for ρ′.

Now consider an axion alignment scenario between two axions, labeled by ν1 and ν2. The
effective massless axion combination ψ appears in two instantons of the form (3.16), one of
them with an effective decay constant which, before accounting for backreaction effects, is
enhanced by N so that f 1

ψ ∼ Nfν2 . For the other instanton, the effective decay constant is
not enhanced f 2

ψ ∼ fν2 . Here fνi are the fundamental decay constants for the two axions.

After accounting for backreaction, as in [87], one finds that fν2 ∼
fν1
N

so that f 1
ψ does not

enhance.
This scaling with the parameter N is reminiscent of that of (3.44), and indicates an

identification of f 1
ψ with ∆φ, and the second axion decay constant with the axion decay

constant of ρ′, and we therefore have the map

f 1
ψ ↔ ∆φ, f 2

ψ ↔ fρ′ . (3.45)

This identification can be thought as focusing on the origin of the potential in an axion align-
ment scenario, where in the large axion constant decay limit, the potential looks quadratic
rather that sinusoidal. This is regime is therefore similar to that of axion monodromy. On
top of the quadratic potential, there is an oscillating term coming from the sub-leading in-
stantons, and after N such periods we reach a critical axion value. In the alignment scenario,
this is where the quadratic approximation breaks down and the periodic nature of the system
kicks in to censure the excursion distance, in the monodromy setting at the same axion value
instead the strong backreaction kicks in and serves as the cutoff mechanism. In both cases
although there are N oscillations before the cutoff mechanism, the oscillation period scales
as 1

N
thereby ensuring a cancellation in the proper excursion length.

Calabi–Yau Models

So far we studied the simplest of models, where we considered only one moduli representative
of each sector. In this section we study how the result obtained for this toy model transpose
to a more involved Calabi–Yau with more than three moduli. We start by considering the

42



same toy model, but augment the complex-structure sector with an additional field. One of
the simplest extensions is to consider the mirror of the P[1,1,2,2,6] Calabi–Yau studied in [115],
see [106,117] for details of the mirror map in Type IIA orientifolds:

K = − log s− 2 log
√
u1

(
u2 −

2

3
u1

)
− 3 log t ,

W = e0 + ih0S − ih1U1 − ih2U2 + ie1T − qT 2 +
i

6
mT 3 . (3.46)

In a similar vein to the previous case, we want to displace the massive axion combination

ρ = e0 − h0s+ h1ν1 + h2ν2. (3.47)

The proper length (3.20) for the combination is easily found to be

∆φ =

∫ ρf

ρi

√
3

2

[
6h2

0s
2 + 6h2

1u
2
1 + 8h1h2u

2
1 + h2

2

(
4u2

1 − 4u1u2 + 3u2
2

)]− 1
2 dρ,

=

∫ ρf

ρi

√
3

2

[
6s̃2 +

(
6 + 8r + 4r2

)
ũ2

1 − 4rũ1ũ2 + 3ũ2
2

]− 1
2 dρ, (3.48)

where we defined the rescaled fields s̃ = h0s, ũi = −hiui, and the ratio r = h2
h1

.

An important qualitative difference from the proper length of General Lesson 3.3 is that
there is now a flux parameter r in the expression. This parameter does not carry any weight
under the symmetry (3.27) and may therefore appear arbitrarily in the evaluation of the ∆φ.
Moreover, it is also not possible to define new flux numbers such that the potential can be
written with only a one-parameter explicit dependence as in (3.36). We instead find that it
must also depend explicitly on r and we find ourselves in a two-parameter system:

V ∝ Ṽ
(
s̃, ũ1, ũ2, t̃, v

′, ρ′, f, r
)

(3.49)

To see how the new parameter r affects the field distance, we need to proceed as before and
study the stabilisation equations. The supersymmetric vacuum is now at

s̃0 =
3 + 2r

3
, (ũ1)0 =

3 + 2r

6 (1 + r)
, (ũ2)0 =

t̃30
15

=
2

9

√
10

3
f

3
2 ,

ρ0 =
2

3
q̃
(
3f + 2q̃2

)
, ṽ0 = −2q̃m, (3.50)

where we defined ρ′ and v′ as in (3.35). The stabilisation equations (3.24) again exhibit a
factorisation structure, but with now four different branches determining both ũ1 and ũ2 in
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terms of s̃ and t̃:

Branch 1 : ũ1 =
3s̃

3 + 2r
, ũ2 =

6 (1 + r) s̃

3 + 2r
,

Branch 2 : ũ1 =
3s̃

3 + 2r
, ũ2 =

1

3

(
−6 (3 + r) s̃

3 + 2r
+ t̃3

)
,

Branch 3 : ũ1 =
−6s̃+ t̃3

2 (3 + 2r)
, ũ2 =

6 (3 + r) s̃+ rt̃3

9 + 6r
,

Branch 4 : ũ1 =
−6s̃+ t̃3

2 (3 + 2r)
, ũ2 = −

(1 + r)
(
6s̃− t̃3

)
3 + 2r

. (3.51)

When lying on any of those branches, the dependence on r drops out in the remaining
three equations (3.24) and are only function of s̃, t̃, v′, ρ′ and f , which means that the
solutions for s̃ and t̃ will only depend on f and ρ′. Furthermore, once we impose a branch
from (3.51), r happens to also drop out of the proper field length (3.48). As an example, the
simplest case of branch 1, which does not involve t̃, yields

∆φ =

∫ ρ′crit

0

1

4s̃
dρ′, (3.52)

which reduces to the same expression as branch 1 for the one modulus case. After imposing
branch 1 of (3.51), the equations determining s̃ are also the same as the one modulus case
and the result is identical to (3.42).

Similarly, the case of branch 4 in equation (3.51) reproduces the one modulus branch 2
case. The other new branches for the two modulus case give different results, but the key
property that the integrand in ∆φ depends on only one flux parameter f is guaranteed by
the previous reasoning using the scaling symmetry, and the result is flux independent.

In summary, we find that for this example of a more complicated Calabi–Yau setting with
multiple complex-structure moduli, there is additional structure in the relations between the
ui and s, and an additional flux parameter in the potential. In the proper field length,
this parameter however drops out and the result is qualitatively—and for some cases even
quantitatively—the same as General Lesson 3.3.

We can also consider another Calabi–Yau whose complex-structure moduli Kähler po-
tential is the mirror of the P[1,1,1,6,9] Calabi–Yau studied in [118].

K = − log s− 2 log
(
u

3
2
1 − u

3
2
2

)
− 3 log t. (3.53)

The massive combination we want to displace is the same as that of the previous model
(3.47), and its proper path length again depends on the fluxes:

∆φ =

∫ ρf

ρi

√
3

4

[
3h2

0s
2 + 6h1h2u1u2 + h2

2

√
u2(2u

3
2
1 + u

3
2
2 ) + h2

1(u2
1 + 2

√
u1u

3
2
2 )
]− 1

2

dρ (3.54)
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Here, the matter seems worst than before, as it depends not only on the ratio of the two
fluxes but both of them explicitly. We are again led to study the stabilisation equations and
define the rescaled fields and fluxes

s̃ = h0s, T̃ = Tm
1
3 , ẽ1 = e1m

− 1
3 , q̃ = qm−

2
3 , (3.55)

and f as in (3.33). This model has again a supersymmetric vacuum, located at

s̃0 = −h
3
1 + h3

2

3h2
2

, (u2)0 = −h
3
1 + h3

2

3h2
1

, (u1)0 =
t̃30
15

=
2

9

√
10

3
f

3
2 ,

ρ0 =
2

3
q̃
(
3f + 2q̃2

)
, ṽ0 = −2q̃ . (3.56)

Note that the physical domain of fluxes is at h0 > 0, h1 < 0, h2 > 0, and |h1| > |h2|. As
before we shift the axions by their supersymmetric values (3.35) to define ρ′ and v′, and the
ratio r = h2

h1
. The solutions to the stabilisation equations (3.24) in that case only exhibit

two physical branches

Branch 1 : u1 = − 3s̃

h1 (1 + r3)
, u2 = − 3r2s̃

h1 (1 + r3)
,

Branch 2 : u1 =
6s̃− t̃3

2h1 (1 + r3)
, u2 =

r2
(
6s̃− t̃3

)
2h1 (1 + r3)

. (3.57)

Restricting to these branches leads to equations independent of the hi that exactly match
the corresponding equations for the one modulus case in the respective branches and the
solutions for s̃ are once more the same, and an evaluation of the integrand (3.54) leads to a
cancellation of the hi fluxes. The result is once more flux independent and analogous to the
one modulus case.

We have found the same behaviour also for other examples for Calabi–Yau Kähler po-
tentials, and given that the cancellation of the fluxes in the final result appears to be very
intricate, it seems reasonable to expect that there is an underlying reason or symmetry
behind this which holds for any Calabi–Yau.

Twisted Torus Models

In the previous subsection, we studied a modification of the simple one modulus model (3.21)
by considering additional RR axions, changing the structure of the Kähler potential. This
changed the structure of the canonical field distance by introducing an additional indepen-
dent flux parameter.

In this section, we go further and consider another possible modification of the one mod-
ulus model through a change of the superpotential which will again lead to a two parameters
system, by considering a compactification of Type IIA string theory on a twisted torus8, and

8More generally these can be considered as compactifications on a manifold with SU(3)-structure as
in [119,120]. In particular coset spaces are very tractable cases with few moduli.
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consider the setup studied in [109]. The manifold has intrinsic torsion which means it has a
set of non-closed 1-forms

dηP = −1

2
wPMNη

M ∧ ηN , (3.58)

where M = 1, .., 6 are the six toroidal directions. The structure constants wPMN have the
following properties

wPMN = wP[MN ], wPPN = 0, wP[MNw
S
L]P = 0, (3.59)

where the last equation follows from the nilpotency of the exterior derivative d, and is called
Jacobi identity. It is convenient to introduce labels for the non-vanishing components of the
torsion a1

a2

a3

 =

ω1
56

ω2
64

ω3
45

 ,

b11 b12 b13

b21 b22 b23

b31 b32 b33

 =

−ω1
23 ω4

53 ω4
26

ω5
34 −ω2

31 ω5
61

ω6
42 ω6

15 −ω3
12

 . (3.60)

The Jacobi identities imply the twelve constraints

bijaj + bjjai =0, i 6= j,

bikbkj + bkkbij =0, i 6= j 6= k, (3.61)

with indices i, j = {1, 2, 3}. The resulting superpotential takes the form [109]

W =e0 + ih0S +
3∑
i=1

[(
iei − aiS − biiUi −

∑
j 6=i

bijUj

)
Ti − ihiUi

]
− q1T2T3 − q2T1T3 − q3T1T2 + imT1T2T3 , (3.62)

and the Kähler potential is

K = − log s−
3∑
i=1

log ui −
3∑
i=1

log ti. (3.63)

We will restrict ourselves to models with only one modulus of each type, therefore con-
sidering

K = − log s− 3 log u− 3 log t, (3.64)

W = e0 + ialS − iblU + ie1T − qT 2 +
i

6
mT 3 + aST − bTU. (3.65)

The key difference with the models studied previously is a coupling of the complex struc-
ture and dilaton sector to the Kähler sector. Due to this interaction, the two RR axions gain
a mass for generic fluxes, and we will restrict ourselves to fluxes for which only one combi-
nation gains a perturbative mass, while the other remains massless. The massive direction
yields a monodromy axion along which we can displace it and study its backreaction effect.
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To do so, we have defined the NS flux numbers hi to be of the form h0 = al and h1 = bl for
some free parameter l constrained only by quantisation of the NS flux. Again, we shift the
axions and fluxes to get rid of e0 and q:

v = v′ − 2q

m
, σ = σ′ +

3e0m
2 + 6e1mq + 8q3

3am (lm− 2q)
,

l′ = l − 2q

m
, e′1 =

3e0m
2 + 3e1lm

2 + 6lmq2 − 4q3

3lm2 − 6mq
, (3.66)

and define the rescaled fields as

T ′ =
T̃

m
1
3

, U = − l̃m
1
3 Ũ

b
, S ′ =

l̃m
1
3 S̃

a
, (3.67)

e′1 = ẽ1m
1
3 , l′ =

1

l̃m
1
3

. (3.68)

In those coordinates, the super- and Kähler potential (3.65) (up to an unimportant constant
shift) take the form

K = − log s̃− 3 log ũ− 3 log t̃, (3.69)

W = i
(
S̃ + Ũ

)
+ iẽ1T̃ +

i

6
T̃ 3 + l̃T̃

(
S̃ + Ũ

)
. (3.70)

In those variables, we easily see that there are only two independent flux parameters, l̃ and
ẽ1, and that the massive RR axion combination is ρ = σ̃ + ν̃. Moreover we can see that
in the torus limit l̃ → 0, the superpotential (3.70) goes to the one modulus model studied
earlier9.

The system has a supersymmetric vacuum, which in the torus limit is given by (3.34).
For non-vanishing l̃, it was shown [109] that it is given by

s̃0 =
1

3
ũ0 =

ṽ0t̃0

l̃
, t̃20 =

15

l̃
ṽ0

(
1 + ṽ0l̃

)
, ρ0 = −9ṽ0 + 8ṽ2

0 l̃ + 2ẽ1l̃

2l̃2
, (3.71)

and ṽ0 satisfies the cubic equation

160ṽ3
0 l̃

2 + 186ṽ2
0 l̃ + 27ṽ0 + 6ẽ1l̃ = 0. (3.72)

As before, the shifted axion field ρ′ = ρ − ρ0 proves to be a useful quantity when studying
the stabilisation equations (3.24). One again finds that the solutions come in two different
branches:

Branch 1 : ũ = 3s̃,

Branch 2 : ũ =
−6s̃− 12ṽl̃s̃− 6ṽ2l̃2s̃− 2l̃2s̃t̃2 + t̃3

2
(

1 + 2ṽl̃ + ṽ2l̃2 − l̃2t̃2
) . (3.73)

9Note that in terms of the original fluxes this is taking a,b→ 0, l→∞ with al and bl finite.
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These branches are reminiscent of the one modulus model, and we will focus our analysis
to the first branch10. The resulting potential has three turning points when ẽ1 < 0 and
ρ′ = 0, and only one of them is a supersymmetric minimum. In the rest of this section, we
will restrict ourselves to excursions away from this point.

Conversely to the previously studied cases, the field s̃ as a function of ρ′, shown in figure
3.2, is not an even function anymore, and exhibits a second minimum. Studying this for
different flux values, we find that it is at positive values of ρ′ for l̃ > 0 and vice versa and
that outside the region between the two minima, s̃ quickly enters a linear scaling regime
asymptoting to s̃ = αρ′ as in (3.25). Inside that region, s̃ remains approximately constant
and we find that the distance between the two minima is

∆ρ′ ' 2

(
− ẽ1

l̃2

) 3
4

. (3.74)

We can thus approximate the proper field excursion length by taking s̃ to be approximately
constant along ∆ρ′ for a value given by that of the supersymmetric minimum. This can be
easily solved for analytically and we find that

s̃0 '
(
− ẽ1

l̃2

) 3
4

(3.75)

We therefore conclude that to a good approximation the proper field length ∆φ is flux
independent. As a measure of this, we scanned over flux ranges −100 ≤ ẽ1 ≤ −3 and
1 ≤ l̃ ≤ 100 finding 2 ≤ ∆φ ≤ 3.5. Such a small variation over such a large variation in ∆ρ′

presents good evidence that ∆φ is flux independent also for this setting11.

3.2.2 Neveu-Schwarz Axions

In section 3.2.2, we performed a study of the excursions of the massive RR combination away
from its minimum for different models. We would like now to perform a similar analysis for
different directions of the axion field space by displacing massive combination of of Neveu-
Schwarz (NS) axion. Contrary to the case of the RR sector where only one combination of
the axion was given a perturbative mass by the superpotential (3.15), the cubic nature of
the superpotential for the Kähler sector implies that generically, all NS axions will gain a
mass from the fluxes. The NS field space therefore does not have a preferred direction along
which one can displace the axion, with the exception of the case where all the moduli and
axions are set to equal value, where the displacement is made along this universal value. We
shall therefore focus our analysis on this case, which coincides with the one modulus model
(3.28). The stabilisation equations are in that case given by

∂tV = ∂UV = ∂SV = 0, (3.76)

10We have also performed a study of the second branch (3.73) and found it behaves similarly to that of
the one modulus, shown in figure 3.1, but with the behaviour of t̃ and ũ reversed.

11Note that the fact that it is possible to reach values such as ∆φ ' 3.5 does not imply super-Planckian
excursions, since these are approximate values and are not reliable up to order one factors.
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Figure 3.2: Plot showing s̃ as a function of ρ′ for the case of a twisted torus compactification
with fluxes ẽ1 = −6 and l̃ = 1.

while keeping the NS axion v unconstrained and free to displace from the minimum. Most of
the analysis of section 3.2.1 such as the minima of the potential, the branch structure (3.39),
and the scaling symmetry (3.27) continues to hold and the potential is still a one-parameter
model, see (3.36) and the related discussion.

However, unlike for the RR sector, both branches (3.39) now support physical solutions
for f = 0 which read

Branch 1 : s̃ = 0.36v′3, ũ = 1.07v′3, t̃ = 1.57v′, ρ′ = −0.17v′3,

Branch 2 : s̃ = 0.26v′3, ũ = 1.19v′3, t̃ = 1.58v′, ρ′ = −0.17v′3. (3.77)

As before, they do not flow to a physical minimum due to the restriction f = 0 but as
expected, the proper field distance exhibits a similar logarithmic behaviour in the axion
distance v′.

Turning on f 6= 0, the stabilisation equations become more complicated, but are simpler
than the RR case and an analytic expression can be found for the moduli. As a function of
v′, t̃ is given by a root of the following polynomials, depending on the branch:

Branch 1 : 25v′6 + 35t̃2v′4 + 8f(33t̃4v′2) + 8f 2(33t̃4 + 35t̃2v′2 + 75v′4)

+ 25v′8 + 70t̃2v′6 + 115t̃4v′4 + 6t̃6v′2 + 800f 3v′2 − 27t̃8 + 400f 4

Branch 2 : 25v′8 + 10(20f + 7t̃2)v′6 + (600f 2 + 280f t̃2 + 43t̃4)v′4

+ 2(400f 3 + 140f 2t̃2 − 12f t̃4 − 15t̃6)v′2 + 8f 2(50f 2 − 3t̃4) (3.78)

The relevant root for each branch is a known complicated function of v′ and f . For clarity’s
sake we will not give it explicitly here, but we have instead plotted it in 3.3. For large values
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Figure 3.3: Plots showing the moduli t̃ as a function of v′ = v − v0 for displacement of v′

along both branches (3.39). They are given for flux value f = 6. The range is chosen such
that it is possible to see the asymptotic linear behaviour is reached after v′ reaches its critical
value (3.79).

of v′, one can show that we enter the regime found in equation (3.77), happening after a
critical value

v′crit '
√

2f. (3.79)

The proper distance travelled by the NS axions up to that critical value can be computed
in complete analogy with what has been done in section 3.2.1. In particular the argument
that it is expected to be independent of flux values and carries through due to the scaling
symmetry. We indeed find it is the case in both branches:

∆φ =

√
3

2

∫ v′crit

0

dv′

t̃
'

{
0.57 Branch 1

0.55 Branch 2
. (3.80)

As before, any further excursions will add only logarithmic corrections to those values. One
might once again be worried about the stability of the potential when moving away from the
turning point v′ = ρ′ = 0. However, similarly to the RR sector, an analysis of the Hessian
matrix with respect to the other directions shows that despite one of the eigenvalues picking
up a negative sign for some values of v′, it always lies above the Breitenlohner-Freedman
bound. This stability holds for both branches, as well as both signs of f . Moreover plugging
back the fields satisfying (3.76) in the potential such that it only depends on v′ and the flux
numbers, this expression has a local minimum at v′ = 0 for both signs of f in branch 2. For
branch 1, it has a global minimum for positive f and local maximum for negative f .

Finally, we also studied excursions along the NS axions in the twisted torus setting of
section 3.2.1. We find a similar structure to the RR axion case with a range over which t̃ is
approximately constant bounded by linear scaling regimes. We find that a good fit for the
length of the approximately constant region is ∆v′ ' 3(− ẽ1

l̃
)
1
3 . This seems to be a good fit to
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the supersymmetric value t̃0. Scanning over the flux ranges −100 ≤ ẽ1 ≤ −3 and 1 ≤ l̃ ≤ 100
we find 1.8 ≤ ∆φ ≤ 2.0, which presents good evidence that it is flux independent.

3.3 Summary

In this chapter, we have studied axion monodromy scenarios in Type IIA string theory
compactified on Calabi–Yau manifolds and a twisted torus, where the monodromy is induced
through fluxes. In particular, we calculated how the backreaction of the axion vev modifies
its proper field length in field space. We found that there is a universal behaviour in all the
settings we studied: the backreaction is small up to certain critical value controlled by the
flux numbers, and becomes strong once it has been crossed, in such a way that the proper field
distance increases logarithmically in the axion vev with a flux independent prefactor. While
the critical value can be made arbitrarily large by an appropriate choice of fluxes, thereby
allowing for large changes in the axion vev, the backreaction imposes an exact cancellation
of the fluxes such that the distances travelled by the proper field is independent of this choice
and sub-Planckian.

More precisely, our starting point was the axion monodromy model of [87], where one
considers one type of modulus coming from each sector, and with some of the flux numbers
turned off. We find that in that case, the backreaction is very strong and the axion enters
directly a logarithmic regime. We argued that this behaviour can be attributed to a scaling
symmetry that can be used to write the stabilisation in a flux independent way, and can
be generalised to arbitrary Calabi–Yau, as long as the flux numbers which were turned off
remain so.

We next considered the case where all the fluxes where turned back on. Despite break-
ing the scaling symmetry, the flux numbers can be thought of as spurions and assigned a
non-trivial weight such that their are treated as order parameters. One can rewrite the sta-
bilisation equations as a system depending on a unique combination of the fluxes, in terms
of which the logarithmic regime can be arbitrarily delayed by strongly breaking the scale
symmetry. However, the combination shielding the moduli from the strong backreaction in
turn backreacted themselves on the axionic target space metric, in a way leading to an exact
cancellation of any flux number in the proper distance up to the critical value. This result
was generalised to two non-trivial Kähler potentials descending from realistic Calabi–Yau
manifolds. In those cases, the stabilisation equations can be reduced to systems depending
on two parameters rather than one, but the stabilisation equations split into branches, which
reduced to system analogous to the one-parameter case, and the proper distance up to the
critical value was once again flux independent.

We then considered compactifications on a twisted torus, which introduced new terms in
the superpotential mixing the RR and NS sectors. Again, the stabilisation equations could
be made functions of only two parameters by an appropriate change of variables. Solving
the equations numerically, we found that the backreaction of the moduli as a function of the
axion vev was linear beyond some critical values defining an approximately constant region
in-between. Scanning over values of the flux parameters numerically, we showed that the
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proper field distance up to the critical value is once again flux independent and have the
same qualitative behaviour as Calabi–Yau compactifications.

In this chapter, we have therefore found a class of new mechanisms coming from string
theory censuring super-Planckian excursions in axion monodromy scenarios. We have chosen
to study then in the context of Type IIA, as it the simplest and best understood framework
to calculate such effects, because moduli stabilisation can be achieved without the need
for non-perturbative effects. As the censorship mechanisms appear in various cases, it is
reasonable to believe that they could also occur in other setups as well. It would therefore
be quite interesting to see how the backreaction of axion vevs affects its proper distance in
other string theory constructions, and gain a more general understanding of this effect.

Interestingly, the logarithmic regime of the axion proper field distance beyond some
critical value matches the swampland conjectures of maximum logarithmic growth for any
field asymptoting infinite field values [121]. The non-trivial cancellations in the proper field
distance before the logarithmic regime thus lends some weight to a sharpened swampland
conjecture. At least as the same evidence level the original conjecture had, we could conjec-
ture that the logarithmic growth rate of the proper distance must occur at a sub-Planckian
proper path distance.12 The scenarios studied in this work present non-trivial tests of such a
sharpened statement. There is a case that is relevant for the possibility of such a conjecture:
If the moduli has axion superpartners, where we can apply the Weak Gravity Conjecture
to an axion a, and find a relation between its decay constant fa and the magnitude of its
associated instanton, the modulus vev u [20, 69]:

SInstfa = ufa ≤MPl. (3.81)

One generally uses this relation to bound the decay constant, because if fa ≥ MPl, then
u < 1 and control over the instanton expansion is lost. Conversely, one can also use it to
bound the magnitude of u, as supersymmetry demands fa =

√
guu giving a measure on the

modulus field space. We therefore have
√
guuu ≤MPl. (3.82)

For super-Planckian vev u > MPl, this condition imposes that
√
guu must decay at least with

a power of 1
u
, and therefore establishes that the proper field distance is at best logarithmic

at this point.
We note that in [42], we have also studied an axion alignment model descending from

Type IIA string theory compactified on a twisted torus, where up to four fundamental
axions mix. Neglecting the backreaction, we found that there is a particular combination
of axions that can be enhanced to arbitrarily large values by tuning the fluxes. However,
taking the backreaction into account, the enhancement is cancelled and the effective axion
decay constant remains sub-Planckian. Our results are also in agreement with the proposed
conjecture.

12There is a finite size transition region around the critical axion value between the small backreaction
region and the linear scaling strong backreaction regime. This is the transition region to the logarithmic
growth regime. The conjecture is that it begins at sub-Planckian values, and that the point where logarithmic
growth is a better description than linear growth is also sub-Planckian.

52



Chapter 4

From Type IIB Supergravity to
F-theory and Back Again

In the previous chapter, we found constraints on four dimensional EFTs from the closed
string sector of F-theory. While they have have interesting phenomenological consequences,
for instance models describing inflation, they were related to matter neutral under gauge
symmetries and we have yet to explore charged sectors and constraints from string theory.
The rest of this thesis is dedicated to the study of such constraints on gauge theories, and
some of their potential implication for model building. To do so, we will use the framework
of F-theory [29–31], which as we will see offers a very powerful mapping between the gauge
symmetry data of an EFT and the geometry of a Calabi–Yau four-fold. For instance, the non-
perturbative nature of F-theory will allow access to a richer set of terms in the superpotential
that are forbidden in the supergravity description, and have interesting phenomenological
applications.

We will follow the usual approach to F-theory of [122–124] by studying the relation
between the profile of the Type IIB axio-dilaton in the vicinity of a D7-brane and SL(2,Z)
invariance. We will see that the invariance can be “geometrised” by introducing two extra
auxiliary compact dimensions and working with a Calabi–Yau four-fold. This bigger space is
often singular, meaning many of the usual tools we used so far—such as Hodge’s theorem—
are no longer applicable. However, their singularity structure will exhibit a very beautiful
and intricate relation to Lie algebra and is the keystone of the dictionary we are interested
to explore. The results can then be checked by “desingularising” the space and use dualities
to verify that the data indeed correspond to physical quantities.

In the Type IIB supergravity approach, we are in a limit where we can neglect the
backreaction of the branes on the background geometry. For Dp-branes with p < 7, it can
be shown that the backreaction is suppressed by a factor 1/r7−p as ones moves away from
the brane, and can be safely ignored as long as one keeps sufficiently far from these extended
objects. For D7-branes on the other hand, the backreaction goes logarithmically with the
distance and has to be taken care of. Taking four of the eight directions spanned by the
D7-brane to completely fill the large Minkowski dimensions, we are left with two orthogonal
dimensions we parameterise by a complex coordinate z. The equation of motion for the

53



axio-dilaton in presence of a stack of n coincident D7-branes (and thus an SU(n) gauge
group in the IR) is of the form [123]

τ(z) =
1

2πi
log

z − z0

λ
. (4.1)

where z0 is the position of the stack—viewed as a point from the perspective of the orthogonal
dimensions—and λ ∈ R a constant. One might worry that varying the axio-dilaton along a
path γ centered on z0 (on which the stack of D7-branes is located), there is a monodromy∮

γ

dz τ(z) = n. (4.2)

This apparent problem is solved by the SL(2,Z) invariance, as this is nothing more than a
transformation (2.30) with parameters ( 1 n

0 1 ) ∈ SL(2,Z). This result suggests a relation be-
tween the gauge theory arising in the EFT described by the stack and the monodromy of the
axio-dilaton, and one might ask if this generalises further. Another possibility is to consider
the additional presence of an O7-plane on top of the stack, where it can be shown that the
lower dimensional theory is endowed with an SO(2n) gauge symmetry with a monodromy
matrix

( −1 4−n
0 −1

)
. This connection seems very geometric and feels incomplete: the Lie algebra

su(n) and so(2n) are only the first algebras in Dynkin’s famous ADE classification (see [125]
for a physicist’s approach and [126] for a more mathematical description) and this relation
therefore begs for two questions: What is its origin, as the ADE classification is ubiquitous
in mathematics, and is it possible to engineer other gauge groups, such as the exceptional
group E8. The answer to the latter is unfortunately no in Type IIB supergravity, and one has
to turn to non-perturbative effects—such as multi-pronged strings [32,127–129]—to describe
such gauge theories.

Concerning the former, Vafa [29] realised in 1996 that the action of the SL(2,Z) symmetry
of Type IIB supergravity could be identified with the set of transformations leaving a torus
invariant, its mapping class group. To see this, we recall that a torus is usually defined
as a quotient T 2 = R2/Λ where Λ is a two dimensional lattice. The mapping class group
is therefore the set of transformations leaving Λ invariant and in this case is SL(2,Z), as
reviewed in appendix A. The axio-dilaton of the Type IIB description is then identified with
the complex structure of the torus: To each point of the internal manifold of Type IIB, we
can associate a torus whose complex structure modulus is given by the value of the axio-
dilaton. In the presence of a D7-brane, the torus becomes singular as τ diverges, and one of
its cycles pinches, as illustrated in figure 4.1. Two points of the internal space related by an
SL(2,Z) monodromy are thus described by the same torus, which means that the duality is
embedded into the formalism, and therefore “geometrised”.

The rest of this chapter is dedicated to explain the relation between this geometrisation
of the axio-dilaton and the gauge data of the EFT, and is structured as follows: We introduce
the mathematical concepts required to extract information about the low energy regime in
section 4.1. We will then have the necessary tools to define F-theory as the dual description of
M-theory in section 4.2. We review how the physical data arises in section 4.3, exemplifying
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Figure 4.1: Illustration of the geometrisation of the axio-dilaton of Type IIA. To each point
of the Calabi–Yau Y3, one associates a torus, which is singular at points where a D7-branes
is present.

with the gauge group SU(5), as it will be the focus of the next chapters. Finally, we will
come full circle in section 4.4 and see recover the perturbative Type IIB supergravity limit
of F-theory.

4.1 Elliptic Fibrations

Before exploring the mathematics and physics of F-theory, let us pause a moment and explore
for a bit the geometry of the torus. In algebraic geometry, tori are also referred to as elliptic
curves, and it turns out this field of mathematics is the one that is the natural framework of
F-theory. There are various different ways to describe elliptic curves, but the most relevant
to us is as a hypersurface equation in the weighted projective space

P[2,3,1] =
C3 \ {0}
∼

(x, y, z) ∼ (λ2x, λ3y, λz), λ ∈ C∗. (4.3)

An elliptic curve is then defined as the vanishing locus of a degree six polynomial in the
ambiant space P[2,3,1]. After a suitable coordinate redefinition, such a polynomial can always
be written in the so-called Weierstrass equation [130]

PW = y2 − x3 − fxz − gz6. (4.4)

The coefficients f and g of this polynomial specify the form of the elliptic curve. Given a
torus with a complex structure τ , it can be shown that the Weierstrass coefficients are given
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by the infinite Eisenstein series [130]

f = −4
1
3 60

∑
(m,n)∈Z2

(m,n)6=(0,0)

1

(m+ nτ)4
, g = −4 · 140

∑
(m,n)∈Z2

(m,n)6=(0,0)

1

(m+ nτ)6
. (4.5)

Conversely, given a Weierstrass form (4.4), one can find the complex structure parameter of
the torus by inverting Klein’s j-invariant (or simply j-function)

j(τ) =
4(24f(τ))3

4f(τ)3 + 27g(τ)2
. (4.6)

The j-function is an SL(2,Z) invariant and admits an expansion j(τ) = e−2πiτ + 744 +
196884e2πiτ + · · · . This expansion has attracted a lot of attention since 1978 when John
McKay noticed that the coefficients where related to the dimensions of irreducible repre-
sentation of the Monster group [131]. This relation, named Moonshine, led to unexpected
results bridging seemingly unrelated fields of mathematics and physics. For a pedagogical
review see [132].

For our purpose however, it suffices to say that in the limit τ → i∞ the j-function
diverges, signalling that the discriminant

∆ = 4f(τ)3 + 27g(τ)2 (4.7)

vanishes. In that limit, we therefore expect the torus to be singular, signalling the presence
of a D7-brane in the Type IIB context. It is straightforward to show that a vanishing dis-
criminant (4.7) happens precisely when the Weierstrass polynomial PW vanishes along with
its derivatives ∂x,y,zPW . ∆ thus encodes whether the elliptic curve given by the Weierstrass
equation is singular or not, but in that case there is not much structure: As f, g ∈ C we have
only one possibility of getting a singular curve, happening when f ∼ g

2
3 , where the curve has

a self intersection point (or a cusp if f = 0 = g). Figure 4.2 shows different smooth elliptic
curves, in the chart where we have used the scaling of the projective space to set z = 1, and
restricted to the real planes for the other two.

Now that we have an elegant way of describing the axio-dilaton in terms of an elliptic
curve, we want to assign one to each point of Type IIB Calabi–Yau three-fold we shall
henceforth call the base B3, for reasons that will be obvious shortly. This is achieved by
letting f and g to be a varying function of B3, in the mathematical lingo this is described by
considering an elliptic fibration Yn+1, where we let the dimension to be arbitrary. An elliptic
fibration comes equipped with a projection π : Yn+1 → Bn such that for each points b of
the base Bn, the inverse map π−1(b) is generically an elliptic curve. This quantity encodes
much of the data of the dimensionally reduced theory, and among others describes the gauge
group of the target manifold and the charged matter spectrum.

Before exploring the various singularities that an elliptic fibration may exhibit, let us
discuss the Calabi–Yau condition: in Type IIB supergravity or M-theory, we saw that to
keep a number of supersymmetries in lower dimensions, we need the extra dimensions to be
Calabi–Yau. However, lifting to F-theory, the strong backreactions will modify the space,
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Figure 4.2: Examples of smooth and singular elliptic curves. Note that the complex coordi-
nates (x, y) have been restricted to the real plane.

potentially ruining the Calabi–Yau condition for the base. The singular torus fibres can
however acquire a curvature in such a way that the full elliptic fibration Y4 is Calabi–Yau.

In a global setting, f and g are not functions globally defined on the base, but the Calabi–
Yau condition rather forces them to be sections of an appropriate power of the anti-canonical
bundle1 K−1

B

x ∈ H0(Bn, K
−2
Bn

), y ∈ H0(Bn, K
−3
Bn

), z ∈ H0(Bn,O),

f ∈ H0(Bn, K
−4
Bn

), g ∈ H0(Bn, K
−6
Bn

). (4.8)

A Weierstrass model is then an elliptic fibration defined through a Weierstrass equation
(4.4).

Having a more rigorous definition of the quantities we are dealing with, let us come
back to the discussion of singularities of elliptic fibration. It becomes singular along a locus
{∆ = 0} defining a hypersurface in the base, and can present a variety of structure. For
instance it can factorise into various components ∆ =

∏
i ∆i. By analysing the vanishing

orders of f, g and ∆, Kodaira [133] and Néron [134] managed to first, classify all the possible
singular fibres, and second to associate to each of them a simple Lie algebra giving raise to
an ADE type classification. This classification is shown in table 4.1, where the additional
information will be explained in section 4.3 where we will expand on it.

1In algebraic geometry, the set of sections of a line bundle L over a base B is denoted H0(B,L). The
notation comes from sheaf cohomology, where this set is part of series of groups Hi(B,L) defined in a similar
way we defined de Rham cohomology in section 2.2, and should therefore not be confused with 0-forms. For
our purpose, these sections can be thought of as holomorphic functions of the coordinates of the base with
a given scaling property.
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type G ord(∆) ord(a1) ord(a2) ord(a3) ord(a4) ord(a6)

I0 — 0 0 0 0 0 0
I1 — 0 0 0 1 1 1
I2 SU(2) 2 0 0 1 1 2
Ins2n Sp(n) 2n 0 0 n n 2n
Is2n SU(2n) 2n 0 1 n n 2n
Ins2n+1 unconven. 2n+ 1 0 0 n+ 1 n+ 1 2n+ 1
Is2n+1 SU(2n+ 1) 2n+ 1 0 1 n n+ 1 2n+ 1

II — 2 1 1 1 1 1
III SU(2) 3 1 1 1 1 2
IV ns unconven. 4 1 1 1 2 2
IVs SU(3) 4 1 1 1 2 3
I∗ns0 G2 6 1 1 2 2 3
I∗ ss0 SO(7) 6 1 1 2 2 4
I∗ s0 SO(8) 6 1 1 2 2 4
I∗ns1 SO(9) 7 1 1 2 3 4
I∗ s1 SO(10) 7 1 1 2 3 5
I∗ns2 SO(11) 8 1 1 3 3 5
I∗ s2 SO(12) 8 1 1 3 3 5
I∗ns2n−3 SO(4n+ 1) 2n+ 3 1 1 n n+ 1 2n
I∗ s2n−3 SO(4n+ 2) 2n+ 3 1 1 n n+ 1 2n+ 1
I∗ns2n−2 SO(4n+ 3) 2n+ 4 1 1 n+ 1 n+ 1 2n+ 1
I∗ s2n−2 SO(4n+ 4) 2n+ 4 1 1 n+ 1 n+ 1 2n+ 1
IV ∗ns F4 8 1 2 2 3 4
IV∗ s E6 8 1 2 2 3 5
III∗ E7 9 1 2 3 3 5
II∗ E8 10 1 2 3 4 5

non-min — 12 1 2 3 4 6

Table 4.1: Refined Kodaira–Néron classification, where ord(b) indicates the vanishing order
of b. The order of f and g are the same as those of b4 and b6 respectively. To distinguish
the split (s), non-split (ns), and semi-split (ss), an extra condition might be needed [135].
The bolden cases are those of the original Kodaira–Néron classification. In the case of the
infinite series, n ≥ 2. The last row are non-minimal singularities, which cannot be resolved
crepantly in codimension one.
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4.2 Defining F-theory from M-theory

Until now our motivation of F-theory has only been a bookkeeping device for D7-branes in
Type IIB string theory, but we are yet to discuss how the structure of the target space of
the effective action is found beyond its isometry group. To do so, it is useful to explore for a
moment the duality chains between Type II string theories and M-theory through their ten
and eleven dimensional supergravity description.

Let us consider 11D supergravity compactified on a torus T 2 = S1
a × S1

b , down to a
nine dimensional space X9. The total space—away from singularities of the torus—is thus
parameterised by the metric

ds2
M =

v

τb

(
(dx+ τady)2 + τ 2

b dy
2
)

+ ds2
X9
, (4.9)

where x and y are coordinates of the torus T 2 with complex structure τ = τa + iτb and
volume v. As we argued in section 2.4.2, the effective action will be that of Type IIA
supergravity on a circle S1

b or radius Rb, or via T-duality to Type IIB on a circle of radius
α′/Rb. Let us suppose further than X9 factors into a product of a compact complex n-fold
Bn space with Minkowski space R1,8−2n. In the limit where Rb → 0, the Type IIB circle
will “decompactify” to an additional real line, restoring the full ten dimensional Type II
supergravity in a spacetime R1,9−2n × Bn. From the M-theory point of view this limit can
be achieved by keeping the complex structure of the torus fixed while sending the volume to
zero.

Similarly the Kalb-Ramond 2-form and its RR counterpart can be obtained by reducing
the M-theory 3-form

C3 = C3 +B2 ∧ dxa + C2 ∧ dxb +B1 ∧ dxa ∧ dxb. (4.10)

After T-dualising along S1
b , B2 and C2 become the RR and Kalb-Ramond 2-forms, C4 arises

from C3 ∧ dxb, and B1 becomes part of the reduced metric.
While we considered a constant torus, this reasoning generalises straightforwardly to an

elliptic fibration π : Yn+1 → Bn. In this case the vanishing limit has to be done fibre by fibre
and is called the F-theory limit. This way of compactifying M-theory on a torus (fibration)
and matching to Type IIB will be taken as the definition of F-theory:

General Lesson 4.1. An F-theory compactification on an elliptic fibration π : Yn+1 → Bn

is defined as the Type IIB string theory compactification on Bn that is dual to M-theory
compactified on Yn+1 in the limit where the torus volume vanishes.

Note that in contrast to the Type IIB supergravity approach, where the torus was merely
an auxiliary space to keep track of the axio-dilaton, it has now become an integral part of
spacetime. The advantage of this approach is that there is that the duality of F-theory opens
the door of M-theory compactification technologies and enable us to get a clear picture of
the physical data we can extract from the geometry. In fact, compactifying both M- and
F-theory on the same elliptic four-fold, one will obtain an effective description in three
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or four dimensions respectively. It is known [45] that quantum field theories with N =
1 in four dimensions are equivalent to theories with N = 2 extended supersymmetry in
three dimensions, and we therefore have a dictionary at hand to compare the corresponding
physical data.

4.3 Extracting Target Manifold Data From Singulari-

ties

If we want gauge symmetries in the lower dimensional theory, we have seen that the elliptic
fibration has to be singular. However the compactification of M-theory on singular spaces
is not well-understood, and the usual procedure to study F-theory compactifications is to
modify the geometry of the elliptic fibration Yn to a smooth Calabi–Yau Ŷn by resolving
the singularities. In this thesis, we will not be interested in the particular details of the
resolution process, and will only review how matter arises in that context without delving
into the details of the resolution procedure. To get a working knowledge of the procedure,
let us consider a toy example characterised by the following Weierstrass model

y2 = x3 + fωx+ gω2, (4.11)

defining the elliptically fibered (n+ 1)-fold Yn+1. For simplicity, we will work locally, taking
(x, y, ω) as coordinates of C3. The discriminant, ∆ = ω3(4f 3 + 27g3ω), indicates that
Yn+1 is singular along the divisor2 S : {ω = 0}. Moreover, looking at the Kodaira–Néron
classification, it is a type III singularity, see table 4.1. Following [136], this singularity can be
resolved by a so-called blowup. In this procedure, one introduces an additional homogeneous
coordinate s along with transforms x̃, ỹ, ω̃ of the original coordinates:

(x, y, ω) = (x̃s, ỹs, ω̃s), (x̃, ỹ, ω̃, s) ∼ (x̃λ, ỹλ, ω̃λ, sλ−1), (4.12)

where the degrees of the scaling by λ ∈ C∗ have been chosen such that the original coordi-
nates do not transform. The coordinate s defines a larger ambient space, where the proper
coordinates cannot vanish simultaneously. The singular point x = 0 = y = ω is therefore
not part of this space, and the resulting hypersurface is smooth. This new Calabi–Yau Ŷn+1

comes equipped with a new projection map π̂ : Ŷn+1 → Bn, such that the fibre at the original
singularities, π̂−1(p), p ∈ S), are now smooth, and in effect, we have replaced the singular
point of a torus by a sphere (a P1), as depicted in figure 4.3. This defines a divisor of the
fibration π̂ : D1 → S, called an exceptional divisor. The procedure can be generalised to
more complicated Weierstrass models and depending on the severity of the singularity, one
needs to introduce more exceptional divisors Di with there own projection πi such that their
respective fibres are isomorphic to different P1’s.

For elliptic surfaces (n = 2), Kodaira and Néron [133, 134] showed that the fibres of the
divisors Di intersect like an affine Dynkin diagram of a Lie algebra of rank r in the ADE

2A divisor is a generalisation of a hypersurface in algebraic geometry, corresponding to a codimension
one subvariety.
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Figure 4.3: Resolution of a singularity by blow up. The singular point (blue) is blown up to
a P1.

classification, where the role of affine node is played by the original component and the
others by the P1’s. While for elliptic surfaces only the algebras su(r), so(2r) and e6,7,8 are
accessible, this classification was generalised to higher dimensional elliptic fibrations, where
all other simple Lie algebras are allowed [137]. Note that there are I1 singularities that leads
to a degeneration of the fibres, but do not render the whole four-fold singular and do not
introduce additional exceptional divisors.

Gauge symmetry from codimension 1 singularities

We motivated F-theory by observing the monodromy behaviour of the axio-dilaton around
branes, and we therefore expect a relation between the singularities and a gauge group.
However, contrary to Type IIB supergravity, we now have access to a richer set of possibilities
to engineer a gauge group!

As we are ultimately interested to extract constraints on the low energy effective theory,
let us see how the gauge bosons associated to an algebra g = Lie(G) arise from the dual M-
theory compactification on a resolved Calabi–Yau. Consider the reduction of the M-theory
3-form:

C3 = Ai ∧ ωi + · · · (4.13)

where ωi ∈ H1,1(Ŷ4) are Poincaré dual to the exceptional divisors Di. After compactification
one is left with r gauge bosons in three dimensions associated to a U(1)r gauge group that
are part of the Cartan subalgebra3 of g. The remaining degrees of freedom arise from M2-
branes—three dimensional extended objects coupling to the M-theory 3-form—wrapping
oriented chains of P1’s in the fibre. Computing the charges of those states under the Cartan
U(1) in terms of intersection numbers, one finds that they have the correct charges to be
embedded into a decomposition of the full adjoint of g into its Cartan subalgebra. These
states are however massive if the compactification is done on Ŷ4. However taking the F-
theory limit and shrinking the size of the P1, they become massless, as it is expected of

3The Cartan subalgebra h ⊂ g is defined as the maximal commuting subgroup of g, i.e. the set h =
{T ∈ g|[T,U ] = 0, ∀U ∈ g}. Its dimension r = dim(h) is called the rank of g.
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gauge bosons. In the F-theory limit, the U(1)r gauge symmetry therefore enhances to the
full group G.

Due to the important relation between the singularity structure of the elliptic fibration
and the low energy data, we would like to have a systematic way to engineer the gauge
symmetry we desire in a simple fashion. This can be achieved with Tate’s algorithm, which
is applicable when the Weierstrass model can be written in Tate form [135]

PT = x3 − y2 + a1xyz + a2x
2z2 + a3yz

3 + a4xz4 + a6z
6 = 0. (4.14)

The ai depend on the coordinates of the base and are can be easily be shown to be elements
of H0(Bn, K

−i
B ), and encode the singularity structure of the elliptic fibration. Given a Tate

form, we can recover a Weierstrass model by defining

b2 = a2
1 + 4a2, b4 = a1a3 + 2a4, b6 = a2

3 + 4a6, (4.15)

and shifting the coordinates. One finds that the parameter of the Weierstrass equation are
then given by

f = − 1

48
(b2

2 − 24b4), g = − 1

864

(
−b3

2 + 36b2b4 − 216b6

)
. (4.16)

The usefulness of the Tate form is that the gauge algebra associated to a singularity
is determined by the vanishing order of the ai. This defines a way of obtaining models
with singularities in the Kodaira–Néron classification, first developed in [135], called Tate’s
algorithm. For practical purposes we have reproduced it in in table 4.1.

As expected its associated gauge symmetry is su(2). As an example that will be again
useful throughout the rest of this thesis, let us engineer an I5 singularity, corresponding
to an SU(5) gauge group, along a divisor S : {ω = 0}. It is achieved by extracting the
appropriate factor of ω from the ai given by table 4.1:

a1 → a1, a2 → a2ω, a3 → a3ω
2, a4 → a3ω

3, a6 → a6ω
5. (4.17)

The coefficients ai may still depend on ω, but cannot be factored further. It is then straight-
forward to show that the discriminant is written as

∆ = −ω5
(
P 4

10P5 + ωP 2
10(8a2P5 + b5R) +O(ω2)

)
, (4.18)

where we defined the coefficients

P10 = a1, P5 = a2a
2
3 + a1a3a4 + a6a1, R = −a3

3 − a2
4a1 + 4a6a2a1. (4.19)

The discriminant indeed exhibits an I5 singularity associated with a su(5) gauge algebra in
the low energy description.
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Matter at codimension 2 singularities

From the supergravity description, we expect that strings stretching between two branes—or
rather stacks of branes—support matter transforming in the bifundamental representation of
the gauge groups supported by each brane. These fields will have a mass proportional to the
tension of the string. If the branes intersect however, these fields will become massless and
localise at the intersection point. In F-theory, this happens when two singular loci intersect
and the singularity enhances over that locus. For a four-fold, two divisors Sa and Sb intersect
along a co-dimension 2 curve Cab = Sa ∩ Sb. Note that in principle a divisor can intersect
itself, as is the case if one has a single gauge group in the effective theory.

Much as for codimension one singularities, it is easier to determine what happens in the
low energy description by studying the dual M-theory on the resolved Calabi–Yau. The
P1’s over the divisors Sa, Sb intersect as dictated by their associated gauge algebra ga and
gb respectively. At the intersection curve Cab, their number increases and now intersect
according to the Dynkin diagram of an enhanced ADE algebra gab. Again, In the dual
picture, the M2-branes will wrap chains of P1’s, giving copies of the adjoint of gab. This
enhanced gauge group is however not physical and has to be decomposed into representations
of true physical algebra ga ⊕ gb, always following the pattern

Gab −→ Ga ×Gb,

Adj −→ (Adja, 1)⊕ (1,Adjb)⊕
∑
i

[(
Ri
a,Ri

b

)
⊕ c.c

]
, (4.20)

with Ri
a,b corresponding to irreducible representations of the groups. Note that the decom-

position may include singlets which group theoretically are associated to fields charged under
the Cartan subalgebra of Gab but not Ga ×Gb.

For the I5 singularity, the discriminant (4.18) can enhance in two different ways, depend-
ing on whether P10 or P5 vanish. For the curve C5 : {ω = 0} ∩ {P5 = 0}, Tate’s algorithm
predicts an I5 singularity while the curve C10 : {ω = 0}∩{P10 = 0} is associated to a I∗1 —or
so(10) singularity. Their decomposition back to SU(5) are given by [138]:

SO(10) : 45 −→24⊕ 10⊕ 10⊕ 1

SU(5) : 35 −→24⊕ 5⊕ 5⊕ 1 (4.21)

Yukawa coupling and codimension three singularities

For a Calabi–Yau four-fold, there is one further possibility of enhancement at codimension
three. One could naively expect the appearance of new matter at these points, but it was
shown in [32, 33] that no such behaviour occurs. Instead, these further enhancements are
associated to Yukawa couplings and give information about the form of the superpotential.
From the M-theory perspective, these coupling can again be seen when wrapping M2-branes
on the P1’s. In our SU(5) example, there are three such enhancements, at the points

Pe6 : {ω = P10 = a2 = 0} , Pso(12) : {P10 = a3 = 0} ,
Psu(7) : {ω = P5 = R = 0} , (4.22)
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Point coupling GUT interpretation
Pe6 5 10 10 Up type Yukawa
Pso12 5 5 10 Down type Yukawa
Psu7 5 5 1 µ-term like operator

Table 4.2: Yukawa points arising in codimension three for an I5 singularity engineered
through Tate’s algorithm and their interpretation in GUT models.

corresponding to enhancement to e6, so(12) and su(7) respectively. A decomposition of the
adjoint of these enhanced algebras then give the Yukawa coupling. For the simplest case of
the point Psu(7), the decomposition is given by

SU(7) −→ SU(5)× U(1)2

48 −→ 24(0,0) ⊕ (5⊕ 5)(−6,0) ⊕ (5⊕ 5)(0,6) ⊕ 1(6,−6) ⊕ 1(−6,6) ⊕ 2 · 1(0,0). (4.23)

Here, we have displayed the charges under the Cartan U(1) not fitting inside SU(5). From
that we see that there is an SU(5) invariant triplet 5 5 1, corresponding to a µ-term like
operator in Grand Unified Theories (we shall be more explicit about this terminology when
discussing phenomenological constraints in chapter 6). For the others, the result of the
decomposition and their interpretation in GUT models are summarised in table 4.2.

The presence of an e6-point in F-theory attracted a lot of attention and sparked a renewed
interest in the field. Indeed, this type of coupling is not possible perturbatively in Type IIB
intersecting brane models, and can only be generated non-perturbatively through an E3-
instanton [139–141], and are therefore strongly suppressed.

Extra Sections and Abelian Gauge Symmetries

We will need one more ingredient to generate the effective field theories that we are interested
in. In addition to non-abelian gauge groups, we also want the spectrum to be endowed with
extra U(1) gauge symmetries. These abelian factors are very useful when doing model
building, as they can prevent the presence of some operators in the superpotential, such as
mass or proton decay operators.

In F-theory, unlike their non-abelian cousins these symmetries do not arise from codi-
mension one singularities of the elliptic fibration, but are rather associated to global proper-
ties. Here we will discuss elliptic fibration containing extra global sections. For a fibration
π : Yn+1 → Bn, a section is a holomorphic map σ : Bn → Yn+1 satisfying the condition that
π ◦ σ = 1B. For each point in the base, a section therefore assigns one point in the fibre and
defines a divisor of Y .

For a Weierstrass model a section at a point b ∈ B, σ(b), is defined by a holomorphic
function [x(b) : y(b) : z(b)] and the Weierstrass equation. Every Weierstrass model always
has one such a section defined by [x : y : z] = [1 : 1 : 0] called the zero section. Depending
on the functional form of the coefficient of the Weierstrass model, the elliptic fibration is
better described as a hypersurface in another ambient space than P[2,3,1]. Computations are
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generally simpler in those other ambient spaces, but can be mapped back to Weierstrass.
For more we refer to [36].

An example of a model having an extra section can be engineered through table 4.1 by
setting a6 = 0, in a procedure called U(1)-restriction [142]. Mapping the Tate model to a
Weierstrass equation, one obtains

(y − a3z

2
)(y +

a3z

2
) =

(
x− b2

3
z2

)(
x2 +

b2

3
xz2 + z4

(
b4 −

b2
2

9

))
. (4.24)

This model clearly has a global section defined by the holomorphic map4 [x : y : z] =[
b2
3

: a3
2

: 1
]
. Resolving the singularity to obtain a smooth Calabi–Yau Ŷ4, we can use Poincaré

duality to define a (1, 1)-form [σ], which in the M-theory dual gives rise to a U(1) gauge field
through the expansion of the 3-form C3 = A ∧ [σ] + · · · .

This is straightforwardly generalised to a higher number of sections: For each section
σi r = 1, · · · , r, there is a dual (1, 1)-form giving rise to a U(1) gauge boson, and the total
gauge group in the effective theory is enhanced to G×U(1)r, G arising from codimension 1
singularities of the elliptic fibration.

The presence of extra abelian factors will give an additional U(1) charge to states charged
under the non-abelian group G, which is found by calculating the intersection numbers
between the exceptional divisors and [σi], see e.g. [36]. We note that this introduces an
additional subtlety due to the fact that each state in a given non-abelian representation
R must have the same charge, but we shall not expand on the issue for brevity and refer
to [143].

In absence of any non-abelian symmetry, we still expect matter charged under the U(1)’s.
Like their non-abelian counterparts, they are localised on curves of the base. These curves
exhibit an I2 singularity and are in general rather difficult to identify, and require more
advanced tools coming from algebraic geometry. These are beyond the scope of this thesis
and we refer to [36] in the case of a single U(1) and [38,144,145] for models with more than
one extra section. We note that there are also elliptic fibrations with multi-sections, i.e.
maps from the base to multiple points of the fibre that may coincide. Such multi-sections
give rise to discrete abelian symmetries of the type Zn, see [39, 40]. We note that there
are elliptic fibrations that admit multi-sections, but no zero section. These models cannot
be written in Weierstrass form, but nonetheless lead to interesting physics [146] involving
discrete symmetries.

To conclude this section, we summarise the dictionary between the geometry of the elliptic
fibration and the field space of the effective field theory:

General Lesson 4.2. In F-theory compactifications on an elliptically fibered Calabi–Yau Yn
over a base Bn−1, the data defining the target space M of the lower dimensional effective
field theory is given by the geometry of Yn:

4Note that we could also have defined the map by asking y = −a3

2 . It can be shown that the two maps
are homologically equivalent and give rise to the same section.
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• The non-abelian sector arises from the divisor S : {∆ = 0} over which Yn is singular.
The gauge group can be read off the Kodaira–Néron classification, see table 4.1. A
given singularity can be engineered using table 4.1.

• The matter spectrum is localised on curves over the base where the singularity locus en-
hances to a higher rank algebra, and can be read off by a group theoretical decomposition
of the adjoint.

• For four-fold (n = 4), there are additional points where the singularity enhances fur-
ther. A study of the decomposition of the adjoint provides the structure of the super-
potential.

• If the elliptic fibration has additional global sections, the gauge group has extra abelian
U(1) factors.

Applying Tate’s algorithm to obtain an effective theory with an SU(5) gauge group, the
matter spectrum contains fields transforming in the 5 and 10 representations, with an asso-
ciated superpotential generically containing operators of the type given in table 4.2.

4.4 Going Back to Type IIB Supergravity: Sen’s Limit

At the beginning of this chapter, we have motivated F-theory as a non-perturbative descrip-
tion of Type IIB supergravity by examining the behaviour of the axio-dilaton. Now that
we have defined a framework for F-theory that is independent of the Type IIB perspective,
we can reverse the argument and ask: given an elliptic fibration Yn+1 → Bn, is it possi-
ble to find a regime there we recover Type IIB supergravity? This limit is realised when
gs ∼ (Imτ)→ 0, except possibly at the location of D7 branes. Recalling the definition of the
j-function (4.6), this happens when the discriminant vanishes, which generically happens
when

f ∼ −3b2
2 +O(ε), g ∼ 2b3

2 +O(ε). (4.25)

In the limit ε → 0, called Sen’s limit, the axio-dilaton blows up and we recover a per-
turbative regime. The parameterisation in terms of b2 is there to be reminiscent of the Tate
polynomial coefficients (4.15). Indeed, we can parameterise f and g in terms of the coeffi-
cients bi as in equation (4.16). Sen’s original limit is then to demand the bi vanish in ε to
an order given by

b2 → b2, b4 → b4ε, b6 → b6ε
2. (4.26)

Plugging this ansatz back into the definition of the discriminant and the j-function, we
deduce that in the limit of infinitesimal ε we have

∆ = −1

4
ε2b2

2

(
b2b6 − b2

4

)
+O(ε3), τ ∼ b4

2

ε2(b2b6 − b2
4)
. (4.27)
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The string coupling is therefore small almost everywhere, except possibly at the locus
{b2 = 0}. A study of the monodromies around the singular loci [147, 148] shows that they
are associated with the following monodromy matrices

{b2 = 0} :

(
−1 4
0 −1

)
,

{
b2b6 − b2

4 = 0
}

:

(
1 1
0 1

)
. (4.28)

These are precisely the monodromies associated to an O7-plane and a D7-brane respectively
that we found when discussing the axio-dilaton at the beginning of this chapter. In particular,
a D7-brane wrapping Whitney’s umbrella b2b6−b2

4 = 0 is commonly called a Whitney brane.
The n-fold Xn on which Type IIB is compactified is then given by a double cover of the base
Bn defined by

Xn : ξ2 = b2, (4.29)

where the orientifold involution acts as σ∗ : ξ → −ξ.
Sen’s limit thus offers a very simple dictionary between a Weierstrass model and the Type

IIB data, and has been extensively used in the literature, see e.g. [149] and references therein.
Sen’s original study of the monodromies has also been extended to a stable limit [150], as
well to the case of elliptic fibrations that do not admit a Weierstrass model [151].

General Lesson 4.3. Given a Tate polynomial, it is possible to recover the Type IIB super-
gravity description by making its coefficients vanish to the order defined in equation (4.27).
The result is a discriminant factorising in two parts, corresponding to the loci describing
O7-planes and D7-branes inside a Calabi–Yau defined by the locus ξ2 = b2 in the base of the
elliptic fibration.

In order to better see how it works in practice, let us take the limit for a model similar to
the one that we will study in more details in chapter 7 and consider Tate’s algorithm for an
I2 singularity with a U(1)-restriction and take the case where a4 = 1. In shifted coordinates,
the Weierstrass model reads:

y2 = x3 + b2x
2 + b4ωx+ ω2. (4.30)

Taking Sen’s limit, we obtain the discriminant

∆ = −1

4
ε2b2

2ω
2
(
b2 − b2

4

)
= −1

4
ε2b2

2ω
2(ξ + b4)(ξ − b4), (4.31)

where we plugged back the definition of the Type IIB orientifold (4.29). Using the dictionary
(4.28) we have, in addition of the O7 plane on the locus {ξ = 0}, a stack of 2 branes on
{ω = 0} and two branes on the loci D± = {ξ ± b4}. The two branes D± intersect only on
the orientifold plane and are image of one another, as depicted in figure 4.4.

67



Figure 4.4: Pictorial representation of Sen’s limit in the case of the model (4.30). The branes
D± are image of one another. The orientifold plane is shown as a dashed line.
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Chapter 5

The Role of E8 in F-theory GUTs

We have seen in the last chapter that F-theory is a framework particularly appropriate
to the study of gauge theory, and can be applied to the study of Grand Unified Theories
(GUTs). Such theories are gauge theories that embed the gauge group of the Standard model
SU(3)× SU(2)× U(1) and its spectrum into a bigger group, such as SU(5) or SO(10).

In recent years, there have been important efforts to study how to realise the minimal
GUT group, SU(5), with possible extra Abelian symmetries in F-theory [37,39,136,142,144–
146, 149, 152–166]. While many examples have been studied, there are so far no systematic
understanding of the possible symmetries and spectra that can be realised in such models.

This can be contrasted with early F-theory model building, where local models were
build on the spectral-cover construction [32, 33, 167–171]. In this cases, one focuses on a
patch of the base Bn, by definition isomorphic to Cn. The geometry can then be described
as a Higgs bundle1 over the codimension one locus giving rise to the GUT group, where the
Higgs field takes value inside the commutant of the GUT group under a decomposition of
the 248 adjoint representation of

E8 → GGUT ×G⊥. (5.1)

In the case of SU(5), the commutant is another SU(5)⊥, and the possible spectra arising
from these fields can be easily classified, as they arise by breaking E8 when giving a vev to
elements of its adjoint. This classification says of course nothing about the remaining of the
effective theory, such as its massless spectrum and the values of operators, which depends
on the detail of the background geometry and fluxes. However all the possible Abelian
symmetries for any such models were embeddable inside E8, as the matter charged under
the GUT group sat inside the 248 adjoint representation.

In this chapter, we will explore the possibility of a similar role of the exceptional group
E8 by giving constraints on the possible symmetries and matter charges in global models,
with the aim of a better systematic understanding of F-theory GUT constructions. The role
that E8 may play is directly limited: It is known that there can be gauge group that are

1A Higgs bundle is a holomorphic vector bundle equipped with a 1-form. This 1-form must satisfy
conditions reminiscent of that of the Higgs field in gauge theories, hence the name.
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far larger than E8, and may in particular contain thousands of such factors [172]. However
each non-Abelian gauge group will be localised on a separate divisor in the geometry, and
considering the matter spectrum on the specific SU(5)GUT divisor we in some sense decouple
from the other non-Abelian sectors.

Another limitation is that given an SU(5) symmetry on a single divisor, it is still possible
that it enhances further over higher codimension subloci [31]. Kodaira’s classification indeed
demands the discriminant to vanish to order 10 to obtain an e8 singularity, and it is not
difficult to construct geometries where it vanishes to higher orders inside the singularity
divisor. Such loci however are usually associated to tensionless strings and lead to an infinite
tower of massless degrees of freedom [173–178]. In the context of F-theory, these arise because
the singular limit, the size of some 4-cycle will shrink to zero over the loci, the associated
M5-branes wrapping them lead to such strings. This means that if one requires the absence
of such infinite tower, e.g. for phenomenological reasons, an extension of E8 in such a way
is forbidden.

Furthermore, a gauge group not part of the exceptional branch of Lie group such as
SU(5) is part of an infinite SU(n) series, and one would therefore expect the possibility
for matter charged under an infinite number of representations2. We can again appeal to
phenomenological reasoning to demand the GUT group not to originiate from one of the
infinite series such as SU(n) or SO(2n). Indeed, as we have seen in section 4.3, the presence
of an up type Yukawa require an exceptional codimension three enhancement, which is not
possible for the classical groups.

Notice in particular that the requirement of such a Yukawa point does not necessarily
means the gauge group should be embeddable in an exceptional group. The interplay between
the matter charged under it and its interaction operators in F-theory construction is not yet
understood at a level necessary to systematically classify lower co-dimension singularity data
from higher ones. There are however explicit global constructions where the spectrum cannot
descend from that of a broken E8 theory (see [144], following hints from [37,154]). This then
raises the question of whether E8 plays a role at all in classifying and constraining possible
F-theory GUT models.

In an effort to better understanding these models, we will classify and study an extension
of the set of theories obtained by Higgsing down an E8 theory which can account for the
global models found in [144] and others in the literature. This class of theories go beyond
E8 while still being closely tied to it, showing that this exceptional group still might have a
role to play in the understanding and classification of possible GUT models in F-theory.

It could be that the set of theory we obtain are a complete classification of possible GUT
models in F-theory including an exceptional e6-point, no infinite tower of massless states
and are generic in a sense defined in section 5.1.2. While we have no rigorous proof and
cannot make such claim, our analysis forms a first step towards a complete classification.
In particular, we do not include theories obtained by breaking the group with a chiral
singlet rather than a vector-like pair, which should correspond to geometric gluing modes

2There are mild constraints making this finite due to the tadpole cancellation condition, but still allow
for the rank of SU(n) to be larger than E8.
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[41, 179–183].

The set of theories we will consider are constructed as follows: Starting from the de-
composition of the 248 adjoint representation of E8 to SU(5)GUT × U(1)4, one obtains 20
fields 1i neutral under the GUT group but charged under the Abelian factors. Group the-
oretically, they descend from a Cartan decomposition of the adjoint of SU(5)⊥ (four being
neutral under the whole remnant group). Therefore a theory coming from the Higgsing of
E8 is described by the singlets getting a vacuum expectation value (vev)3, and each singlet
acquiring a vev will therefore break one additional U(1) factor, eventually leaving no more
than SU(5)GUT.

Our proposal is to extend this set of theories by adding 15 new singlet fields not coming
from a decomposition of the adjoint of SU(5)⊥—therefore having different charges under
U(1)4—and construct the extended set of spectra that can be reached via Higgsing. The
addition of these new singlets is detailed in section 5.1, but boils down to the fact that
generally, we expect that for any pair of 5 fields, there is a gauge invariant coupling 1 5 5.

The result is a classification of the spectrum that can appear under any possible additional
Abelian symmetry group (including discrete symmetries). We stress that we do not construct
explicit F-theory geometries associated to all of these spectra, but rather perform a group
theoretic analysis. In section 5.1.3, we compare our classification with explicit GUT models
in the literature and find that of the 30 SU(5) elliptic fibration we study, only three could
not be made flat or generic enough (in a sense defined below), and of the remaining 27, only
one could be embedded into a Higgsed E8. However, all of the others find their place in our
classification. We summarise our results in section 5.2.

5.1 Global F-theory Models and E8

This chapter will focus on the minimal GUT gauge group SU(5) and possible Abelian factors.
This means that the total gauge group is of the form

G = SU(5)× U(1)n, n = 0, · · · , 4. (5.2)

In section 5.1.2, we also incorporate discrete Abelian of the form Zm. As hinted previously, a
key role will be played by representations arising from the decomposition of the adjoint of E8

into SU(5)×U(1)n. To see how the charges arise, it is convenient to consider an intermediate
embedding E8 ⊃ SU(5)GUT × SU(5)⊥. The SU(5)GUT factor then stays untouched while
its commutant is broken to its Cartan subalgebra. Under this intermediate embedding, the
adjoint of E8 decomposes according to (4.20) and one finds

E8 −→ SU(5)GUT × SU(5)⊥,

248 −→ (24,1)⊕ (1,24)⊕ (10,5)⊕
(
5,10

)
⊕
(
10,5

)
⊕
(
5,10

)
. (5.3)

3The GUT singlets come in pairs with opposite Abelian charges. In this chapter, we will only consider
backgrounds where the pair has the same vev.
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The GUT 10-multiplets are therefore in the fundamental representation of SU(5)⊥ and the
GUT 5-multiplets are in its anti-symmetric representation. An embedding of the Cartan sub-
algebra into SU(5)⊥ is then specified by 5 parameters ai satisfying a tracelessness constraint∑

i ai = 0. Our notation will be to write a particular U(1) as

U(1)A =
5∑
i=1

aAi t
i, (5.4)

where the coefficients ti give the charge under the U(1) and are chosen as follows: Given a
representation of SU(5)GUT, we introduce a parameter ti uniquely labelling it:

10i : ti, 5ij : ti + tj, 1ij : ti − tj, i 6= j (5.5)

The ti’s also correspond to the U(1) charges of the representations, in the sense that for a
given U(1) specified by (5.4), the charges are simply given by the contraction of the ti and
ti using tit

j = δji . Note that this way of parametrising the charges makes it clear that there
are two types of gauge invariant operators that can be be constructed: Operators whose ti
sum to zero, such as those of the type 5 10 10, and those whose ti sum to t1 + t2 + t3 + t4 + t5
and are neutral by the tracelessness constraint, such as 5 5 10 .

Up to this point, the discussion has only been about group theory, and we now consider
elliptically fibered four-fold Y4 → B3 that realise an SU(5) gauge group on a divisor pro-
jecting on a surface S ⊂ B3. From General Lesson 4.2, we know that matter will localise
on curves and the superpotential will contain term where three curves intersects and are of
the type given in table 4.2. We are interested in exploring the interaction between this class
of F-theory models and the group E8, and at this point it will be useful to introduce some
nomenclature. We define:

• A network as the data of the collection of SU(5)-charged matter curves on S and their
intersections.

• A partially complete network as a network where any pair of curves intersect each other
at least once.

• A complete network as a partially complete network where additionally, any pair of 5
or 10 matter curves have a cubic coupling with a GUT singlet at some point.

• A flat network as a network where for any point of intersection of two curves there is
an associated cubic gauge-invariant coupling.

These definitions correspond to properties of the F-theory elliptic fibrations and the data
of the matter curves is completely captured by the Weierstrass equation (or an equivalent
fiber equation). For instance, a partially complete network maps to geometries where the
base of the fibration is sufficiently generic, since a non-generic base might have certain matter
curves not intersecting. The notion of flat network comes about in F-theory construction with
extra sections, where one might find intersection points with non-minimal singularities. We
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argued at the beginning of this chapter that such singularities lead to tensionless strings [178]
which we want to avoid. Finally the difference between complete and partial networks stem
from the fact that there can exist geometries where a pair of 5 form gauge neutral operator
when coupled to a 10 but not a GUT singlet, and lead to specific geometries [166]. We will
mainly be interested in the relation between E8 and complete flat network4.

Coming back to the group theory analysis, consider fibrations with matter curved charges
given by (5.5). A natural question that can be raised is whether these charges form a complete
network.

It is easy to see that in the case of e6- and so(12)-points, there is always a gauge invariant
cubic interaction for each pairs. For the su(7)-point however, not every pair of 5 will have
a charged singlet to make it invariant, and therefore the E8 decomposition does not have
enough matter to provide a complete network. We note that this behaviour is specific to
taking the GUT group to be SU(5), as in the case of SO(10) or larger gauge groups the
Abelian charges are such that one can always form a complete network.

A natural conclusion is therefore that F-theory compactifications leading to complete flat
networks can have more singlet fields that those coming from a decomposition of the adjoint
of E8, and we are led to the following extension of the spectrum of fields: For each pair of
5 curves, we require that there should be a singlet field such that there is a gauge invariant
operator 1 5 5. Doing so provides an additional set of 15 singlets to those coming from E8

and offer a richer way of Higgsing down the U(1) factors. The set of theory we will obtain
will include theories coming from E8 as a subset of our larger classification and will form
complete flat networks based on E8 but extend it.

The remainder of this section is dedicated to classify these theories. In section 5.1.1, we
give an example of an elliptic fibration leading to a spectrum not lying in the E8 classification,
and in section 5.1.2 we construct the full set of theories coming from Higgsing down beyond
E8. In section 5.1.3 we compare the obtained classification with explicit F-theory realisations
found in the literature.

5.1.1 An Example of Higgsing Beyond E8

To illustrate the main ideas of our extension, let us consider the case of breaking E8 to
SU(5)×U(1), for which a decomposition of the adjoint shows the spectrum to be constituted
of the following fields:

101
−2 , 102

3, 51
−6, 52

4, 53
−1, 11

5, (5.6)

where the subscripts denote the charge under the remnant U(1). This spectrum alone cannot
form a complete network, as it would require the presence of an additional SU(5) singlet

with U(1) charge 10 we denote 12
10 to produce a gauge invariant operator 12

105
2
−45

1
−6.

4We expect that for less generic configurations, the relation with E8 becomes more complicated. For
example, one could consider a network which splits into two factors that do not share any intersections, and
that the point of e6 enhancement lies in only one factor. Then it is not clear why the other factor in the
network of curves should be tied to the exceptional groups at all.
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The global realisation of this breaking of E8 has been constructed in [37], where the
idea was to take spectral cover description of the Higgsing process amounting to a certain
factorisation [169], and restrict the coefficients of the Tate form such as to match those of
the spectral cover. The elliptic fibration was given both as a Tate form and a fibration in
P[1,1,2]. As explained in 4.3, the latter can be mapped into the former, and for the sake of
brevity, we shall only discuss the Tate polynomial, obtained by demanding its coefficients
take the form

a1 = e2d3, a2 = (e2d2 + αδd3)ω, a3 = (αδd2 + αβd3 − e2δγ)ω2,

a4 =
(
αβd2 + βe2γ − αδ2γ

)
ω3, a6 = αβ2γω5,

with α, β, γ, δ, e2, d3 sections of the base, and ω = 0 is the SU(5) divisor. One finds that the
matter curves are localised along [37,169]

101
−2 : ω = 0 = d3, 102

3 : ω = 0 = e2,

51
−6 : ω = 0 = δ, 52

4 : ω = 0 = βd3 + d2δ,

53
−1 : ω = 0 = α2c2d

2
2 + α3βd2

3 + α3d2d3δ − 2αc2
2d2γ − α2c2d3δγ + c3

2γ
2. (5.7)

In addition, this model has two GUT singlets, one of them being precisely the one lying
outside of E8, 12

10. It is localised on {β = 0 = δ} and intersect the GUT divisor at the point
{ω = δ = β = 0}, where 51

−6 and 52
4 intersect as well. General Lesson 4.2 tells us there is

indeed a gauge invariant interaction between them in the effective theory. We conclude that
in constructing the global F-theory geometry based on this Higgsing of E8, we automatically
obtain a complete network over a generic base5 B3.

The example shows a realisation motivating the inclusion of singlets beyond those coming
from E8. They can moreover be used to break the Abelian factors further, realised in F-
theory by performing a deformation of the elliptic fibration and obtaining a new spectrum. In
the case at hand, the deformation corresponds to giving a vev to 11

10 in effective description.
It has been studied [39,146,184–186] and is done by shifting the following terms to the Tate
coefficients.

a4 −→ a4 − c4,1α
(
αd2

3 + 4γw
)
w3,

a6 −→ a6 + c4,1 (−αd2 + e2γ)2w5. (5.8)

Notice that these deformations of a4, a6 do not change their vanishing order in ω, and
therefore do not modify the gauge group. The presence of higher order term however changes
the structure of the codimension 2 loci, and the matter curves corresponding to 51

−6 and 52
4

recombine into a single curve localised at

5̃1 : ω = 0 = δ (βd3 + d2δ) + e2c4,1d
2
3, (5.9)

5This fibration has a non-minimal singularity at α = 0 = e2. A resolution of this model has been
presented [37], but a singularity remains at α = 0 = γ. These two issues can be bypassed by specialising to
a model where α is a non-vanishing constant [37,144].
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while the other matter loci are unchanged. The presence of the higher order terms also
guarantees the presence of a Yukawa point6 associated to 11

1 5̃1
0 5

3
1, but however destroys

the extra section associated to the U(1) into a so-called bisection. We have already briefly
discussed multi-section at the end of section 4.3, and shall not expand here, but suffice to
say that in this case the U(1) of the effective field theory is broken to a Z2. The resulting
spectrum corresponds to

101
0, 102

1, 5̃1
0, 53

1, 11
1, (5.10)

where the subscript now denotes the Z2 charges. This model, having a discrete symmetry,
does not lie in the possible way to break E8, and we have reached it precisely through the
process described above. As an aside, note that this is the first example of such a Z2 model
with two 10-matter curves.

Interstingly, giving a vev to the singlets lying in the adjoint of E8 corresponds by contrast
to geometries obtained deforming only the leading order of the Tate coefficients, which can
be can be seen in the so-called factorised 4-1 model [144]. In the case of a model based on
S [U(4)× U(1)] ⊃ SU(5)⊥ realised via a U(1)-restriction (see equation (4.24)), one finds only
two 5-matter curves and the singlet at their intersection lies inside the E8 decomposition.
The Higging process is then realised by taking a6ω

3 6= 0 and leaving the other coefficients
unchanged.

5.1.2 Classifying Higgsing Beyond E8

The Higgsing chain away from E8 studied in the previous section is but a small portion of
the possible chains we will now classify. Recall that the E8 singlets are defined through their
charges (5.5). We can therefore define the additional 15 GUT singlets in terms of the ti.
As our motivation for their introduction is to guarantee the presence of a coupling 1 5 5 for
each pair of fundamental representation, we take their charges to be given by

1ijkl : ti + tj − tk − tl, i 6= j 6= k 6= l. (5.11)

The set of theories we wish to study are defined by starting from the maximal decompo-
sition

E8 −→ SU(5)GUT × U(1)4, (5.12)

and then breaking the Abelian factors one by one by giving a vev to an increasing number
of all possible GUT singlets. The remnant group G will be the commuting subgroup of
SU(5)× U(1)4 with all the Higgsed singlets, and the matter representation will correspond
to the representation of G descending from E8, and the additional GUT singlets.

6As pointed out in [144], 155 couplings generally depend on higher order terms in ω. Note that this is not
inconsistent with the fact that the Yukawa points can be determined purely from the leading order terms as
it corresponds to the intersection of two 5-matter curves. Indeed the global aspect of a section ensures that
the sub-leading parts are such that there is an appropriate discriminant enhancement at the intersection of
two 5-matter curves.
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Let us denote the set of N singlets acquiring a vev by 1α, with the subscript α ranging
from 1 to N , and their charges under U(1)5—before imposing the tracelessness condition—
as Qiα, with i = 1, . . . , 5, who can be seen as an integer 5 × N matrix. The tracelessness
condition can be implemented in this framework by including an additional singlet with
charge (1, 1, 1, 1, 1), effectively breaking U(1)5 → S [U(1)5] and making α range from 0 to
N . To obtain the charges of the spectrum under the remnant group, one must first go to a
basis of U(1)5 where all the singlets are uncharged under the remnant group. Following the
methodology of [187], we go to the so-called Smith form D of Qiα. For any integer matrix
Q ∈ Mat(N, 5,Z), it is indeed possible to find two unimodular matrices U ∈ SL(N,Z) and
V ∈ SL(5,Z) such that

UQV = D = diag(d1, . . . , dr, 0, . . . , 0), (5.13)

where the integer entry di−1 divides di for all i = 2, . . . , r = Rank(D). This decomposition
guarantees that the matrix V determines the appropriate change of basis such that the charge
vector qi of any state transforms to q′i = (qV )i and keeps the charges integer. In particular,
the charges under the unbroken combinations are therefore given by q′i for i = r + 1, ..., 5.

Note that some of the U(1)s may be broken to a remnant discrete symmetry. Indeed let
us imagine a spectrum consisting of only three fields ϕm, m = 1, 2, 3 charged m under an
hypothetical U(1). Then, upon giving a vev to ϕ3, any interaction involving the other fields
are left invariant under a Z3 symmetry:

ϕn → e2πin/3ϕn, n = 1, 2. (5.14)

This reasoning is easily generalised to arbitrary number of fields and U(1)’s. The possible
remnant discrete gauge groups are encoded in the Smith form, and are simply

GDiscrete = Zd1 × · · · × Zdr . (5.15)

If any di = 1, the factor is of course trivial. Notice that the discrete part GDiscrete may
be part of the Z5 centre of SU(5) in which case the physical discrete subgroup is given by
GDiscrete/Z5.

As an example of a breaking encompassing the different features encoded in the Smith
form, let us consider the giving a vev to the singlets 11234 and 11324. The associated charge
matrix and associated Smith form are

Q =

1 1 1 1 1
1 1 −1 −1 0
1 −1 1 −1 0

 , D =

1 0 0 0 0
0 1 0 0 0
0 0 2 0 0

 . (5.16)

As the rank of the matrix is 3 and d3 = 2, the smith form signals that the remnant symmetry
is U(1)2×Z2. Rotating to the basis defined by V , one finds that e.g. 101 has charge (1, 0)1,
and similarly for the other matter fields.

The above procedure must be performed for all possible combinations of singlets. The
initial spectrum containing 25 charged singlets, we have 25 possibilities to break SU(5)GUT×
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U(1)4 → SU(5)GUT×U(1)3 with one singlet, 300 possibilities of breaking an additional U(1)
with two singlets, 2300 possibilities for Higgsing with 3 singlets and finally 12650 possibilities
to break all the U(1)’s to SU(5) × GDiscrete. There are of course a significant equivalent
possibilities: For instance, it is obvious giving a vev to the singlet 112 or 113 lead to the same
spectrum up to relabeling, and only 1ij and 1ijkl give rise to two different SU(5) × U(1)3

spectra. A similar analysis of redundancies can be performed to the case of two singlets
analytically but is much harder to do for more singlets. We therefore resolved to classify all
possibilities through a computer scan and some analytic checks.

The final result is shown in tables 5.1 and 5.2. The various models are labeled by three
number denoting how many differently charged 10, 5, and 1 the spectrum contains. The
number of physically distinct models with 3, 2, 1 and 0 U(1)s is 2, 6, 11, 6 respectively. The
paths which can be taken to reach each of the models as a Higgsing process are shown in
figure 5.1.

The final set of models with no U(1) symmetry are differentiated purely by their discrete
symmetries. Indeed it is interesting to note that models with discrete symmetries lie outside
the Higgsed E8 subset, marked in bold in the tables, so discrete symmetries are only induced
by Higgsing non-E8 singlets. However, there is a set of discrete symmetries which is not
captured by our analysis: From the perspective of a Higgsed E8 theory these arise from
symmetries lying in SU(5)⊥ which are not embedded in its Cartan subgroup. They occur
when the Higgs vev is restricted beyond just which components are non-vanishing but there
are relations between the non-vanishing components.7 These non-generic Higgs backgrounds
can lead to models with discrete symmetries that come from a Higgsed E8. We have not at-
tempted to implement these in our classification because it is not clear what the prescription
should be to extend these beyond the Higgsed E8 picture. It would be interesting to under-
stand such symmetries better from a global perspective and thereby gain some intuition as
to how they may be implemented beyond a Higgsed E8.

General Lesson 5.1. SU(5) GUT spectra coming from a decomposition of the 248 of E8 do
not form complete networks. To do so, they have to be extended by a set of 15 GUT singlets,
that can in turn be used to break the Abelian factors one by one. The result is the Higgsing
tree in figure 5.1 and the spectra of tables 5.1 and 5.2. Some spectra obtained by Higgsing
away from E8 contain discrete symmetries, which is not possible when the extra singlets are
absent.

5.1.3 Embedding Known Models

In the previous section, the classification we obtained was constructed by finding the gauge
group and representations of a given model, and was therefore purely group theoretic. The

7In terms of the spectral cover approach such symmetries occur when the Galois group of the roots of
the spectral cover is not a product of permutation groups (dictated by the U(1) factorisation) but sub-
groups of them. Or using earlier terminology when the monodromy group is not the full permutation group.
See [168,188–191] for studies of this.

77



{
5
,1
0
,2
5
}

{
4
,7
,1
2
}

{
5
,9
,1
8
}

{
3
,4
,4
}

{
3
,5
,6
}

{
4
,6
,7
}

{
4
,6
,8
}

{
5
,8
,1
2
}

{
5
,8
,1
2
}
2

{
2
,2
,1
}

{
2
,3
,2
}

{
3
,3
,2
}

{
3
,4
,3
}
2

{
3
,4
,3
}

{
4
,5
,4
}

{
4
,5
,5
}
2

{
5
,7
,7
}
2

{
5
,7
,6
}

{
5
,7
,8
}
3

{
5
,7
,7
}
(2
,2
)

{
2
,2
,1
}
2

{
3
,3
,2
}
3

{
4
,4
,3
}
4

{
4
,4
,3
}
(2
,2
)

{
5
,6
,5
}
6

{
5
,5
,4
}
5

F
igu

re
5.1:

S
et

of
th

eories
th

at
can

b
e

reach
ed

b
y

H
iggsin

g
d
ow

n
from

S
U

(5)×
U

(1)
4

u
sin

g
th

e
G

U
T

sin
glets.

E
ach

rect-
an

gle
d
en

otes
a

sp
ectru

m
of

fi
eld

s,
w

ith
th

e
n
u
m

b
ers

giv
in

g
th

e
n
u
m

b
er

of
d
iff

eren
tly

ch
arged

1
0

,
5

an
d

1
rep

resen
tation

s,
an

d
th

e
su

b
scrip

t
d
en

otin
g

th
e

ord
er

of
an

y
d
iscrete

grou
p

p
resen

t.
T

h
e

sp
ectra

of
all

th
e

m
o
d
els

are
given

in
tab

les
5.1

an
d

5.2.
T

h
e

p
ath

s
con

n
ectin

g
th

e
m

o
d
els

d
en

ote
H

iggsin
g

of
G

U
T

sin
glets.

T
h
e

b
lu

e
n
o
d
es

an
d

p
ath

s
corresp

on
d

to
th

e
set

of
th

eories
reach

ed
from

ad
join

t
H

iggsin
g

of
E

8 ,
th

ou
gh

th
e

sp
ectru

m
of

sin
glets

in
th

ese
m

o
d
els

is
ex

ten
d
ed

b
eyon

d
E

8 .
T

h
e

d
ecreasin

g
levels

d
en

ote
a

d
ecreasin

g
n
u
m

b
er

of
U

(1)s.

78



M
o
d
e
l

1
0

1
1
0

2
1
0

3
1
0

4
1
0

5
5

1
5

2
5

3
5

4
5

5
5

6
5

7
5

8
5

9

T
h
re

e
U

(1
)’

s
m

o
d
el

s

{4
,
7
,
1
2
}

(−
2
,
−
1
,
−
1
)

(1
,
0
,
0
)

(0
,
1
,
0
)

(0
,
0
,
1
)

—
(−

2
,
−
1
,
0
)

(−
2
,
0
,
−
1
)

(−
1
,
−
1
,
−
1
)

(1
,
1
,
0
)

(1
,
0
,
1
)

(0
,
1
,
1
)

(2
,
0
,
0
)

—
—

(0
,
1
,
−
1
),

(1
,
−
1
,
0
),

(1
,
0
,
−
1
),
(4
,
1
,
0
),

(4
,
0
,
1
),

(2
,
2
,
1
),

(2
,
1
,
2
),

(1
,
2
,
2
),

(2
,
−
1
,
−
1
),

(3
,
2
,
0
),

(3
,
0
,
2
),

(3
,
1
,
1
)

{5
,
9
,
1
8
}

(−
2
,
−
2
,
0
)

(1
,
0
,
0
)

(0
,
1
,
0
)

(0
,
0
,
1
)

(1
,
1
,
−
1
)

(−
2
,
−
2
,
1
)

(−
2
,
−
1
,
0
)

(−
1
,
−
2
,
0
)

(1
,
1
,
0
)

(1
,
0
,
1
)

(0
,
1
,
1
)

(−
1
,
−
1
,
−
1
)

(1
,
2
,
−
1
)

(2
,
1
,
−
1
)

(4
,
3
,
−
2
),

(4
,
2
,
−
1
),

(3
,
4
,
−
2
),

(3
,
3
,
−
1
),

(3
,
2
,
0
),

(3
,
1
,
1
),

(2
,
4
,
−
1
),

(2
,
3
,
0
),

(2
,
2
,
1
),

(2
,
1
,
2
),

(2
,
0
,
−
2
),

(1
,
3
,
1
),

(1
,
2
,
2
),

(1
,
1
,
−
2
),

(1
,
0
,
−
1
),

(1
,
−
1
,
0
),

(0
,
2
,
−
2
),

(0
,
1
,
−
1
)

T
w

o
U

(1
)’

s
m

o
d
el

s

{3
,
4
,
4
}

(−
3
,
−
1
)

(1
,
0
)

(0
,
1
)

—
—

(−
3
,
0
)

(−
2
,
−
1
)

(1
,
1
)

(2
,
0
)

—
—

—
—

—
(1
,
−
1
),

(3
,
2
),

(4
,
1
),

(5
,
0
)

{3
,
5
,
6
}

(−
2
,
−
2
)

(1
,
0
)

(0
,
1
)

—
—

(−
2
,
−
1
)

(−
1
,
−
2
)

(1
,
1
)

(2
,
0
)

(0
,
2
)

—
—

—
—

(1
,
−
1
),

(1
,
4
),

(2
,
−
2
),

(2
,
3
),

(3
,
2
),

(4
,
1
)

{4
,
6
,
7
}

(−
1
,
2
)

(0
,
−
4
)

(1
,
0
)

(0
,
1
)

—
(−

1
,
−
2
)

(−
1
,
3
)

(0
,
−
3
)

(0
,
2
)

(1
,
−
4
)

(1
,
1
)

—
—

—
(0
,
5
),

(1
,
−
6
),

(1
,
−
1
),

(1
,
4
),

(2
,
−
7
),

(2
,
−
2
),

(2
,
3
)

{4
,
6
,
8
}

(−
2
,
−
2
)

(0
,
1
)

(1
,
0
)

(3
,
3
)

—
(−

4
,
−
4
)

(−
2
,
−
1
)

(−
1
,
−
2
)

(1
,
1
)

(3
,
4
)

(4
,
3
)

—
—

—
(1
,
−
1
),

(2
,
3
),

(3
,
2
),

(4
,
6
),

(5
,
5
),

(6
,
4
),

(7
,
8
),

(8
,
7
)

{5
,
8
,
1
2
}

(−
4
,
6
)

(−
1
,
1
)

(0
,
1
)

(2
,
−
4
)

(3
,
−
4
)

(−
5
,
7
)

(−
4
,
7
)

(−
2
,
2
)

(−
1
,
2
)

(1
,
−
3
)

(2
,
−
3
)

(3
,
−
3
)

(5
,
−
8
)

—
(1
,
0
),

(2
,
−
5
),

(2
,
0
),

(3
,
−
5
),

(4
,
−
5
),

(5
,
−
1
0
),

(5
,
−
5
),

(6
,
−
1
0
),

(7
,
−
1
0
),

(8
,
−
1
0
),

(9
,
−
1
5
),

(1
0
,
−
1
5
)

{5
,
8
,
1
2
} 2

(−
2
,
−
2
) 0

(1
,
0
) 0

(0
,
1
) 0

(1
,
0
) 1

(0
,
1
) 1

(−
2
,
−
1
) 0

(−
1
,
−
2
) 0

(1
,
1
) 0

(−
2
,
−
1
) 1

(−
1
,
−
2
) 1

(1
,
1
) 1

(2
,
0
) 1

(0
,
2
) 1

—
(1
,
−
1
) 0

,
(1
,
4
) 0

,
(2
,
−
2
) 0

,
(2
,
3
) 0

,
(3
,
2
) 0

,
(4
,
1
) 0

,
(0
,
0
) 1

,
(1
,
−
1
) 1

,
(1
,
4
) 1

,
(2
,
3
) 1

,
(3
,
2
) 1

,
(4
,
1
) 1

O
n
e
U

(1
)

m
o
d
el

s

{2
,
2
,
1
}

−
4

1
—

—
—

−
3

2
—

—
—

—
—

—
—

5

{2
,
3
,
2
}

−
3

2
—

—
—

−
6

−
1

4
—

—
—

—
—

—
5
,
1
0

{3
,
3
,
2
}

−
1

0
1

—
—

−
1

0
1

—
—

—
—

—
—

1
,
2

T
ab

le
5.

1:
F

ir
st

p
ar

t
of

th
e

su
m

m
ar

y
of

th
e
S
U

(5
)-

ch
ar

ge
d

sp
ec

tr
a

fo
r

th
e

m
o
d
el

s
re

ac
h
ed

b
y

H
ig

gs
in

g
S
U

(5
)
×
U

(1
)4

.
T

h
e

n
u
m

b
er

s
in

d
ic

at
e

ch
ar

ge
s

u
n
d
er

th
e
U

(1
)s

p
re

se
n
t,

w
it

h
su

b
sc

ri
p
ts

in
d
ic

at
in

g
a

d
is

cr
et

e
ch

ar
ge

.
T

h
e

se
co

n
d

ro
w

fo
r

ea
ch

m
o
d
el

li
st

s
th

e
G

U
T

si
n
gl

et
s

p
re

se
n
t.

M
o
d
el

s
in

b
ol

d
ar

e
m

o
d
el

s
ac

ce
ss

ib
le

b
y

H
ig

gs
in

g
on

ly
E

8
si

n
gl

et
s

an
d

th
er

ef
or

e
h
av

e
ch

ar
ge

d
m

at
te

r
sp

ec
tr

a
ar

is
in

g
fr

om
th

e
ad

jo
in

t
of
E

8
b
u
t

w
it

h
ad

d
it

io
n
al

si
n
gl

et
s.

79



M
o
d
e
l

1
0

1
1
0

2
1
0

3
1
0

4
1
0

5
5

1
5

2
5

3
5

4
5

5
5

6
5

7
5

8
5

9

O
n
e
U

(1)
m

o
d
els

(C
on

tin
u
ed

)

{
3
,
4
,
3}

−
4

1
6

—
—

−
8

−
3

2
7

—
—

—
—

—
5
,
1
0
,
1
5

{
4
,
5
,
4}

−
8

−
3

2
7

—
−
1
1

−
6

−
1

4
9

—
—

—
—

5
,
1
0
,
1
5
,
2
0

{
5
,
7
,
6}

−
2

−
1

0
1

2
−
3

−
2

−
1

0
1

2
3

—
—

1
,
2
,
3
,
4
,
5
,
6

{
3
,
4
,
3}

2
−
4
0

1
0

1
1

—
—

−
3
0

−
3
1

2
0

2
1

—
—

—
—

—
0
1
,
5
0
,
5
1

{
4
,
5
,
5}

2
−
3
0

−
3
1

2
0

2
1

—
−
6
1

−
1
0

−
1
1

4
0

4
1

—
—

—
—

0
1
,
5
0
,
5
1
,
1
0
0
,
1
0
1

{
5
,
7
,
7}

2
−
4
0

−
4
1

1
0

1
1

6
0

−
8
1

−
3
0

−
3
1

2
0

2
1

7
0

7
1

—
—

0
1
,
5
0
,
5
1
,
1
0
1
,
1
0
0
,
1
5
0
,
1
5
1

{
5
,
7
,
8}

3
−
3
1

−
3
2

2
0

2
1

2
2

−
6
0

−
1
0

−
1
1

−
1
2

4
0

4
1

4
2

—
—

0
1
,
0
2
,
5
0
,
5
1
,
5
2
,
1
0
0
,
1
0
1
,
1
0
2

{
5
,
7
,
7}

2
,2

−
4
0
,0

1
0
,0

1
0
,1

1
1
,0

1
1
,1

−
3
0
,0

−
3
0
,1

−
3
1
,0

−
3
1
,1

2
0
,1

2
1
,0

2
1
,1

—
—

0
0
,1

,
0
1
,0

,
0
1
,1

,
5
0
,0

,
5
0
,1

,
5
1
,0

,
5
1
,1

Z
ero

U
(1)

m
o
d
els

{
2
,
2
,
1}

2
0

1
—

—
—

0
1

—
—

—
—

—
—

—
1

{
3
,
3
,
2}

3
0

1
2

—
—

0
1

2
—

—
—

—
—

—
1
,
2

{
4
,
4
,
3}

(
2
,2

)
(0
,
0
)

(0
,
1
)

(1
,
0
)

(1
,
1
)

—
(0
,
0
)

(0
,
1
)

(1
,
0
)

(1
,
1
)

—
—

—
—

—
(0
,
1
),

(1
,
0
),

(1
,
1
)

{
4
,
4
,
3}

4
0

1
2

3
—

0
1

2
3

—
—

—
—

—
1
,
2
,
3

{
5
,
5
,
4}

5
0

1
2

3
4

0
1

2
3

4
—

—
—

—
1
,
2
,
3
,
4

{
5
,
6
,
5}

6
0

1
2

4
5

0
1

2
3

4
5

—
—

—
1
,
2
,
3
,
4
,
5

T
ab

le
5.2:

S
econ

d
p
art

of
th

e
su

m
m

ary
of

th
e
S
U

(5)-ch
arged

sp
ectra

for
th

e
m

o
d
els

reach
ed

b
y

H
iggsin

g
S
U

(5)×
U

(1)
4.

T
h
e

n
u
m

b
ers

in
d
icate

ch
arges

u
n
d
er

th
e
U

(1)s
p
resen

t,
w

ith
su

b
scrip

ts
in

d
icatin

g
a

d
iscrete

ch
arge.

F
or

th
e

p
u
re

d
iscrete

sy
m

m
etry

m
o
d
els

th
e

d
iscrete

ch
arges

are
n
ot

su
b
-scrip

ted
.

T
h
e

secon
d

row
for

each
m

o
d
el

lists
th

e
G

U
T

sin
glets

p
resen

t.
M

o
d
els

in
b

old
are

m
o
d
els

accessib
le

b
y

H
iggsin

g
on

ly
E

8
sin

glets
an

d
th

erefore
h
ave

ch
arged

m
atter

sp
ectra

arisin
g

from
th

e
ad

join
t

of
E

8
b
u
t

w
ith

ad
d
ition

al
sin

glets.

80



correspondence between the obtained spectra and F-theory compactifications should be es-
sentially that the massless gauge fields and matter modes match the singularity structure of
an elliptic fibration and that the matter curve intersect accordingly on codimension three
loci. In particular the GUT group has to match an I5 singularity in F-theory and have
singular curve with the desired enhancement, while the Abelian factor should be associated
to (multi-)section of the elliptic fibration.

There are however some differences we desire to outline: Abelian symmetries could also in
principle be related to massive Abelian symmetries, namely gauge symmetries whose gauge
bosons have been made massive by a Higgs mechanism. If such symmetries correspond to a
complex-structure deformation of the fibration, then we expect this to be the same as giving
a vev to a GUT singlet in our analysis, and it should therefore flow to a theory with less
U(1) in our classification.

From the Type IIB perspective, there are two other possible ways to make a U(1) massive
that do not correspond to a Higgsing by an open string mode. This can be achieved either
through some background fluxes, or through a geometric mass [192–194]. In F-theory these
are expected to uplift to backgrounds supporting a G4-flux leading to a massive U(1), see
for instance [195], and to backgrounds which include a particular set of non-closed forms,
as studied in [142, 194]. While the possibility of considering geometries with fluxes will be
studied following chapters, we have restricted ourselves here to geometries with no back-
ground flux, and the first possibility for a mass term should therefore be absent. We expect
the same for the other class of mass terms—at least in the geometric constructions we will
consider—but as these models as not yet fully understood in F-theory, we cannot rule out
this possibility.

When trying to fit models that have been constructed in the literature in our classifi-
cation, we will therefore take the most constrained embedding, where the Abelian sector
is completely massless. One should however keep in mind that with the lack of a formal
proof, their is always the possibility that a construction on a given elliptic fibration can still
be embedded inside of one of our theories with a larger Abelian sector. The charges of the
matter fields would then be under some subgroup of this large Abelian symmetry group.

Moreover the matter representations should correspond to matter curves, and in a given
F-theory geometry it is to be expected that not all possible representations of our theories
will be present. Embedding a geometric model, one should therefore show that the massless
matter forms a subset of the representation in our model. The additional data of whether a
representation corresponds to actual massless matter is purely geometric and can be turned
off by appropriate choices of fibrations

Now that we have shed light on these differences, we can turn ourselves on which class
of F-theory geometries we might expect to be captured by our classification. Using the
definitions in section 5.1, it is natural to study embeddings of F-theory geometries which
form flat complete networks in our classification. Demanding flatness affects most of the
models in the literature as many have non-flat points. A given construction can however
be restricted by setting some parameters of the elliptic fibration to be constants therefore
turning off non-flat points. Doing so might also turn off some matter loci as well, and it is
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this restricted fibration that we then attempt to fit in our classification. The criterion of a
partially complete network simply amounts to considering a generic base for the fibration
which we therefore assume in our embeddings. Finally, although most of the constructions
in the literature form complete networks, there are a few which only form partially complete
networks. We will discuss these special cases below.

In table 5.3 we show the possible embeddings of models in the literature in our classifi-
cation. Of the 30 elliptic fibrations we have considered, 8 of these had an SU(5) spectrum
embeddable in a Higgsed E8 theory, but apart from one (the 4 − 1 factorised Tate model
of [37]), all of them also had GUT singlets which were not embeddable in the adjoint of E8,
and therefore 29 were in fact not lying in E8.

One model could not be made flat over a generic base, and of the remaining 29, once the
they were constrained to be flat, 27 could be embedded into our classification. We present
the analysis of restricting the fibrations to be flat in appendix B. We did not list the four
models constructed in [37] with more that one U(1), which were based on a global extension
of Higgsed E8 theories because no smooth resolution was presented. There, however, the
results are known by construction: the charged matter spectrum can be embedded in a
Higgsed E8 theory, while the GUT singlet spectrum cannot.

General Lesson 5.2. When extending an SU(5) spectrum according to 5.1, we find that
out of 30 models, all 27 forming flat networks (after imposing the absence of non-flat points)
can be embedded in our classification. One of them could be restricted to be flat and two
could not be embedded. The results are summarised in table 5.3.

There are two models, constructed in [166], which were not embeddable in our classifica-
tion. They contain non-flat points but the analysis in appendix B shows that in principle,
for a restricted class of bases of the fibration, it is possible to turn them off by an appropriate
choice of fibration. This also turns off some of the matter curves, but still the remaining
spectrum is not embeddable. There are two features of these models which may be related
to this property. The first is that they do not form complete networks, but only partially
complete ones, i.e. there are 5 matter curves which do not have a 1 5 5 coupling. If one
attempts to restrict the fibration so as to turn off these 5 matter curves then also the single
10 matter curve must be turned off and there is no E6 Yukawa point which places them
outside our classification. They are the only models which have this feature.

Additionally, they exhibit codimension three points located at the intersection of matter
curves, where the discriminant would in principle expected to enhance to a higher order,
but there is no coupling associated to the point. For instance, the discriminant of the model
labeled by I

s(0|12)
5 takes the schematic form

∆ ∼ σ2∆5ω
5 + ∆6ω

6 +O
(
w7
)
. (5.17)

Here σ2 = ω = 0 corresponds to a 5-matter curve [166], while the component ∆5 is some
function which does not vanish over σ2 = 0. The unusual property is that

∆6|σ2=0 = s3,1∆̃6, (5.18)
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Model spectrum embedded in

No U(1) models

[39,146] {2, 2, 2}2

[39] {2, 2, 2}2

One U(1) models

[154] {3, 4, 3}
[144], [163] fiber type I

(01)
5 {3, 3, 2}

[163] fiber type I
(01)
5,ncnc {3, 3, 2}

[144], [163] fiber type I
(0|1)
5 {4, 5, 4} or {2,3,2}

[144], [163] fiber type I
(0|1)
5,nc {2,3,2}

[144], [163] fiber type I
(0||1)
5,nc {3, 4, 3}

Two U(1)’s models

[37] 4− 1 split {2,2,1}
[37] 3− 2 split {2,3,2}

Top 1 {3,5,6}
Top 2 {5, 8, 12}
Top 3 {4, 6, 7}
Top 4 {4, 6, 8}
[165] {5, 8, 12}

I
s(0|1||2)
5 (2, 2, 2, 0, 0, 0, 0, 0) {3,4,4}, {4, 6, 7}, {5, 8, 12} ∗
I
s(0|1|2)
5 (2, 1, 1, 1, 0, 0, 1, 0) {3,5,6}
I
s(0|1||2)
5 (2, 1, 1, 1, 0, 0, 1, 0) {5, 8, 12}
I
s(1|0|2)
5 (3, 2, 1, 1, 0, 0, 0, 0) {5, 8, 12}
I
s(01|2)
5 (3, 2, 1, 1, 0, 0, 0, 0) {4, 6, 8}
I
s(0|12)
5 (4, 2, 0, 2, 0, 0, 0, 0) Not embeddable

I
s(012)
5 (5, 2, 0, 2, 0, 0, 0, 0) Not embeddable

I
s(01||2)
5 (2, 2, 2, 0, 0, 0, 0, 0) {4, 6, 7}
I
s(0|1||2)
5 (2, 1, 1, 1, 0, 0, 0, 0) {3,5,6} *

I
s(01||2)
5 (2, 1, 1, 1, 0, 0, 0, 0) {4, 6, 7}
I
s(1|0|2)
5 (2, 1, 1, 1, 0, 0, 0, 0) {5, 8, 12}
I
s(0|2||1)
5 (1, 1, 1, 1, 0, 0, 1, 0) {5, 8, 12}
I
s(0|1||2)
5 (1, 1, 1, 0, 0, 0, 0, 0) No consistent way to turn off non-flat points.

[156] 2 Fibrations Any of the 2 U(1) models

Table 5.3: Known models and the spectrum they are embeddable in. The two U(1) models
come from [144] and [166]. An asterisk means that one needs to turn off the non-flat points
to find an embedding. The models marked in bold have SU(5) charged matter which is
associated to the E8 part of the tree, see figure 5.1, though all such embeddings, with the
exception of {2,2,1}, require beyond E8 singlets.
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where s3,1 is some section of the fibration. However there is no intersection of matter curves
at the locus σ2 = s3,1 = ω = 0. Now the vanishing order of the discriminant at this point
can be either 6 or 7 depending on the vanishing order of σ2. If σ2 vanishes to order one, the
discriminant vanishes to order 6, as it does over the rest of the matter curve, and there is no
enhancement. However if the vanishing order of σ2 is higher, then there is an enhancement
of the vanishing order of the discriminant over this locus, but no known associated physics.
It can be checked that it is not possible to turn off all such points where this feature occurs in
the fibration consistently. We do not know if the fact that these models are not embeddable
is related to this feature or not.8

SO(10) models

The introduction of singlets not embeddable into the adjoint of E8 was motivated by the fact
that for an SU(5) GUT group, it was not possible to form complete network without them.
As mentioned in the beginning of this chapter, this not the case for higher rank groups. In
the case of GGUT = SO(10), matter arise from the decomposition of the adjoint of E8 as
follows

E8 −→ SO(10)× SU(4),

248 −→ (45,1)⊕ (16,4)⊕
(
16,4

)
⊕ (10,6)⊕ (1,15) . (5.19)

In terms of charges of the Cartan of SU(4), the antisymmetric 16 representation has an
associated charge given by a parameter ti, in a similar way to what we have done for SU(5)
in equation (5.5). On the other hand the fundamental 10 representations have charges given
by ti + tj, while charges ti − tj, with i = 1, .., 4 are associated to SO(10) singlets. We
again have the tracelessness condition

∑
i ti = 0. The difference with SU(5), is that there

is no need for additional singlet to make pairs of 5 neutral here: The reduced number of
available Cartan vectors is such that each pair of 10 is neutralised by a singlet coming from
the decomposition of E8, and we therefore always generically have a complete network in
SO(10) GUT theories.

It is then interesting to consider F-theory compactifications over SO(10) geometries and
Abelian sector and their possible embedding in a Higgsed E8. One could expect that if
the fact that the SU(5) geometries were not embeddable in E8 is attributed to the missing
singlets, we will not have the same problem with SO(10). In [43], we constructed SO(10)
geometries as P[1,1,2] and P[1,1,1] fibrations corresponding to the most general fibrations for
one and to two U(1) respectively [36, 145, 155] following [196]. We have found that there
are two main differences with SU(5): The number of matter curves is very small in the case
of SO(10) (a maximum of two for both 10 and 16), and there are an important number
of non-flat loci. We were able to conclude that the full set of models constructed fibrations

8It is also interesting to note that this dependence of the vanishing order of the discriminant on the
vanishing order of some sections occurs in other models in the literature. In particular for top 2 in [144] one
finds this over the full matter curve c2,1 = w = 0. This curve also happens to exhibit a non-flat point. It
would be interesting to study this feature of fibrations further.
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were embeddable in a Higgsed E8 theory, which is consistent with the fact that the singlets
coming from the 248 of E8 are sufficient to form a complete network.

5.2 Summary

In this chapter, we studied the relation between global F-theory GUTs and the exceptional
group E8. We proposed an extension of the set of theories that can be reached from a breaking
of E8 by introducing additional GUT singlets that do not arise from a decomposition of the
adjoint of E8. These singlets can then be used to break the original spectrum and reach new
theories. We gave an explicit specific global realisation of this process, the so-called global
3− 2 Factorised Tate model, that includes such an additional singlet, and deformed it to a
different elliptic fibration. In the effective theory, this deformation amounts to giving the
extra singlet a vev leading to a Z2 remnant symmetry. We then classified the full set of the
possible spectra that could be reached by giving a vev to more and more singlets, extending
the 6 Higgsed E8 spectra by an additional 20. We presented the full set of representations
and Abelian charges for these theories, see figure 5.1 and tables 5.1 and 5.2.

We went on to compare this classification of spectra with explicit F-theory realisations
constructed in the literature. We considered the 30 resolved SU(5) fibrations listed in table
5.3, and four more given as factorised Tate models in [37], for which no resolution was
presented. Of these 34 fibrations, one could not be made flat, and two did not form a
complete network, as defined in section 5.1. The remaining 27 resolved fibration could all be
embedded into our extended set of spectra. Of these, only one, the global 4 − 1 factorised
Tate Model, sits into a Higgsed E8 theory, as no new singlet is needed to form all cubic
operators between the fields.

We note that in [43], we also considered 10 SO(10) fibrations that all fit inside a broken
E8, the reason being that the no additional singlets are needed to form complete networks.
In that publication, we also explored the heterotic duals to the F-theory fibrations lying
outside the original classification. We found that sometimes—but not always—there can be
a correlation between singlets outside of E8 and singularities of the heterotic dual geometry.
Additionally, we considered some phenomenological applications, by identifying the Z2 sym-
metries with matter-parity. We found that it was not possible to find models where each
generation of matter was arising from a different curve.

This work is far from exhaustive, and is just an initial inspection of the relation between
E8 and global F-theory GUTs. The most obvious direction to follow is to continue to check for
more F-theory geometries that are either embeddable in E8, in our classification, or in neither.
This would be another step towards a better geometric understanding of codimension three
singularities in elliptically fibered four-fold, as it is likely that the intersection structure of
matter curves play a role in their classification. We have also restricted ourselves to complete
networks, and it would be interesting to study models where that are partially complete and
some intersection points are missing. Another obvious direction is to extend the analysis to
theories with fluxes, and the next chapter will be a step in that direction.
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Chapter 6

Hypercharge Flux Breaking and
Anomaly Unifications

In the last chapter, we have explored SU(5) F-theory GUTs, but have yet to relate them to
the Standard Model (SM) gauge group GSM = SU(3) × SU(2) × U(1). As already hinted
previously, from the field theory perspective, SU(5) is attractive because the spectrum of
the Standard Model can be embedded into the fundamental 5 and antisymmetric 10 repre-
sentations of SU(5). Beyond this group theoretical nicety, there are other phenomenological
motivations to embed the SM into a larger single group: performing a running of the gauge
couplings of the Minimal Supersymmetric Standard Model (MSSM) shows that they inter-
sect at one-loop order around 1015 TeV. Taking a top-down approach and starting with an
SU(5) gauge theory, one need to break the GUT group to that of the SM, usually achieved
in EFTs through a Higgs-like mechanism.

F-theory offers a natural alternative, by inducing the breaking through non-trivial flux
background along one of the Cartan U(1) of SU(5), which in the M-theory picture appears
from a non-trivial background of the G4-flux. From the Type IIB perspective, giving a non-
trivial vev to a field strength element FA ∈ su(5) breaks the group to its commutant, similarly
to a Higgs mechanism. Such a process will induce a chirality in the spectrum, meaning that
there will be a different number of left- and right-handed spinors. It is the source of the
breaking, as it is no longer possible to arrange all the fields in complete multiplets. Choosing
carefully this non-trivial background, it is then possible to take the unbroken group to be
GSM. This way of obtaining a lower rank group is very desirable because the Standard Model
is a chiral theory, and any semi-realistic realisation must arrange for such a possibility.

However, a consequence of inducing chirality in presence of an extra U(1) factor is the
appearance of fields that are not associated to Standard Model fields, called exotics. The
exotics couple to the rest of the spectrum and generically lead to undesirable operators, for
instance responsible for fast proton decay. To avoid experimentally ruled out phenomena,
these operators must either be strongly suppressed to have avoided detection so far, or
forbidden. Moreover, the MSSM is plagued by the so-called µ-problem, the question of why
the parameter of the Higgs mass term, µ, is so small compared to the cut-off of the theory.
This problem can be cured by introducing some additional symmetry forbidding the µ-term,
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and generate it by spontaneous symmetry breaking, see [197] for a review of the problems
associated to the MSSM.

In the F-theory framework, the option of having a GUT group and extra Abelian fac-
tors give natural candidates to forbid these unwished-for operators. This possibility has
been extensively studied in the literature for gauge symmetries. A particularly interest-
ing consequence of these models is that if we require the extra symmetry to protect the
µ-term, the vanishing of anomalies requires the presence of additional quasi-vector-like
states1, [169,170,189,198] for original works, and [199] for recent applications.

Conversely, the possibility of global symmetries has not been studied as much. There
are a several of different reasons for that: The main one being that once the symmetry has
been broken, there will be a pseudo Nambu–Goldstone boson (pNGB). This field, an axion,
gets a mass through QCD instanton effects, but it is too light and has been experimentally
ruled out, see e.g. [200] and references therein. In string theory similar instanton terms allow
however for a larger range of masses.

In this chapter, we will study a possibility arising naturally from string and F-theory,
where the symmetry protecting unwanted operators is global. Such behaviour arise by re-
quiring that the GUT breaking does not induce new anomalies, and arise naturally within
F-theory because the hypercharge flux is globally trivial.

In section 6.1, we recall the general properties associated to hypercharge flux and their
induced anomalies. In section 6.2, we present a class of spectra motivated by F-theory
and propose a mechanism protecting the µ-term. In section 6.2.1 we explore the feature of
the pseudo-Nambu–Goldstone bosons and exemplify how it is lifted in a particular class of
models. In section 6.3, we summarise our findings.

6.1 General Properties of Hypercharge Flux GUT Break-

ing

In an F-theory compactification over an elliptic fibration Y4, gauge fluxes are described by
considering the G4 = dC3 field strength associated to the dual M-theory compactification
over the resolved four-fold Ŷ4. It must meet some constraints, such as an (half)-integer
quantisation condition [201] and, similarly to the case of Type IIA discussed in chapter 3,
the fluxes will induce a mass to the gauge bosons on which the fluxes are turned on.

In F-theory and in absence of fluxes, a matter curve C leads to an equal number of massless
fields in a given representation R and its conjugate R. When turning on fluxes, it has been
shown [32, 34] that the chiral modes are counted by cohomology groups H i(C,L ⊗ K

1/2
C ),

where L is the line bundle associated to the flux, and a factor of the canonical bundle of the
curve KC has been factored out for convenience. The net chirality is then be obtained by

1By quasi-vector-like, we mean states that are vector-like under the Standard Model gauge group, but
not the Abelian factor.
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the Hirzebruch-Riemann-Roch theorem (see appendix A).

χC = #R−#R =

∫
C
c1(L), (6.1)

where c1(L) is the Chern class of the line bundle, which is up to a numerical factor the field
strength.

In this chapter, we will be interested in the case of SU(5) GUTs with Abelian factors,
and therefore we expect the presence of 5 and 10 matter curves, as we have now seen several
times in the previous chapters. If we turn on a flux along the hypercharge generator, whose
commutant is the standard model gauge group, we will induce a chirality to Standard Model
representation, and we are no longer able to fit them into complete SU(5) representations,
therefore breaking SU(5) → GSM. Note that while this gives us a way to break the GUT
group, it a priori does not seem very useful, as the hypercharge gauge boson gets a mass and
therefore would lead to only a global U(1)Y in the effective at low energy. Upon inspection
of the dimensional reduction in the M-theory dual, one finds that the mass is proportional
to [202] ∫

S
c1(L) ∧ i∗ω, ∀ω ∈ H2(Ŷ4), (6.2)

with i∗ : H2(Ŷ4) → H2(S) the pull-back of ω on the GUT divisor. The condition to get
a massless hypercharge gauge boson is then than the pushforward i∗ : H2(S) → H2(Ŷ4) of
the Chern class vanishes. A way to achieve this is to consider the 2-cycle dual Π ∈ H2(S)
Poincaré dual to c1(L), for which an equivalent condition is that Π is trivial in S, but not
in B3. One then chooses a 3-chain Γ in B3 such that Π = ∂Γ. We will not delve here in
specific realisations of F-theory geometries allowing massless fluxes, but they are possible to
engineer by either lifting them from Type IIB [149], or by an appropriate factorisation of
Tate’s coefficients [203].

6.1.1 The General Spectrum

From the decomposition of the adjoint of SU(5) down to that of the Standard model

SU(5) −→ SU(3)× SU(2)× U(1),

24 −→ (8,1)0 ⊕ (1,3)0 ⊕ (3,2)− 5
6
⊕ (3,2) 5

6
⊕ (1,1)0, (6.3)

we see that there are fields in the (3,2)− 5
6

representation, called lepto-quarks in that context.
These are not in the spectrum of the MSSM, and we have to choose the line bundle along the
hypercharge generator in such a way that their chirality vanishes, obtaining to the condition

c2
1(L

5
6
Y ) = −2 [32,34].

For the sake of completeness, we also recall how (MS)SM matter fields fit in the funda-
mental and antisymmetric representations of SU(5). The down type quarks and leptons (or
rather their conjugates) can be embedded into a 5 representation, while the other states are
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embedded into a 10:

5 −→
dR︷ ︸︸ ︷

(3,1)− 1
3
⊕

LcL︷ ︸︸ ︷
(1,2) 1

2
,

10 −→ (3,2) 1
6︸ ︷︷ ︸

QL

⊕ (3,1)− 2
3︸ ︷︷ ︸

ucR

⊕(1,1)1︸ ︷︷ ︸
ecR

. (6.4)

The Higgs field can also embedded into a anti-fundamental 5 representation but requires the
introduction of an exotic triplet. This field not present in the MSSM spectrum has to be given
a high mass upon breaking. This conundrum, called the doublet-triplet splitting problem
has to be solved to get a realistic spectrum. Moreover, because of anomaly cancellation (see
below) conditions, there must be two Higgs fields, denoted Hu and Hd, in fundamental and
anti-fundamental representation respectively.

Let us consider models where the GUT group is accompanied by an additional U(1)
factor along which we can also turn on some flux. This will modify the chirality (6.1), as
we need to consider another line bundle. An analysis of the index associated to the matter
curves shows that the chiralities of fields coming from the fundamental of SU(5) are given
by [124]

# (3,1)
Qa5
− 1

3

−#
(
3,1
)−Qa5

1
3

= Ma
5 ,

# (1,2)
Qa5
1
2

−# (1,2)
−Qa5
− 1

2

= Ma
5 +Na

5 , (6.5)

while those from the antisymmetric have chirality

# (3,2)
Qi10
1
6

−#
(
3,2
)−Qi10
− 1

6

= M i
10,

#
(
3,1
)Qi10
− 2

3

−# (3,1)
−Qi10
2
3

= M i
10 −N i

10,

# (1,1)
Qi10
+1 −# (1,1)

−Qi10
−1 = M i

10 +N i
10. (6.6)

The superscriptsQa
5, Q

i
10 denote the U(1) charges and the flux parametersM i

10, M
a
5 , N

i
10, N

a
5

are integers related to the degrees the line bundles. The indices i and a run over the differ-
ent U(1) charges of the matter curves 5 and 10 respectively. We see that hypercharge flux
breaking offers an elegant solution to the doublet triplet problem, as we can choose the flux
parameters such that we do not get any (3,1) 1

3
[34, 170].

From the four dimensional point of view, the non-zero chirality induces either global or
gauge chiral anomalies, depending on the nature of the symmetry. Anomalies can be seen as
a non-perturbative effect arising by a non-trivial transformation of the path integral measure
under redefinitions of the local coordinates of the target manifoldM, and can be computed
from correlation functions of 3 gauge bosons (in four dimensions). Each representation Rα of
a gauge group Gi gives a contribution to the total anomaly. One can differentiate two cases:
the first is anomalies coming from correlation functions of three gauge bosons associated to
non-Abelian groups that we denote AGi−Gj−Gk . The other is when at least one of the gauge
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bosons is associated with the group U(1), denoted e.g. AGi−Gj−U(1). It turns out that these
quantities depends solely on the group theoretical data, and not the particular details of the
theory [204]:

AG2
i−U(1) =

∑
α

C(2)(R)(Rα)q(Rα)χ(R), AGα−U(1)2 =
∑
α

C(1)(Rα)q(Rα), (6.7)

where C(s)(R) is the s-th Casimir of the representation R. For SU(n), C(1)(R) vanishes,
and there is always a normalisation for which C2(n) = 1

2
. In the case of hypercharge flux

breaking, the anomalies of the Standard Model must be proportional to those of the GUT
group [124], called anomaly unification:

ASU(3)2−U(1) ∝ ASU(2)2−U(1) ∝ AU(1)Y −U(1) ∝ ASU(5)2−U(1),

AU(1)Y −U(1)2 ∝ ASU(5)−U(1)2 = 0. (6.8)

Notice that the anomaly (6.8) must always vanish, the first Casimir of SU(n) being always
trivial. Knowing the chirality (6.5) and (6.6), we see that the parameters controlling the
chirality are constrained by the anomalies. As we want the group of the Standard Model to
be a gauge symmetry, the anomalies AG3

SM
must be trivial, as they would otherwise lead to

to a violation of unitarity, and allow unphysical states to appear. Requiring so, one must
impose the sum of the parameters associated to both the hypercharge and extra U(1) fluxes
to vanish: ∑

i

M i
10 +

∑
i

Ma
5 = 0,

∑
i

N i
10 = 0 =

∑
i

Na
5 = 0 (6.9)

As we will consider in the sequel a global U(1), its anomalies from correlation functions of
its gauge boson with two gauge bosons of the Standard Model are not required to vanish.
They are however required to be proportional by anomaly unifications, the flux numbers are
still constrained. One finds that (6.1.1) and (6.8) lead to the relations∑

i

N i
10Q

i
10 +

∑
a

Na
5Q

a
5 = 0,

3
∑
i

N i
10(Qi

10)2 +
∑
a

Na
5(Qa

5)2 = 0. (6.10)

The first immediate consequence of the constraints (6.9) and (6.1.1) is that if one assumes
that the MSSM matter states—i.e. excluding Higgs fields Hu, Hd—have the same U(1)
charges by originating from the same GUT curves, then one needs to require QHu

5 = QHd
5

in order to get only the MSSM spectrum. This implies that the Higgs fields form a vector-
like pair and the U(1) symmetry cannot forbid the presence of a µ-term µHuHd in the
superpotential. A corollary is that if do want to prevent the apparition of the µ-term by
demanding the Higgs fields are quasi-vector-like, we are led to include additional states as
well. They must also be quasi-vector-like, and we will refer to them as exotics. Historically,
these constraints were first discovered as an observation in specific local examples [170], and
only later related to anomalies in local [198,205] and global [203] constructions.
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Note that if we relax the condition that MSSM matter states must come from the same
GUT matter curves, the prediction of exotics appears to be lost. However, it can be checked
that the neutral up and down Yukawa couplings requires that the U(1) charges are the same
for all generations is enough to show that the MSSM matter should come from complete
GUT multiplets (or at least have the same charges with respect to the U(1)). We could still
ask the charges to be different from one generation to the other, but this would require to
break it at a high scale to induce the proper Yukawa operators, and we cannot expect it to
protect the µ-term.

Moreover, one could ask what happens if we allow for another flux parameter, call it

Li10, such that χ(1,1)
Qi10
+1 = M i

10 + N i
10 + Li10, and all the chiralities are independent. One

can check that this does not change the anomaly constraints (6.9) and (6.1.1), but requires
an additional conditions on this new set of parameters:

∑
i L

i
10 = 0. This means that this

class of spectra are not affected in the case we require to make the chiralities unrelated as
we have one parameter for each field. On the other hand, one can also consider the setup
where the global symmetry is taken to be discrete, and of the type ZN . As these symmetry
have a U(1) origin, they lead to anomaly constraints [206,207]. In our case, we find that the
constraints (6.9), (6.1.1) are modify so as to vanish modulo N .

Finally, the constraints (6.9)–(6.1.1) can further restrict the spectrum of exotics if we
want to preserve gauge coupling unification. Indeed, they could change the behaviour of the
β-functions and ruin the unification of the three forces at the GUT scale ∼ 1015 GeV. We
therefore require that they must either form complete GUT multiplets (but with possible dif-
ferent U(1) charges), or combinations that contribute to the β-function as if they were GUT
multiplets. As first noticed in [170], while the latter does not generically arise for all F-theory
Hypercharge flux breaking, they do appear rather naturally in many examples. For instance,
one can consider the following combinations to mimic the behaviour of antisymmetric and
fundamental representations

10 ∼
[
(3,2) 1

6
⊕ (3,2) 1

3
⊕ 2 · (1,1)1

]
,

10⊕ 5 ∼
[
(3,2) 1

6
⊕ 2 · (3,1) 2

3
⊕ (1,2) 1

2

]
. (6.11)

In the second case, notice that the exotics are acting as a 10 ⊕ 5 simultaneously, but not
individually.

6.2 A General Mechanism

In light of the discussions of the previous chapters, and the general properties of hypercharge
flux breaking in F-theory, we find the following general lesson:

General Lesson 6.1. The spectrum of F-theory SU(5) GUTs with Abelian factors broken
to the Standard Model through hypercharge flux breaking naturally leads to a class of low
energy spectra with the following properties:
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1. Appropriately charged singlets Si are present in the spectrum to form neutral cubic
couplings with the quasi-vector-like states.

2. There are additional exotic states beyond those required for anomaly unification if the
µ-term is to be protected.

3. The spectrum satisfies the anomaly unification (6.1.1)–(6.1.1).

4. The spectrum of states maintains gauge coupling unification at 1-loop.

The first property is akin to ask for geometries inducing complete networks, while the
second and third are motivated by hypercharge flux breaking, as discussed at the beginning
of this chapter. The fourth is related to running couplings and do not generically happen.
However, if we wish to maintain gauge coupling unification at the GUT scale, we have to
impose this phenomenologically motivated property. Notice that this class of spectra, while
obtained from F-theory, can be treated in its own right as Effective Field Theory spectra
with a well motivated UV origin.

Since the charges of the quasi-vector-like states are constrained by the chiral anomaly,
and therefore there are also relations between the charges of their singlets necessary to make
any given pair neutral; we define their charges as Qij = Q10

i −Q10
i and Qab = Q5

a −Q5
a. We

take without loss of generality the singlet S0 protecting the µ-term to have charge QS0 = Q12.
We can then take two non-zero reference flux numbers N10

1 , N5
1 and combine the anomaly

unification equations (6.9) and (6.1.1) to show that they satisfy the relation∑
i=2

N1
10Q1i = N1

5QS0 +N1
5

∑
a=2

Q1a (6.12)

It is therefore possible to classify the spectra by the number of differently charged singlets.
For simplicity, we will focus on spectra requiring precisely two singlets to lift the exotics,
whose most general superpotential takes the general form

W = λ0S0HuHd + S1

n1∑
α=1

λα1E
α
1E

α

1 + S2

n2∑
α=1

λi2E
α
2E

α

2 , (6.13)

where n1,2 count the number of quasi-vector-like pairs of exotics Eα
1 and Eα

2 respectively. We
again stress that Eα

1 and E
α

1 are different fields transforming in conjugate representations,
and the superpotential is holomorphic, as expected.

It can then be shown that there are three minimal cases satisfying General Lesson 6.1
with three different singlets:

Case 1 : E1 = (3,1)− 1
3
, E2 = (1,2) 1

2
, (6.14)

Case 2 : E1
1 = (3,2) 1

6
, E2

1 = (1,1)1 , E3
1 = (1,1)1, E2 = (3,1)− 1

3
, (6.15)

Case 3 : E1
1 = (3, 2) 1

6
, E2

1 = (3,1) 2
3
, E3

1 = (3,1) 2
3
, E2 = (1,2) 1

2
. (6.16)
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In all the cases, the spectrum indeed satisfies the fourth property of General Lesson 6.1.
This first case of course forms a 5 representation, albeit for different charges, while the
second case acts as an antisymmetric representation. In the third case, they mimic the
combined contribution of a 5 and a 10 to the β-function. The three minimal cases can be
extended by adding more exotics acting as a fundamental representation. While depending
on the charges, one can still need only three singlets to form the superpotential (6.13), one
generically needs additional singlets

Therefore, from the general properties of General Lesson 6.1, we showed that the minimal
cases where the exotics are lifted by precisely two singlets are given by the very constrained
and potentially predictive spectra (6.14)–(6.15). In the next section, we will explore more
how the breaking of the global symmetry is achieved and how the associated pNGB is lifted.

6.2.1 The Pseudo-Nambu–Goldstone Boson

As we argued in the previous section, the U(1) we introduced to protect the µ-term is a global
symmetry, as we do not demand the anomalies to vanish. While such global symmetries are
believed to be forbidden in a theory of Quantum Gravity [21], they can arise from massive
gauge theories. In those cases, the U(1) is anomalous but the total contribution is cancelled
by an axion through the Green-Schwarz mechanism, see e.g. [208] for a review. The axion is
then eaten by the U(1) gauge boson and acquires a mass, leaving behind an effective global
symmetry that is violated only by non-perturbative effect. This mechanism is prolific in
string theory, where the axion descends from the Kalb-Ramond 2-form or the RR sector,
and the non-perturbative terms involving the axion are D-brane or string instantons [141].
The mass of the axion is therefore of the order of the string scale, and terms violating the
residual global symmetry are highly suppressed. The exact form of the suppression factor
depends on the details of the UV theory, and we will hence take it as a free parameter.
Moreover, we assume that the instantons are weak enough to protect the µ-term and the
mass of the exotics down to the TeV scale.

The global symmetry being only broken by non-perturbative effects, there will be an
associated perturbatively massless pseudo-Nambu–Goldstone boson (pNGB). Notice that
it will be lifted by QCD effects, but those are ruled experimentally as they need a decay
constant above the TeV scale to obtain a mass above the MeV scale [209, 210]. In string
theory, the instanton effects due to branes enhance the mass range and offers a wider variety
of effects.

Notice that the superpotential (6.13) has three further accidental symmetries, and we
thus must expect more pNGBs. One of them can be broken by a perturbative trilinear
operators of the form SiSjSk. One may want to break another accidental symmetry with
a further cubic operator, but it generically ensues that at least one of the singlets must be
neutral under the U(1) when combined with the constraint (6.12), which we want to avoid,
as the Higgs or the exotics would be vector-like. The remaining two pNGBs have then to be
lifted through non-perturbative effects, generically of the form

W ⊃ e−nUSiSj. (6.17)
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Coupl. QS0 QS1 QS2 I00 I01 I02 I11 I12 I22

S1S
2
2 3 −2 1 6 1 4 −4 −1 2

S2
1S2 3 −1 2 6 2 5 −2 1 4
S2

0S2 1 −3 −2 2 −2 −1 −6 −5 −4
S0S

2
2 2 −3 1 4 −1 1 −6 −4 −2

Table 6.1: Singlet and instanton charges Iij for the quadratic terms SiSj, depending on the
cubic term used to lift one accidental symmetry (up to integer normalisation). As Iij can be
take both signs, we always need at least two different instantons to produce all mass terms.
The minimal charges are marked in blue.

Here U is a complex field whose imaginary part is an axion, cancelling the U(1) anomaly via
the Green-Schwarz mechanism. Generically, we must take n ∈ N because this effect has to
be suppressed. This is guaranteed from the string perspective, as the axion field arises when
branes are wrapping n-times some cycles of the internal manifold. Under the symmetry, the
axion shifts as Im(U)→ Im(U) +QU , and the instanton transforms as

e−nU −→ e−nUe−i I , I = nQU . (6.18)

To ensure that there exists a neutral coupling, the instanton charge must of course satisfy
the condition I = (QSi +QSj). One might be tempted to introduce an additional singlet to
introduce two more perturbative operators in the superpotential, but this would lift only one
combination, the other needed to be lifted through instantons. These instantons generally
acquire a large vev, and will be taken as an input parameter in the sequel.

To exemplify this quite general mechanism and show how the pNGB is lifted more pre-
cisely, we will consider a spectrum where the charges of the three singlets satisfy the relation

QS0 +QS1 = QS2 . (6.19)

It is satisfied by considering e.g. models where all the exotics come from 5 GUT multiplets
such as Case 1 (6.14). To lift one of the pNGB, we have to choose a cubic term among the
list S2

1S2, S
2
2S0, S

2
0S2, S

2
2S1, as any other choice consistent with (6.19) leads to vector-like

singlets, and therefore defeats the purpose of using the U(1) symmetry to protect the µ-
term and lift the exotics. The two conditions fix the charges of the singlets up to an integer
normalisation, as summarised in table 6.1 for all four possible trilinear operators. In each
case, the instanton charges I come in both signs, and we therefore require minimally two
instantons we denote U1, U2, to get control over all possible mass terms.

As the procedure is very similar in all cases, we will focus on the spectrum where we
lift one of the pNGBs with the cubic coupling S1S

2
2 . We then need two instantons, U1 and

U2, with charge +1 and −1 respectively to lift the two remaining pNGBs. The resulting
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superpotential, including the leading non-perturbative effects is given by

W =λ0S0HuHd + S1

N1∑
α=1

λα1E
α
1E

α

1 + S2

N2∑
i=1

λi2E
α
2E

α

2 + ηS1S
2
2

+me−U1S0S1 +me−U2S1S2 +O(e−2Ui) (6.20)

The parameter η is dimensionless, while m is mass dimension one. As it is commonly the
case when dealing with pNGBs, we parametrise the real components of the GUT scalars in
term of their modulus and complex phase

Si = ρie
iθi . (6.21)

The phase is an axion, as it encodes the U(1) transformation through a shift by QSi . The
vev of the scalars moreover sets the scale of the U(1) breaking, and we therefore take them
of the same order ρi ∼ ρ and larger than the electroweak scale. Note that after symmetry
breaking, the canonically normalised fields are θi/ρ. If we have any hope of reproducing at
least semi-realistically the Standard Model, we need to induce supersymmetry breaking. We
include this in the mechanism by also considering a soft a-term

Vsoft = a
(
SiS

2
j + c.c.

)
= 2aρ1ρ

2
2 cos(θ1 + 2θ2), (6.22)

whose precise value of a measures SUSY breaking and sets the mass of the pNGB by min-
imising the potential. The scalar potential is then given by the sum of the soft terms and of
the one induced by supersymmetry using equation (2.10)2

V = VSUSY + Vsoft. (6.23)

Without the instanton corrections, The potential has a minimum at θ1 = −2θ2 + π, and the
mass matrix takes the form

M2
ij =

1

2

∂V

∂θi∂θj

∣∣∣∣
min

=

0 0 0
0 aρ3 2aρ3

0 2aρ3 4aρ3

+O(e−Ui) (6.24)

There are, as expected, two perturbatively massless combinations, while the heavy eigenstate
ϕ = ρ(θ1 + 2θ2) has mass

√
5aρ. Taking into account instanton corrections, the eigenvalues

of the matrix (6.24) are roots of a complicated degree three polynomial. Assuming that the
axions are stabilised at different scales, we can consider the limits where one instanton is
comparatively far larger than the other, e.g. e−U1 � e−U2 � e−2U1 , or vice versa.

2From the point of view of string theory, the charged field arise from the open sector, which do not
contain a graviton, and we are therefore decoupled from the supergravity regime. Moreover, in this effective
description, the Kähler metric is approximatively flat, as terms inducing a curvature will be suppressed by
powers of the Planck scale.
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Int. HuHdϕ HuHdϕ
2 Ẽα

1 Ẽ
α

1ϕ Ẽα
2 Ẽ

α

2ϕ

coupl. −imλ0v0e
−U1 −λ0

m
2ρ
v2

0e
−U1 iλα1 v1 iλα2 v2

e−U1 � e−U2 − i√
2
λ0me

−U1 −m
4ρ
λ0e

−U1 − i√
2
λα1 +O(e−U2) i

2
√

2
λα2 +O(e−U2)

e−U2 � e−U1 −iλ0me
−U1 −m

2ρ
λ0e

−U1 2i
3
λα1

m
η
e−U1 − i

3
λα2

m
η
e−U1

Table 6.2: Coupling constant (at leading order in the instanton) associated to interaction
between Higgs scalars Hu, Hd and exotics fermions, denoted by Ẽα

i , Ẽ
α
i . vi is the prefactor

of the eigenstate in the original field basis: ϕ = ρviθi.

In the first case, e−U1 � e−U2 , we find that the eigenstates have—at leading order in the
instantons—squared masses that are given by

5aρ2 +
16

5
mηρe−U1 ,

1

3
mηρe−U2 ,

9

5
mηρe−U1 , (6.25)

The lightest states, whose mass is proportional to e−U2 , is found to be

ϕ =

(
1√
2
ρ+

m(7a− 6η2ρ)

36
√

2aη
e−U2

)
θ0 +

(
− 1√

2
ρ+

m(7a− 6η2ρ)

36
√

2aη
e−U2

)
θ1

+

(
1

2
√

2
ρ− m(7a+ 6η2ρ)

72
√

2aη
e−U2

)
θ2 (6.26)

In the opposite regime e−U2 � e−U1 , the eigenvalues are

5aρ2 +
12

5
mηρe−U2 , e−U1mηρ,

3

5
e−U2mηρ, (6.27)

and the eigenvector associated with the lightest field is given by

ϕ = ρθ0 +
2

3

mρ

η
e−U1θ1 −

1

3

mρ

η
e−U1θ2 (6.28)

The eigenstate ϕ will then couple to the Standard Model via its interaction with the Higgs
field. As it is made out of the three axions θi, it will also couple to all the exotics. Depending
on the value of the instantons, it can predict a set of new states around the TeV scale, which
could in principle be detected as a resonance at the Large Hadron Collider decaying through
loops of quasi-vector-like fermionic states, and therefore suppressed enough to have evaded
detection so far. Assuming a dominant gluon fusion production, the principal decay channel
would be to diphtons, i.e. an event of the form pp → ϕ → γγ. In table 6.2, we give for
future reference the various coupling constants of the interactions between ϕ and the Higgs
scalar and the fermionic components of the exotics.

6.3 Summary

In this section, we have proposed a new mechanism inspired by the general consequences of
hypercharge flux breaking in F-theory compactifications forming a complete network having
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the other generic properties described in General Lesson 6.1. Despite being inspired by
string theoretic arguments, it can nonetheless be defined solely in the Quantum Field Theory
picture. If one desires to retain GUT anomaly unification, but does not necessarily want to
enforce cancellation as to allow for global symmetries, one can use the U(1) symmetry to
forbid a mass term for the Higgs fields. It is then to use the selection rules to alleviate the
µ-problem, but new quasi-vector-like states are needed to satisfy the anomaly constraints.
A possible global symmetry is then broken only by suppressed non-perturbative terms in
the superpotential, giving rise to a light pseudo-Nambu–Goldstone boson that could be in
principle detected by collider experiments around the TeV scale. In section 6.2.1, we showed
how to obtain the lightest combinations, and its coupling to the Higgs fields and the exotics
in a particular class of spectra where the charges of the GUT singlets are related.

There are numerous possible new directions: An obvious extension of this work would
be a more in-depth analysis of the phenomenological implications of this class of spectra,
in particular its relation to di-photon signatures and their tension with current LHC data.
Another route would be to study the consequences of this mechanism to the spectra obtained
in chapter 5. As already mentioned previously, a short phenomenological analysis of the
spectra with an Abelian factor U(1) × Z2 performed in [43] revealed that it was also not
possible to put all the Standard Model spectrum on a single 5 or 10 curves. As the charges
are all known in these models and so it the number of singlets, these spectra offer a nice set
of data to further study the mechanism. Some first steps in that direction have already been
started in [199], but it would be interesting to see if some of the spectra of the extended E8

tree have intrinsically more natural phenomenological properties related to gauge coupling
unification than others, and study their origin. It would also be interesting to study General
Lesson 6.1 when extended to discrete symmetries and how the pNBG behaves in that case.
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Chapter 7

F-theory and Matrix Factorisation

In the previous chapters, we have discussed the singularity structure of some F-theory ge-
ometries and the lower dimensional effective theories they give rise to. Except for the codi-
mension one singularity of example (4.11), we have never given an explicit resolution. This
procedure is however very important, as one needs to get control over the geometry to use
the duality with M-theory and argue for the presence of the physical degrees of freedom
in the EFT. Working with a smooth space also enables the use of very powerful results of
differential geometry, such as for instance Hodge’s theorem, to relate the cohomology groups
of the Calabi–Yau with massless modes in the IR.

One the other hand, we have seen in chapter 2 that when desingularising the elliptic
fibration only the gauge bosons associated to the Cartan subalgebra of the gauge group G
are massless and the gauge group is therefore broken as G→ U(1)r. It is not until one takes
the F-theory limit that the W -like bosons become massless and the full gauge symmetry is
restored. This breaking to the Abelian subgroup, called going to the Coulomb branch of the
theory, is unfortunate as it renders difficult the study of a larger class of theories. One could
desire to go to the Higgs branch, corresponding to breaking the gauge group to a subgroup
not arising from a Cartan decomposition. In string theory, these systems are realised by
so-called T-branes (see [211,212] for the original works and [179,180] for a more recent take
on those systems), and have been an active field of research in recent years, see [213–217]
and reference therein for a non-exhaustive list.

The simplest example of a T-brane is to consider Type IIB string theory with two coinci-
dent D7-branes at position z = 0 in the coordinates orthogonal to the branes. The spectrum
contains a complex adjoint field Φ = ϕiTi parametrising the fluctuations of the brane in the
transverse directions. If this field obtains a vacuum expectation value, we expect the brane
to be separated at positions ϕi. The position of the branes is in fact given by the roots of
the characteristic polynomial of 〈Φ〉, i.e. the solution to the equation det(z1 − 〈Φ〉) = 0.
However, there are some breakings that the geometry cannot see: for instance, for upper
Triangular vacuum expectation values (giving T-branes their name), the stack recombines
as a bound state, but the characteristic polynomial carries no information about it since
det[z1− ( 0 1

0 0 )] = z2, and the geometry misrepresents the effective theory, as one would still
naively expect an SU(2) gauge group. In F-theory, when the singularities are removed, the
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data of these models are therefore obscured and one would need to go the singular space.
We note that for T-branes, there is a proposal to obtain the T-brane information by taking
a particular singular limit of the resolved Calabi–Yau [182] preserving at least part of the
T-brane data. The framework we will work on in this paper is, however, more general and
not only applicable to T-branes.

We have already encountered cases where the geometry does not capture all the informa-
tion. If one desires to introduce chirality by turning on fluxes, the data about the associated
line bundles has to be added ad hoc, and is not encoded in the elliptic fibration. For Type
IIB orientifolds, it turns out that the fluxes of D7-branes is naturally embedded in Sen’s
tachyon condensation picture [218]. The idea is that D7-branes can be obtained as a bound
state left after putting a pair of brane anti-brane on top of each other. The condensation is
parameterised by a so-called tachyon map T , whose domain is related to the flux data. This
framework is very useful in F-theory as it pairs very well with Sen’s limit to Type IIB, and
offers a nice way of comparing one’s results with the perturbative limit expectations [219].

A proposal by Collinucci and Savelli [183] is that the tachyon condensation picture is the
appropriate framework to the treatment of T-branes. In particular, they showed that the
spectrum of states charged under the remnant gauge group was also encoded in the tachyon
map, and could be explicitly computed using homological algebra techniques.

In fact, in a companion paper [41], this description of D7-branes as tachyon condensation
could be uplifted to F-theory, in a sense that will made be clearer in section 7.1: instead of
associating a tachyon map to a set of D7-branes, one can associated a Matrix Factorisation
(MF) corresponding to a pair of matrices, whose product is the Weierstrass model (times the
identity matrix) of the associated singular elliptic fibration. Their proposal is that the tools
used to compute the charged spectrum of T-branes can be applied in a similar fashion to
obtain the charged spectrum of the effective theory, in a way that does not require resolving
the singularities. This method hence completely bypasses the need for blowups, as one works
directly on the singular space, and therefore gives a definition of F-theory independent of
M-theory1.

Despite applying their strategy to the study of a class of global F-theory compactifica-
tions, there is not yet an example involving a non-abelian gauge group in the literature. As a
first step towards a better understanding of Matrix Factorisation methods in global models,
we will study two examples exhibiting a I2 singularity. For simplicity, we will start with a
fibration having an extra section and therefore an additional U(1) factor. We will then check
the spectrum we obtain using MF technology by taking Sen’s limit, and compare it with the
spectrum found through tachyon condensation. Finally, we will move on to a fibration with
an SU(2) singularity where the computations—while following the same methodology—are
more involved and make the picture less clear. We find the groups counting the physical
degrees of freedom have a higher dimension that one expects, and supplement the original
proposal with a further condition. We note that this extra condition could be a consequence
of the proposal rather than an additional constraint, although we have been unable to prove

1We note that there has been another proposal to deal directly on singular spaces before [159], but we
will not discuss it in this chapter.
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it.

In section 7.1, we motivate Matrix Factorisation by reviewing the tachyon condensation
picture and how to obtain the matter spectrum in Type IIB, and give the mathematical
background necessary to do the computations. We then move to specific models with an
I2 singularity in section 7.2. In both cases, we compute the relevant groups counting the
degrees of freedom in both the F-theory picture and its weak coupling limit. We summarise
our findings in section 7.3. This chapter is based on forthcoming work.

7.1 A First Encounter with Matrix Factorisation

It is known that in Type IIB string theory, all Dp-branes can be obtained by placing pairs of
D9- and anti-D9-branes on top of each other, in a phenomenon called tachyon condensation
[218]. In that picture, each stack of anti-D9-branes or D9-branes carries a gauge bundle E ,
respectively F , associated to the gauge theory living on the stack. We will take the two
bundles to have the same rank rk(E) = r = rk(F), so as to avoid a net D9-charge after
condensation, which would break supersymmetry in an orientifold background.

Under some constraints, if the two stacks are placed on top of each other there will be
tachyonic open string modes stretching between the two stacks that will condensate to form
a new supersymmetric system. These tachyonic modes can be thought as a linear map

T : E −→ F . (7.1)

To preserve some supersymmetry in the effective theory, we also demand that this map
is holomorphic. If it is an isomorphism at each point of the bundles, the two stacks will
completely annihilate, leaving nothing behind. If it is not the case, the map will leave a
residual D-brane with an associated gauge bundle G = F/(TE). For the case where both
bundles are of the same rank r, the tachyon map can be seen as a square matrix, and
is therefore an isomorphism everywhere, except at points where the determinant vanishes.
This defines a complex codimension one surface S : det T = 0 which in our case is an 8
dimensional submanifold of the total space, i.e. a D7-brane.

Note that at these points the dimension of the fibre may jump and thus G is not a proper
bundle, but rather a sheaf. In order to not introduce a potentially confusing extra layer of
abstract concepts, we will not dive deeper into a fascinating field of mathematics, but will
only mention the necessary results and definitions when needed. For our purpose, sheaves
can be regarded as bundles where the dimension of the fibers may jump at some points.

In the case of an orientifold, one has, in addition to the holomorphicity condition, to take
into account the projection, corresponding to [220] the condition

T = −σ∗T t, E = F−1, (7.2)

where F−1 is the inverse bundle, defined such that the Whitney sum of F and its inverse is
the trivial bundle F ⊕ F−1 = O, and σ is the involution action.
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Let us consider a simple example and find the tachyon condensation associated to Sen’s
limit of the Weierstrass model (4.30) discussed in section 4.4. We have found that it corre-
sponds to branes at a loci S : {ω2ξ+ξ− = 0}. We must therefore find a matrix T satisfying
det(T ) = ω2ξ+ξ− and (7.2). The discriminant factorising into four components, it is not
difficult to find that in this case, up to a change of basis, it is given by

T =


0 ξ+ 0 0
ξ− 0 0 0
0 0 0 ω
0 0 −ω 0

 . (7.3)

In the language of algebraic homology, that picture of a D7-brane is then simply described
by a cochain complex:

0 −−−→ E T−−−→ F −−−→ G = Coker(T ) −−−→ 0. (7.4)

If we want to multiply a section s of G by det(T ), then automatically s det(T ) = 0 [41]. This
implicitly introduces a map T̃ : F → E satisfying the condition

T̃ ◦ T = det(T )1 = T ◦ T̃ . (7.5)

This means that D7-brane on a locus PD7 = 0 inside the compact dimension is described
in the tachyon condensation picture by a pair of two matrices [T, T̃ ] satisfying T T̃ = PD71.
This is our first encounter with a Matrix Factorisation.

A Hint of Homological Algebra

After having motivated the relation between Matrix Factorisations and D7-branes in Type
IIB, we proceed by shortly reviewing some mathematical concepts, following [183,221], and
use this opportunity to establish the notation that will be useful in the remainder of this
chapter.

A Matrix Factorisation (MF) for a polynomial P over a given ring is a pair of square
matrices [Φ,Ψ] such that

Φ ·Ψ = P · 1 = Ψ · Φ. (7.6)

The set of all Matrix Factorisations of P is denoted MF(P ). We can immediately see that
there are two very simple examples, namely the 1×1 cases [1, P ] and [P, 1], called trivial and
non-reduced respectively. A Matrix Factorisation that can be written in a block diagonal
form, e.g. [(

Φ1 0
0 Φ2

)
,

(
Ψ1 0
0 Ψ2

)]
= [Φ1,Ψ1]⊕ [Φ2,Ψ2] , (7.7)

is called reducible. Moreover, two Matrix Factorisations [Φ1,Ψ1] and [Φ2,Ψ2] are equivalent
if there exists a change of basis such that Φ1 = U−1Φ2U . Note that we will be working
with global F-theory models, which means that the entries of the matrices are sections of a
given bundle, and the coefficients can therefore vanish on some locus, severely restraining
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the possible matrices as one needs to require that their inverse exists and are holomorphic
everywhere.

The simplest example of a MF is that of the conifold P = xy − uv, where in addition to
the 1×1 ones, there is only one non-reducible matrix

[
( x uv y ) ,

(
y −u
−v x

)]
. This case will be the

prototypical example when considering elliptic fibrations, as in the factorised U(1) model
can be put in such a form. In fact, in affine space, a hypersurface equation admits non-trivial
Matrix Factorisations only if it is singular, and each of them carries some information about
the singularity. In the cases we will study, they will correspond to D7-brane data.

Homological algebra is a very adequate framework to use with Matrix Factorisations, as
we have seen with the example (7.3). A particular choice of MF defines intrinsically the two
sheaves as the domain and codomain of the matrices.

0 −−−→ E Φ−−−→ F −−−→ G = Coker(Φ) −−−→ 0 (7.8)

Our main interest in this chapter will be focused on the so-called Ext groups between two
complexes. In order to define them, we will first need the notion of cochain maps ρ• : A• →
B•, a collection of maps ρi that can be depicted in the following way:

· · · Ai−1 Ai Ai+1 · · ·

· · · Bi−1 Bi Bi+1 · · ·

dAi−2

ρi−1

dAi−1

ρi

dAi dAi+1

ρi+1

dBi−2 dBi−1 dBi dBi+1

(7.9)

By definition these maps must satisfy that each square commutes, i.e. dBi ◦ρi = ρi+1◦dAi . Two
cochain maps ρ•, ρ̃• between A• and B• are said equivalent if there is a cochain homotopy
map h• between the two complexes, defined by a set of diagonal maps hi : Ai → Bi−1 such
that ρi − ρ̃i = dBi−1 ◦ hi + h+1 ◦ dAi .

· · · Ai−1 Ai Ai+1 · · ·

· · · Bi−1 Bi Bi+1 · · ·

dAi−2

ρi−1

dAi−1

ρi

dAi

hi

dAi+1

ρi+1
hi+1

dBi−2 dBi−1 dBi dBi+1

(7.10)

The maps are then denoted ρ• ∼ ρ̃•. The extension group Ext1(A•, B•) is then defined as
the set of vertical maps where the lower complex is shifted from one to the left, which means
that ρi : Ai → Bi+1 and hi : Ai → Bi. Note that this definition of the Ext group can be
generalised to higher degrees groups Extn by shifting the lower complex n times to the left.
They will however not be of interest to us in this chapter, and we refer the interested reader
to [221] for a complete treatment of these quantities.

As we are interested in Matrix Factorisation, we will restrict to complexes of the form (7.8)
for the rest of this thesis. The group Ext1(A•, B•) between two complexes A•, B• defined
by two MF [Φ1,Ψ1] and [Φ2,Ψ2] is therefore the set of maps ρ, ρ̃ satisfying Ψ2ρ = ρ̃Φ1.
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Pictorially, this is represented as

E1 F1 G1

E2 F2 G2

g
ρ

Φ1

h
ρ̃

Ψ1

l

Φ2 Ψ2

(7.11)

As in this case the complexes are unambiguously defined by the matrix Φi and ρ̃ is fixed
in terms of ρ since the square must commute, we shall henceforth use the abuse of notation
ρ ∈ Ext1(Φ1,Φ2).

Furthermore, one can use the cochain homotopy relations (7.10) to define an equivalence

ρ ∼ ρ+ Φ2g + hΦ1,

ρ̃ ∼ ρ̃+ Ψ2h+ lΨ1. (7.12)

The group obtained by modding out this equivalence relation is called the reduced Ext group,
and is denoted Ext1(Φ1,Φ2).

Chiral Matter from Ext Groups

After having established the mathematical formalism appropriate to Matrix Factorisation,
let us come back to the tachyon condensation interpretation of D7-branes. There, to each
stack of D7-branes is associated a complex, and one can raise the question of the physical
interpretation of cochain maps. In that picture, they should be related to chiral matter
coming from massless excitation of strings stretching from one stack to another.

It was proposed by Collinucci and Savelli in [183] that these degrees of freedom correspond
to deformations δT ∈ Ext(T, T ) of the tachyon map. Note that the charged matter spectrum
missed in the supergravity approach corresponds to the reduced group Ext1(T, T ) rather than
Ext1(T, T ).

7.2 Matrix Factorisation of Non-Abelian F-theory Mod-

els

Simultaneously to the proposition that Ext groups of the tachyon map encode the physical
charged degrees of freedom in the tachyon condensation picture, Collinucci and Savelli [41]
also proposed a way to find the charged degrees of freedom in F-theory, from Matrix Fac-
torisation of the Weierstrass polynomial.

In some sense, this lift of tachyon condensation to F-theory seems very natural: the
elliptic fibration of the F-theory compactification is defined by the zero locus of a Weierstrass
polynomial PW and, as argued in General Lesson 4.2, the charged matter is encoded into
singular loci of codimension one and two. One therefore expects to find a certain number of
Matrix Factorisations [Φi,Ψi], of a priori various dimensions associated to each locus.

104



The Collinucci–Savelli proposal is then that there is a Matrix Factorisation [Φtot,Ψtot]
such that the chiral spectrum is encoded in Ext groups Ext1(Φtot,Φtot). In terms of matrices,
the chiral modes are then similar to turning on off-diagonal elements of the matrix(

Φtot ρ
0 Ψtot

)
, ρ ∈ Ext1(Φtot,Φtot). (7.13)

To accompany their proposal, they gave several local realisations, as well as testing it
for a compact U(1)-restricted model. There is however no global examples involving non-
Abelian singularities so far in the literature. In section 7.2.1, we build on their example to
construct the simplest non-trivial extension: an SU(2)×U(1) model where the extra section
is engineered via U(1)-restriction [142]. This case is particularly simple because the conifold
form involves only 2× 2 matrices, making computations quite manageable. In section 7.2.2,
we consider the model by Morrison and Park [36] and set one of the coefficients to zero. This
enhances the U(1) back to a geometry with only an SU(2) singularity. There, the MFs are
more complicated and introduce additional subtleties. We argue why they should lead to
the correct description. In both cases we also study Sen’s limit and find the charged degrees
of freedom by using the tachyon condensation picture.

7.2.1 An SU(2)× U(1) Model

Let us consider a specialised version of the model introduced in section 4.4 for which we
already found the tachyon map (7.3): a model with an I2 singularity and an extra section
given by the Tate model

y2 = x3 +
b2

4
x2z +

a1

2
a3xz

2 +
a2

3

4
z6, (7.14)

where we have shifted the coordinates from its Weierstrass form for clarity and set a4 = 0. As
described in section 4.1 we recall that the Calabi–Yau condition imposes the coefficients to
be sections of the base, namely x ∈ H0(Bn, K

−2
B ), y ∈ H0(Bn, K

−3
B ) and ai ∈ H0(Bn, K

−i
B ).

The discriminant indicates that there an I2 singularity along the base divisor S : {a3 = 0}
and that there is an I3 enhancement along the curve C : {a3 = 0 = a2b

2
2}. Introducing the

variables y± = y ± z
2
(a1x+ a3z

2) the equation can be recasted into a conifold form

y+y− = x2(x+ a2z
2). (7.15)

In this form, the extra global section is at [a3, 0, 1]. All the interesting phenomena occurs
at the fibre point x = 0 = y, and we will hence work without loss of generality in a chart
where z = 1. For such a simple case, there are only two non-trivial irreducible Matrix
Factorisations given by

[ϕ1, ψ1] =

[(
y+ x2

x+ a2 y−

)
,

(
y− −x2

−(x+ a2) y+

)]
,

[ϕ2, ψ2] =

[(
y+ x

x(x+ a2) y−

)
,

(
y− −x

−x(x+ a2) y+

)]
. (7.16)
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From here on, the computation could be simplified by using Knörrer’s periodicity [222] to
reduce the computations on the hypersurface given by the Weierstrass model to a simpler
one having only 1 × 1 matrices. While computationally advantageous, doing so would lose
the pedagogical insights that we will gain using 2 × 2 matrices, as we will build on this
example when considering the more complicated case with no U(1). For more on Knörrer
periodicity applied to F-theory, we refer to [41].

We propose that the chiral matter spectrum of this system can be constructed out of the
6× 6 Matrix Factorisation

[Φ,Ψ] =

ϕ1 0 0
0 ϕ2 0
0 0 ϕ2

 ,

ψ1 0 0
0 ψ2 0
0 0 ψ2

 . (7.17)

In order to fully specify the data, we need to provide a domain and codomain to the matrix.
The codomain of each matrix ϕi is parameterised by an arbitrary line bundle Li and the
matrix Φ depends therefore on three different line bundles. However, they can only be fixed
up to an overall twist by an arbitrary line bundle that can be used to eliminate one of them.
For later convenience we choose it such that the domain and codomain of Φ is

L1 ⊗KB ⊗ (O ⊕K−1
B )

⊕
L2 ⊗ (K2

B ⊕K1
B)

⊕
L−1

2 ⊗ (K−1
B ⊕K

−2
B )

Φ−−−−→

L1 ⊗K−2
B ⊗ (O ⊕K−1

B )
⊕

L2 ⊗ (K−1
B ⊕K

−2
B )

⊕
L−1

2 ⊗ (K−4
B ⊕K

−6
B )

, (7.18)

where the third factor in each entry corresponds to the domain of 2 × 2 matrices up to
the line bundle. We will show that a computation of the Ext groups leads to the expected
spectrum and then compare to the Type IIB description. The computation will also make
cleat that—modulo a change of basis—this choice is the only one that works.

As this MF is reducible, the computation of the Ext group decomposes into the compu-
tation of Ext groups of the 2× 2 matrices (7.16). Parametrising ρ as in (7.13) we have

ρ =

 ∗ A1 A2

B1 ∗ C1

B2 C2 ∗

 , (7.19)

with A1,2, B1,2 and C1,2 respectively part of Ext1(ϕ1, ϕ2), Ext1(ϕ2, ϕ1), and Ext1(ϕ2, ϕ2).
Notice that A1 are A2 are not really in the same Ext group, as the complexes are parame-
terised by different line bundles. In our abuse of notation we will not make the distinction,
as computing them will not depend on the precise structure of the (co)domains, but only the
functional forms of the matrices. Once they have been obtained, we will be more careful and
give each degree of freedom as a section of the appropriate line bundle. We will not consider
the diagonal elements of ρ, are they correspond to neutral degrees of freedom. Indeed, ρ has
the same domain and codomain as Φ, and the block diagonal elements are section of certain
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powers of the canonical bundle and not the line bundles Li. As we will see later that the
line bundles are associated to U(1) fluxes.

Let us find the most general form of C1 ∈ Ext1(ϕ2, ϕ2). Taking the domains and
codomains into account it is defined through the complexes

E E ⊗K−3
B E ⊗K−6

B

F F ⊗K−3
B F ⊗K−6

B

g ρ

ϕ2

h
ρ̃

ψ2

l

ϕ2 ψ2

(7.20)

where E = L2 ⊗K2
B ⊗ (K−1

B ⊕ O) and F = L−1
2 ⊗K−1

B ⊗ (K−1
B ⊕ O) are the domain of ϕ2

with the appropriate line bundle. ρ must satisfy two conditions: in order for the square to
commute we must have ψ2ρ = ρ̃ϕ2, and it is defined up to homotopies ρ ∼ ρ + ϕ2g + hϕ2.
Let us start from the latter. It is possible to find a combination of g and h such that

ρ ∼ ρ+

(
µ1x+ µ2(y + a3) ν1x+ ν2y + ν3a3

∗ κ1x+ κ2(y − a3)

)
, (7.21)

where ∗ depends on a combination of all the coefficients above. This means that up to
homotopies ρ12 does not depend on either x, y, a3 and that ρ11 and ρ22 do not depend on
s and cannot factor y ± a3, respectively. All their dependencies is then transferred into the
coefficient ρ21. Performing a similar analysis for ρ̃ reveals that both ρ̃12, ρ̃22 do not depend
on s and cannot factor y+ a3. In particular, that means that ρ12 is forced to be localised on
the divisor of the base {x = y = a3 = 0}, and therefore a section of H0(S, L′|S), where L′ is
a line bundle depending on the domains and codomains of the matrices.

After having used all homotopies to get rid of the dependences on some coefficients, or
in more homological language, used the equivalence to force the coefficients to be sections
of a bundle restricted on a particular locus, we can turn our attention to the commutation
constraint. Consider the entry 1, 2 of ψ2ρ = ρ̃ϕ2

(y − a3)(ρ12 − ρ̃12) = x(ρ̃11 + ρ22). (7.22)

From the homotopies, only ρ̃11 can depend on s and one must have ρ̃12 = ρ12, ρ̃11 = −ρ22.
Performing a similar analysis for the rest of the entries one finds that the most general
solution in that particular homotopy class is

Ext1(ϕ2, ϕ2) =

{(
0 τ1

−(x+ a2)τ1 0

)∣∣∣∣ τ1 ∈ H0(S, L′|S)

}
. (7.23)

Indeed, we have at that point not needed to assume anything about the entries and the
analysis carries similarly for C2. For the complexes (7.20), we find that ρ21 must be a section
H0(S, L−2

2 ⊗K−5
B

∣∣
S) where the restriction to S is due to the homotopies.

A similar analysis can be performed for Ext1(ϕ2, ϕ1). There, the procedure carries in
a comparable fashion. The only difference is that it is possible to use the homotopies to
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localise the degree of freedom on the curve C, and one finds that its most general form is
given by

Ext1(ϕ2, ϕ1) =

{(
0 α
−sα 0

)∣∣∣∣ α ∈ H0(C, L′|C)
}

(7.24)

The other Ext groups are found in a similar fashion, and all depend on only one physical
degree of freedom:

Ai = αi

(
0 1
x 0

)
, Bi = βi

(
0 1
x 0

)
, C1 = τi

(
0 1

x+ a2 0

)
. (7.25)

The coefficients αi, βi, and τi have localisation properties following from (7.23) and (7.24).
The line bundles are easily inferred from equation (7.18), and one finds that they are sections
of:

α1 ∈ H0(C, L1 ⊗ L−1
2 ⊗K−3

B

∣∣
C) (+1,−1)

α2 ∈ H0(C, L1 ⊗ L2|C) (+1,+1)

β1 ∈ H0(C, L−1
1 ⊗ L2 ⊗K−1

B

∣∣
C) (−1,+1)

β2 ∈ H0(C, L−1
1 ⊗ L−1

2 ⊗K−4
B

∣∣
C) (−1,−1)

τ1 ∈ H0(S, ⊗L2
2 ⊗KB

∣∣
S) (0,+2)

τ2 ∈ H0(S, L−2
2 ⊗K−5

B

∣∣
S) (0,−2) (7.26)

All of the sections of these line bundles are reminiscent of equation (6.1), i.e. a group counting
chiral fields over which two U(1) fluxes have been turned on. The last column (7.26) gives
their charges, obtained by looking at the degree of the two line bundles. By inspecting the
charges, it ensues that the second U(1) seems to correspond to the Cartan subalgebra of
SU(2). Indeed τ1,2 have both the correct charges and localisation properties to correspond
fields coming from the adjoint, while the pairs (αi, βi)i=1,2 have the Cartan charges and
localisation of chiral/anti-chiral matter coming from the fundamental representation. This
is confirmed by looking at the index of the two pairs, using the Hirzebruch-Riemann-Roch
theorem (see A):

I1 =#α1 −#β1 =

∫
C

(a1(L1)− c1(L2) + c1(B3))|C , (7.27)

I2 =#α2 −#β2 =

∫
C

(c1(L1) + c1(L2)− 2c1(B3))|C . (7.28)

Notice that in a special case where L2|S = K
− 3

2
B |S , the index of the pairs α1, α2, and β1, β2

coincide, and the SU(2) symmetry is restored. Indeed, τ1, τ2 recombine into a full adjoint
of SU(2), and αi and βi recombined into SU(2) doublets of charge ±1.
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The Matrix Factorisation (7.17) therefore reproduces correctly the degrees of freedom
one expects, without the need for any blowup or other resolution process. Moreover, at no
point have we introduced flux data ad hoc, as the line bundles appear as constituents of the
domain and therefore data of the Matrix Factorisation.

Sen’s Limit

As a consistency check, let us compare these results with the matter spectrum obtained
via tachyon condensation at weak coupling. Sen’s limit in this case is almost the same as
the one used to examplify the procedure in section 4.4. Let us recap it briefly: we have
∆ ∼ ε2a2

2a
2
3(a2

1 − 4a2). Plugging back in the definition of the orientifold, a2 = ξ2, the locus
of the D7-branes is {a2

3ξ+ξ− = 0} with ξ± = ξ± a1
2

, and we have the following picture: there
is a stack of two coindident D7-branes on the locus S : {a3 = 0}, and a brane-anti-brane
image D± : {ξ± = 0} intersecting only on the orientifold plane ξ = 0, as shown in figure 7.1.

We thus expect six different charged degrees of freedom: two states from strings stretching
from one brane of the stack to the other that are image of one another, and four additional
degrees of freedom associated to strings stretching from D± to either branes of the stack.
Notice that a brane stretching from D+ to the first brane of the stack is the image of the
string going from the second brane of the stack and ending on D−. In figure 7.1, we have
shown only the string going from or ending on D−.

The tachyon map is the same as that of (7.3) up to redefinition of the coefficients. Taking
into account that the presence of the orientifold restricts the domain of the map via equation
(7.2), one finds that the condensation is described by the following data:

E−1 =

L−1
1

⊕
L1 ⊗KB

⊕
L−1

2

⊕
L2 ⊗K3

B

 0 ξ+ 0 0
ξ− 0 0 0
0 0 0 a3
0 0 −a3 0


−−−−−−−−−−−−−−→ E =

L1

⊕
L−1

1 ⊗K−1
B

⊕
L2

⊕
L−1

2 ⊗K−3
B

(7.29)

It defines two complexes from which we can compute the Ext group:

E−1 E E−1

E−1 E E−1

g
δT

T

h
δT̃

T̃

l

T T̃

(7.30)

We then follow the same strategy we used in the F-theory context: first one uses the homo-
topies to get rid of the dependencies on the coefficients, localising them along a given locus,
and then imposing the commutation of the square. In this case, there are only two non-
trivial equations, which are of the form −a3ξ+δT21 = ξ−δT̃12. Choosing the homotopy maps
adequately, the dependency on ξ− of δT21 can be removed and it ensues that δT21 = 0 = δT̃12.
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The same reasoning can be applied to the other equation and one is left with 14 degrees
of freedom. However, like the tachyon maps, δT must also be orientifold invariant and one
must impose the condition δT = −σ∗(δT )t, yielding

ρ =


0 0 α2(ξ−) α1(ξ−)
0 0 β1(ξ+) β2(ξ+)

−α2(−ξ+) −β1(−ξ−) τ1ξ τ3(ξ)
−α1(−ξ+) −β2(−ξ−) −τ3(−ξ) τ2ξ

 . (7.31)

None of the coefficients depend on a3, while the coefficients αi, βi additionally do not depend
on ξ+, ξ− respectively. They have therefore the same properties as the degrees of freedom in
F-theory. We can interpret αi as a string stretching from the i-th brane of the stack to D+,
while βi(ξ+) is the brane stretching from the i-th brane to D−. Similarly, it can be viewed
as its image −βi(−ξ−), stretching from the i-th brane of the stack and ending in D+, i.e.
with the opposite orientation to that of αi.

Figure 7.1: Summary of the degrees of freedom associated to the fluctuations (7.31). We
show only the states associated to strings stretching from or to D−. Their image end or start
on D+ with opposite orientations.

The coefficient τ3 corresponds to a deformation of a3, and can be understood as modifying
the center of mass of the stack, or splitting it in a brane-image brane system. This degree
of freedom is therefore neutral, and of no particular interest to us.

Defining the fluxes associated to the Cartan of the SU(2) stack and the U(1) of the brane
image-brane system by extracting the usual factor of the canonical bundle

FSU(2) =
(
c1(L2)− 3

2
c1(B3)

)∣∣
S , F±U(1) = ±

(
c1(L1)− 1

2
c1(B3)

)∣∣
D±
, (7.32)
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the chiral indices found in the F-theory picture (7.27) can easily be verified to agree, using
the relations

I1 =

∫
C

(
F+
U(1) − FSU(2)

)
, I2 =

∫
C

(
F+
U(1) + FSU(2)

)
, (7.33)

where the integrand is understood to be restricted to the matter curve C = S ∩ D+.
The tachyon condensation picture thus confirms the results we obtained on the singular

space via Matrix Factorisation and lends more weight to the Collinucci–Savelli proposal. In
this point of view, the flux data again arises from the definition of the tachyon map, and
is not put in by hand, but comes from the restriction of the allowed line bundles from the
orientifold projection condition.

7.2.2 Towards an Example Without Abelian Factors

In the previous example, the U(1)-restriction enabled us to write the Weierstrass model
as conifold form, and therefore the Matrix Factorisations had a very simple form. In this
section we will consider an example where there is only an SU(2) singularity. This model is
based on that of Morrison and Park [36], the most general model for a U(1) with fields of
charge one and two. Setting one of the coefficients to be trivial leads to an “unHiggsing” to
a full SU(2) model, where the charge one and two fields enhance to fundamental and adjoint
representations respectively. The Weierstrass equation for this elliptic fibration, again in
shifted coordinates for simplicity, is given by

PW = y2 − x3 − a2x
2 − a1a3x− a0a

2
3 = 0. (7.34)

This hypersurface equation is similar to that of our SU(2)× U(1) model (7.14), but cannot
be put in conifold form, as a0 is generically not a square. Its discriminant exhibits an I2

singularity along the divisor S : {a3 = 0}:

∆ = a2
3

(
a2

2(−a2
1 + 4a0a2) + a3(4a3

1 − 18a0a1a2) + 27a2
0a

2
3

)
. (7.35)

It enhances to an I3 singularity along the curve C : {a3 = 0 = a2
2(4a0a2 − a2

1)} signalling the
presence of a fundamental representation. The Calabi–Yau condition forces the coefficients
to be sections of:

a0 ∈ H0(Bn,J 2), a1 ∈ H0(Bn,J ⊗K−1
B ),

a2 ∈ H0(Bn, K
−2
B ), a3 ∈ H0(Bn,J −1 ⊗K−3

B ), (7.36)

where J is a line bundle introduced because the coefficients a0, a1, a3 appear only in products
in (7.34) we must take into account the possibility of a twist.

This absence of a conifold form introduces additional subtleties with respect to the pre-
vious model, of which the rest of this section is dedicated to exploring. Our strategy is the
following: To get a grip on the novelties coming with the absence of U(1), we will start
by studying Sen’s limit via the condensation, and doing so we will already encounter that
the line bundle J requires particular attention. Then, moving to the F-theory picture, we
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will find that the generalisation of the MF (7.17) to this case has more degrees of freedom
than we expect from Sen’s limit. We perform some consistency checks and propose that for
adjoint fields, the correct number of degrees of freedom is found by imposing an additional
condition.

Type IIB Tachyon Condensation

Let us take Sen’s limit for the Weierstrass model of (7.34). Extracting the correct factor of
ε according to (4.26), the discriminant takes the form

∆ = ε2a2
2a

2
3(a2

1 − 4ξ2a0) +O(ε3), (7.37)

where we readily used the definition of the orientifold on which the Type IIB theory is
compactified, given by X3 : ξ2 = a2. We therefore have an O7-plane on the locus {ξ = 0},
and D7-branes on {a2

3(a2
1 − 4ξ2a0) = 0}. This locus factorises and we have a stack of two

branes on the divisor S : {a3 = 0}, and a Whitney brane on W : {W = a2
1 − 4ξ2a0 = 0}.

Notice that unlike the previous example, the two image branes are recombined into a single
brane due to a0 being a full-fledged section, and not a mere coefficient anymore. The setup
is summarised pictorially in figure 7.2.

Figure 7.2: Sen’s limit of the SU(2) model (7.34). The dashed line represents the orientifold
plane {ξ = 0}. The Whitney brane (in red) is located on a2

1 − ξ2a0. The image of the two
degrees of freedom end and start from the second brane of the SU(2) stack.

This system can again be view as a tachyon condensation, where the associated tachyon
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map and its partner are easily found remembering the orientifold projection:

T =


−4a0ξ a1 0 0
−a1 ξ 0 0

0 0 0 a3

0 0 −a3 0

 , T̃ =


a2

3ξ −a1a
2
3 0 0

a1a
2
3 −4a0a

2
3ξ 0 0

0 0 0 −a3W
0 0 a3W 0

 . (7.38)

We again need to specify the domain E−1 of T , remembering to take into account the

orientifold condition E−1 T−→ E . It is straightforward to show that contrary to the SU(2)×
U(1) case, the sheaves are completely fixed up to only one arbitrary line bundle L:

E−1 =

J−1⊗K
1
2
B

⊕

K
1
2
B
⊕
L−1

⊕
L⊗K3

B⊗J

T−−−−−−−−→ E =

J⊗K
− 1

2
B
⊕

K
− 1

2
B
⊕
L
⊕

L−1⊗K−3
B ⊗J

−1

(7.39)

The group counting the charged spectrum, Ext(T, T ), is then found by considering the
complexes (7.30) using the input data above. The computation proceeds in the same way as
that of the SU(2)×U(1) model, with the difference that one can remove the dependency on
the off-diagonal elements on the Whitney brane locus, rather than that of the brane or its
image as was the case for the SU(2)×U(1) model. After imposing the orientifold condition,
one is left with the following result

δT =


0 0 α2(ξ) α1(ξ)
0 0 β1(ξ) β2(ξ)

−α2(−ξ) −β1(−ξ) τ1ξ τ3(ξ)
−α1(−ξ) −β2(−ξ) −τ3(−ξ) τ2ξ

 . (7.40)

Again, τ3 corresponds to a neutral degree of freedom associated to a deformation of the
stack, while defining C = S ∩W , the remaining elements are sections of:

α1 ∈ H0(C,L−1 ⊗K−
7
2

B |C) α2 ∈ H0(C,L+1 ⊗K−
1
2

B ⊗ J |C)

β1 ∈ H0(C,L+1 ⊗K−
1
2

B |C) β2 ∈ H0(C,L−1 ⊗K−
7
2

B ⊗ J −1|C) (7.41)

τ1 ∈ H0(S,L+2 ⊗K1
B|S) τ2 ∈ H0(S,L+2 ⊗K−5

B ⊗ J
−2|S)

It seems that there are more degrees of freedom in the off-diagonal blocs than we would
expect from the naive intersecting branes picture, where one would assume that there are
only strings stretching from each brane of the stack to the Whitney and their image, totalling
three different physical degrees of freedom. However, notice that the pairs α1, β2 and α2, β1

have the same degree under the line bundle we associated to the Cartan U(1) flux. If the
line bundle J was trivial when restricted on the curve, J |C = O, both pairs would be
sections of the same line bundle, and we would be left with two line bundles in addition to
those localised on the divisor S, which is what we expect. While we were not able to find
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a rigorous proof, we suspect it to be the case, as away from the orientifold plan, we can use
Gauss operations to divide by ξ 6= 0 and recast the upper left bloc into the form diag(1,W ).
Performing again the computation of the ext group, we find only two degrees of freedom
with charge ±1 under the Cartan U(1).

F-theory Description

Doing the uplift to F-theory, we would therefore expect to have 2 degrees of freedom, one
localised on the I2 divisor and the other on the I3 curve, coming from the two Ext groups
Ext1(ϕi, ϕj), as well as their conjugates associated to Ext1(ϕj, ϕi). As we have already
pointed out at the beginning of this section, there are no 2 × 2 matrices and we must look
for higher dimensional matrices. In [219], it was found that there is a 4 × 4 MF, which in
our case is

[ϕ4×4, ψ4×4] =

[(
y x(x+a2)+a1a3 a3 0
x y 0 −a3

a0a3 0 y x(x+a2)+a1a3
0 −a0a3 x y

)
, det(ϕ4×4)ϕ−1

4×4

]
. (7.42)

Its domain E4×4 is rapidly observed to depend on only one arbitrary line bundle, and takes
the form

E4×4(L) =

L⊗K−1
B
⊕
L ⊕

L⊗J⊗K−1
B

⊕
L⊗J

Φ4x4−−−−−−→ E4×4(L)⊗K−3
B . (7.43)

We will now argue that this Matrix Factorisation encodes the information about the
adjoint representation, and compute its Ext group Ext1(ϕ4×4, ϕ4×4). We do so by considering
the two complexes

E(L) E(L)⊗K−3
B E(L)⊗K−6

B

E(L′) E(L′)⊗K−3
B E(L)⊗K−6

B

g
ρ

ϕ4×4

h
ρ̃

ψ4×4

l
ϕ4×4 ψ4×4

(7.44)

For the sake of clarity, we will not give the details of the computation here, and only state
the result. Details of the computations have however been gathered in appendix C. We find
that ρ ∈ Ext1(ϕ4×4, ϕ4×4) depends on four different components that are all localised on the
I2 divisor of the base S

ρ =


−a1ρ23 − ρ33 −(s+ a2)ρ43 ρ13 −(s+ a2)ρ23

ρ43 a1ρ23 + ρ33 ρ23 −ρ13

−a0ρ13 − a1ρ43 −a0(s+ a2)ρ23 ρ33 −(s+ a2)ρ43

a0ρ23 a0ρ13 + a1ρ43 ρ43 −ρ33

 = ρ̃. (7.45)

An inspection of the domains shows that the four parameters are sections of

ρ13 ∈ H0(S, L−1 ⊗ L′ ⊗K−3 ⊗ J −1
∣∣
S) ρ23 ∈ H0(S, L−1 ⊗ L′ ⊗K−2 ⊗ J −1

∣∣
S)

ρ33 ∈ H0(S, L−1 ⊗ L′ ⊗K−3
∣∣
S) ρ43 ∈ H0(S, L−1 ⊗ L′ ⊗K−2

∣∣
S) (7.46)
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The presence of four different degrees of freedom is unexpected, as we argued that there
should be only one localised on S, and it seems that there are degrees of freedom that go
beyond those found in the tachyon condensation picture. As a consistency check, we can
restrict to the case where a0 = 1. Doing so, there it is possible to find a conifold form, and
therefore this specialised system can be described in terms of 2× 2 matrices. For the Matrix
Factorisation (7.42), one can then perform Gauss operation to recast it into a block diagonal
matrix

ϕ4×4  

(
y+a3 s(s+a2)+a1a3 0 0
s y−a3 0 0
0 0 y−a3 s(s+a2)+a1a3
0 0 s y+a3

)
. (7.47)

The Ext group should therefore decompose into Ext group of 2 × 2 matrices that can be
computed almost exactly as those of the SU(2)× U(1) example. Comparing the restriction
of (7.45) in that basis, one finds that they must satisfy

ρ12 = 0 = ρ43 ρ33 = −a1

2
ρ23 (7.48)

If our proposal that this Ext group indeed counts fields in the adjoint, as their localisation
indicates, their numbers should not change and it seems that an additional constraint is
needed. We conjecture that, at least in that case, the condition is that if one takes two
elements ρ, ρ′ ∈ Ext1(ϕ4×4, ϕ4×4), they must in turn define a larger Matrix Factorisation
ρρ′ = Pdef1. Our motivation for this conjecture is the following: let us consider the 8 × 8
matrices:

Φ8 =

(
ϕ4×4 ρ
ρ′ ϕ4×4

)
Ψ8 =

(
ψ4×4 ρ
−ρ′ ψ4×4

)
(7.49)

If we consider the product of the two, the off-diagonal block vanish by definition of the Ext
group. The upper left bloc on the other hand reads PW14×4 − ρρ′, while the lower-right is
PW14×4 − ρ′ρ. Here, ρ and ρ′ must have opposite charges under the line bundles associated
to both matrices ϕ4×4 and their product is therefore neutral. As we saw in Sen’s limit, such
neutral degrees of freedom corresponds to deformations of the Tate model, and it is not a
stretch to propose that physical degrees of freedom should reflect such a fact by also forming
a Matrix Factorisation. It turns out that the only holomorphic solution reproduces (7.48).

At the time of writing, it is not clear if this condition is a constraint that has to be
imposed ad hoc, or if it is embedded in the framework. Indeed, it is not unimaginable
that as we are considering complexes and maps between them, this extra condition is a
consequence of homological algebra.

So far, we have only discussed degrees of freedom localised on the I2 divisor, but we have
no candidate for a matter curve localised on a codimension two locus. We have found that
in addition to 4× 4 MF, there is another larger 6× 6 MF [ϕ6×6, ψ6×6] where

ϕ6×6 =


y 1

2
a1 0 a3 0 x+a2

xa3 y 1
2
a1a3+x(x+a2) 0 a23 0

0 x y 0 0 −a3
−a0a3− 1

2
a1x 0 1

4
(a21−4a0(x+a2)) −y 1

2
a1a3+x(x+a2) 0

0 −a0 0 x −y − 1
2
a1

−x2 0 a0a3+ 1
2
a1x 0 −xa3 −y

 , (7.50)
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and its partner ψ6×6 = (ϕ6×6)−1/det(ϕ6×6)2. The domain of ϕ6×6, similarly to that of ϕ4×4

is fixed up to arbitrary line bundle.

L ⊗D =

L⊗K−1
B ⊗J

−1

⊕
L⊗K−3

B ⊗J
−2

⊕
L⊗K−2

B ⊗J
−2

⊕
L⊗K−1

B
⊕
L⊗O
⊕

L⊗K−2
B ⊗J

−1

Φ6x6−−−−−−−−−→ L⊗D ⊗K−3
B (7.51)

A computation of the group Ext1(ϕ4×4, ϕ6×6)—where the vertical maps are 6× 4matrices—
can be achieved by considering the two complexes:

L ⊗ C L ⊗ C ⊗K−3
B L ⊗ C ⊗K−6

B

L′ ⊗D L′ ⊗D ⊗K−3
B L′ ⊗D ⊗K−6

B

g
ρ

ϕ4×4

h
σ

l

ϕ6×6 ψ6×6

(7.52)

Again, we do not show explicitly the computation here, but the main steps have been sum-
marised in appendix C. We find that there is one degree of freedom ρ53 that is localised on
S, and a combination of ρ13 and ρ43 that is localised on the matter curve C. We have, as
expected, a degree of freedom that seems to correspond to an field part of the fundamental
representation of SU(2), with its conjugate coming from Ext1(ϕ6×6, ϕ4×4), for which the
computation proceeds in the exact same way.

The presence of another section localised on the I2 divisor, one the other hand, is again
quite unexpected. It would have the same degree under the Cartan line bundle as the
combination localised on the matter curve, which cannot be. From General Lesson 4.2, we
know that matter field with such a Cartan charge must come from a codimension two locus.
Moreover, we were unable to find a condition similar to the 4× 4 case. Indeed, the elements
of Ext1(ϕ4×4, ϕ6×6) are 6× 4 matrices, and we cannot invoke the same argument as before,
since they are not square matrices.

The case of the “unHiggsed” Morisson and Park model is therefore more subtle than that
of a U(1)-restriction. Even though taking a 14 × 14 MF with a domain similar to (7.18)
seems to lead to the correct charges to obtain a fundamental and adjoint representation, we
cannot yet explain the extra degree of freedom coming from the Ext group between the 4×4
and 6× 6 MF, and a deeper study is needed.

7.3 Summary

In this chapter, we have tested the Collinucci–Savelli proposals [41, 183] in both Type IIB
supergravity and F-theory through a study of global non-Abelian models. For the specific
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model with a U(1)-restriction (7.14), the presence of a section ensures that the relevant Ma-
trix Factorisations are 2× 2, and computation of the charged spectrum is quite manageable.
We find that we can obtain the whole data from a 6 × 6 MF without ever needing to blow
up the singularity. Moreover, the flux data is completely encoded in the computation, and is
part of the definition of the MF. We have then checked our results using Sen’s limit and the
tachyon condensation picture. Here we again find results in accordance with the Collinucci–
Savelli proposal, and with the expectation from the naive intersecting branes point of view.
There, the flux data is also encoded into a Matrix Factorisation, and matches what we have
found in F-theory.

In the case of a model exhibiting only a I2 singularity and no extra section, we find that
the situation is much more subtle. In the tachyon condensation picture, while we a priori
find more degrees of freedom than expected, by inspecting the line bundles these degrees of
freedom are sections of, we have however good reasons to believe that the proposal is correct,
but were unable to prove the triviality of the line bundle J over the matter curve, which is
needed to get the correct matter. In F-theory, the situation is unexpected, as an analysis
of the Ext group associated to the two MF we find gives more degrees of freedom than we
want. In the case of the group associated to what we believe counts matter transforming
in the adjoint representation, we conjecture a condition necessary to reduce the number of
degrees of freedom to one. This additional constraint is quite natural, and we do not know
if it is something that one needs to impose ad hoc, or if can be more directly deduced from
the homological algebra framework Matrix Factorisation is naturally associated with.

These issues need to be resolved before pushing the Matrix Factorisation approach to
F-theory forward. However, this framework is very attractive, as it completely bypass the
resolution procedure and encompasses naturally the flux data, and therefore offers a number
of possible future directions to explore. We have here only presented two examples involving
a su(2) algebra corresponding to an I2 singularity in Kodaira’s classification. When the
issues involving the “unHiggsed” Morisson and Park model have been resolved, it should
be straightforward to generalise it to the general I2 singularity as they are similar. This
would be the first step to generalise the procedure to the whole A-series, and hopefully
enable a full understanding of all ADE singularities. In particular, it would be interesting
to understand how the different representations under a given gauge group appear, and
what is the equivalent to the chains of P1’s in the resolution procedure. In particular, in
light of the recent achievements of constructing “exotic” representations, i.e. that are not
in the fundamental, adjoint, or anti-symmetric representations of the gauge group [223,
224], and their difficulty in resolving the singularities, it would be interesting to see what
Matrix Factorisation has to say about the matter. Moreover, as the Ext group also encodes
information about complex structure deformations of an elliptic fibration, it also opens the
way to a study of Higgsing chains, particularly those leading to T-branes. These could be
used to find explicit realisations of the classification of the spectra discussed in chapter 5,
and potentially give insights on the nature of E8 in F-theory GUTs.

Another direction would be to apply the Collinucci–Savelli proposal to the study of
discrete symmetries. There are now quite a few examples of explicit realisations of models
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with a Z2 or Z3 symmetry, as well as models with torsion, i.e. gauge group of the form
G/Zn, see e.g. [39, 40, 164]. In these cases, the equation defining the elliptic fibration is
not a Weierstrass equation, but rather a hypersurface in another projective space. The two
descriptions are however related by a birational map and it begs the question of how the
groups counting the physical quantities change under the map. Furthermore, we have seen
that performing a U(1) restriction of the SU(2) model, we reduced the 4 × 4 MF to two
2× 2 MF, and one can check a similar result for the 6× 6 case. Breaking to a U(1) therefore
simplifies the MF’s, and one may wonder what happens when we further break the U(1) to
Zn.
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Chapter 8

Conclusions

String theory has vastly improved our understanding of the structure of Effective Field
Theories (EFTs), and more specifically, F-theory has proven to be a great laboratory to
study gauge theories in a non-perturbative regime. As candidates of a theory of Quantum
Gravity, they also serve as a playground to test constraints on EFTs. Beyond the formal
insights string theory has led to, it has also revealed to be an active field of research for
phenomenology. Indeed, its close relation to Planck scale physics makes it an ideal regime
to probe inflation and other cosmological phenomena of the early Universe. On the other
hand, the natural description of gauge theories as brane fluctuations is closely tied to particle
phenomenology.

In this thesis, we have explored some constraints of string theory on EFTs by considering
a broad range of setups coming from both the closed and open sectors. We have first argued
that the structure of EFTs is tightly related to geometry by reviewing the basic notions
of σ-models, which led us to the Geometric Principle (General Lesson 2.1). In particular,
we have argued that in presence of supersymmetry, the possible target manifolds are very
constrained, and in the context of string theory, the relevant geometric quantities of the
effective theory are connected to the structure of the extra dimensions.

We first started by exploring the closed sector of string theory in chapter 3. More
precisely, we studied the allowed field ranges in the context of axion monodromy in Type
IIA supergravity compactified on a Calabi–Yau orientifold. In those cases, the axion is
given a potential induced by fluxes that breaks the shift symmetry, in principle allowing
for large field excursions. The gravitational backreaction modified the axionic target space
in such a way that after a certain critical value, the distance travelled by the canonically
normalised field is logarithmic (see General Lesson 3.3). We moreover found that while
one would naively expect that this logarithmic behaviour can be delayed arbitrarily late by
tuning the flux parameters, a homogeneity property of the stabilisation equations forces the
proper distance travelled until the critical value to be flux independent and of order one. We
have tested this property for a realistic Calabi–Yau setup and twisted tori, and found good
evidence that this property is satisfied by all of them. The mechanism we have discovered
censures the super-Planckian axion excursions in axion monodromy, and lends some weight
to the Weak Gravity and Swampland Conjectures [19, 20]. It would be interesting to study
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field excursions in other string theoretic realisations to find a better understanding of the
origin of this mechanism.

We then moved on to the open sector of string theory, starting with a review of F-
theory in chapter 4, where we explained the connection between gauge theories and the
singularity structure of an elliptic fibration. This non-perturbative generalisation of Type
IIB supergravity is particularly adapted to model building, as it allows one to engineer effects
that can be forbidden in the perturbative regime of Type IIB, such as a top Yukawa coupling.
In particular, F-theory allows to engineer elliptic fibrations that give rise to Grand Unified
Theories (GUTs) in the IR.

In local F-theory models, all the spectra of F-theory GUTs with U(1) factors can be
embedded in a decomposition of the 248 adjoint representation of E8. In global models with
an SU(5) GUT group however, we demonstrated in chapter 5 through an explicit example
that all spectra cannot be embedded into such a decomposition of E8. The U(1) factor
of this specific example could be broken by complex structure deformations to a model
with a remnant Z2 symmetry, which cannot be obtain from E8. In general lesson 5.1, we
proposed an extension of the E8 spectra by introducing additional GUT singlets charged
under the Abelian sector such that there is a gauge invariant cubic operator between any
three representations, spectra we called complete network. We then proceeded to a complete
classification of the spectra that can be obtained by following the various Higgsing chains.
When comparing this classification with the literature, we find that out of 30 models, all
27 forming flat networks could be embedded in our classification when turning off non-flat
points. Of the remaining three models, one could not be made flat over a generic base, and
the other two did not form complete networks. Our results are encouraging, and form an
additional step to uncover a possible role of E8 in F-theory GUTs. The classification has
since been shown to form a strict subset of the charges allowed in the presence of U(1) factors
by a geometric analysis of the fiber structure [225], techniques that are a priori disconnected
from ours.

In light of this classification, we then explored how to break the SU(5) GUT group
to that of the Standard Model, and summarised the generic features of hypercharge flux
breaking with an extra U(1) in General Lesson 6.1. These properties were however defining
a larger class of spectra that can be studied in their own right, with a well-motivated UV
origin. In particular, the presence of an extra U(1) field could be used to forbid the Higgs
mass term, and therefore palliate the µ-problem. The constraints coming from anomaly
unification—asking that the anomaly of the MSSM be proportional to the ones related to
SU(5)—then demand the presence of exotic states in addition to that of the MSSM that are
quasi-vector-like and therefore cannot acquire a mass term. If the symmetry protecting these
operators is taken to be global, which in the string theory setup can be realised by giving a
Planck scale mass to the U(1) gauge boson, there will be a pseudo-Nambu–Goldstone boson
gaining a mass due to non-perturbative effects. As the breaking come from operators that
are strongly suppressed, the pseudo-Nambu–Goldstone boson is naturally light and could
potentially be of order of the TeV scale. We exemplified how to find it, and how it couples
to the Higgs fields and the exotics for a minimal spectrum in which three singlets satisfying a
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charge relation are necessary. We have however not performed a thorough phenomenological
analysis in this thesis, and it is only a first step towards a better understanding of this
mechanism. Such a study would be very interesting to do, as the light scalar could be in
principle have a dominant diphotons decay channel, and be measured by currently and future
collider experiments.

Finally, we focussed our attention on how charged degrees of freedom arise in Type IIB
supergravity and F-theory in a way that naturally encompasses the flux data in chapter 7.
Following the two Collinucci–Savelli proposals [41, 183], we described a method to obtain
the charged spectrum in F-theory without the need to go through the resolution procedure
and M-theory duality to make sense of the degrees of freedom, and explored the weakly
coupled limit of two models exemplifying the procedure. In the context of F-theory, one uses
Matrix Factorisation, while in Type IIB, the charged spectrum is obtained from tachyon
condensation. The charged states were obtained by computing the Ext groups of the MF
or the tachyon map, depending on which picture one works with. This method had the
enormous advantage that it embeds the flux data in a natural way as the domain of the
maps, which is usually provided as extra information.

We applied the proposals to two different global examples involving an SU(2) singularity.
In the simpler case of a model with an extra section in addition to the SU(2) gauge group,
we found that Collinucci–Savelli proposals is satisfied, and a computation of the Ext groups
reproduced correctly all degrees of freedom and the fluxes in F-theory. We then took Sen’s
limit to obtain the type IIB description of that system, and found that the result of this
perturbative limit were in agreement with those of F-theory. In the case of the Morrison
and Park model [36] enhanced to an I2 singularity, the absence of a conifold form proved
more challenging, as we had to deal with MFs of size 4 × 4 and 6 × 6. A computation
of the associated Ext groups revealed that there are more degrees of freedom that one
would expect in both pictures. For Type IIB, we however have good evidence that some of
them describes the same physical states, but left a proof for future work. In F-theory, we
conjectured a natural extra condition that leads to a correct result for fields transforming
in the adjoint representation. We could on the other hand not determine a well-motivated
condition getting rid of the extra parameter in the Ext group that we expect counts chiral
fields in the fundamental representation. We would again like to stress that it is at this
stage not clear if the extra condition necessary is really something that we have to impose
by hand. It could indeed be a consequence of the description in terms of algebraic homology,
and therefore be embedded into the framework we studied. This analysis was but a first
step in the Matrix Factorisation program and can be extended in numerous ways. It would
be for instance interesting to find a systematic way to find the particular MF associated to
a given matter locus, and understand what is the analogue of the chains of P1 wrapped by
M2-branes in the resolution process.

While we have described several ways in which string theory constrains four dimensional
Effective Field Theories, this framework still has shortcomings, and we are still far from
a situation where “all that remains is more and more precise measurement”. Indeed, to
paraphrase Lord Kelvin, there are many clouds obscuring the skies of twenty-first century
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physics: On the phenomenological side, there is not yet a satisfactory description of dark
matter or dark energy. Similarly, there are still many theoretical questions that are to be
addressed, such as a full non-perturbative description of string and M-theory including the
whole massive tower of states. The web of duality relating the different regimes is also not
completely understood. An open question is also on the existence of a description that is
invariant under the dualities, in the same way that Special Relativity provided a description
invariant under Lorentz transformations. There are also various constraints on effective
theories that have yet to be extracted from string theory, such as the proof of the Weak
Gravity Conjecture and a systematic exploration of the swampland, as well as a complete
classification of F-theory GUTs, efforts towards which this thesis has contributed.
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Appendix A

Mathematical Glossary

In this appendix, we compile definitions, theorems, and conventions that are sometimes
silently assumed throughout this thesis. We note that this appendix is not intended to be
neither self-contained nor exhaustive, but rather a glossary, and we refer to the standard
references [126,130,221,226,227] for more details.

Definition 1. A manifold M of real dimension n is a topological space with a choice of open
sets Uα ⊂ M, Vα ⊂ Rn and homeomorphisms ϕα : Uα → Vα, such that M = ∪αUα, and
whenever Uα ∩ Uβ, ϕα ◦ ϕ−1

β is a C∞ map.

Given two manifolds M1, M2, their Cartesian product M1 ×M2 is also a manifold. One
might however want to consider objects that look like a Cartesian product locally, but not
globally:

Definition 2. A fiber bundle E, or bundle for short, is a collection of spaces (E , B, F ) with
a projection map π : E → B, such that for each point b ∈ B of the base, the inverse of the
projection map is isomorphic to the fiber F : π−1(b) ∼= F .

It is called a vector bundle V of rank r if the fibers are all isomorphic to Rr, and a section
of a bundle is a map σ : B → V , such that π ◦ σ = idB. The set of smooth global sections
on E is denoted Γ(E). If a bundle L over a base B has one-dimensional fibers, it is called a
line bundle.

The dual bundle V∨ of a vector bundle V defined through the projection map π : V → B
is a bundle defined over the same base, but with a projection π∨ : V∨ → B, such that
the fibers F∨ = are the duals of those of V , in the sense that there exists a bilinear form
〈., .〉 : F × F∨ → R.

There will be two particularly relevant operations on bundles in this thesis: First, The
Whitney sum E ⊕F of two bundles E , F over the same base B with respective fibers FE , FF
is a bundle over B with fiber FE ⊕FF . F is the inverse bundle of a rank r vector bundle E if
their Whitney sum is the trivial bundle: E ⊕ F = O ∼= Rr × B. Second, the tensor product
E ⊗F of those two bundles over the same base is again a bundle over B where the fibers are
isomorphic to FE ⊗ FF .
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The most familiar bundle is the tangent bundle of a manifold M , defined over a base
M , where the fibers are isomorphic to the tangent space TxM at a reference point x ∈ M .
Its dual is the cotangent bundle T ∗M , where the fibers are isomorphic to the set of 1-forms
at the reference point x, with a bilinear map in local coordinates

〈
∂
∂xµ

, dxν
〉

= δνµ. The set
of differential p-forms on M , Ωp(M), is then the p-th exterior derivative of the cotangent
bundle.

Note that if the p-forms are valued over a particular ring R, e.g. matrices instead of the
usual real numbers R, we denote it Ωp(M,R). We can then define the cohomology groups as
done in chapter 4, or do so in a more abstract way, by using homological algebra. We first
generalise the notion of vector spaces:

Definition 3. A (left) R-module A over a ring R with identiry 1 6= 0 is an Abelian group
together with a map p : R× A→ A, called the product and written p(r, a) = r · a, such that

(r + r′) · a = r · a+ r′ · a, (rr′) · a = r · (r · a),

r · (a+ a′) = r · a+ r · a′, 1 · a = a. (A.1)

We can then consider a chain complex (A•, d•), i.e. a sequence R-modules, Ai, connected
by homomorphisms dn : An → An−1 called boundary operators having the property that
dn ◦ dn−1 = 0 ∀n. They are usually represented in the following diagrammatical way:

· · · dn+2−−−→ An+1
dn+1−−−→ An

dn−−→ An−1
dn−1−−−→ An−2

dn−2−−−→ · · · . (A.2)

Similarly, one can define a cochain complex (A•, d•) as a sequence of modules Ai connected
by homomorphisms dn : An → An+1 called differentials having the property dn+1◦dn = 0 ∀n.

· · · d
n−2

−−−→ An−1 dn−1

−−−→ An
dn−−→ An+1 dn+1

−−−→ An+2 dn+2

−−−→ · · · . (A.3)

The index n of the modules An or An is called its degree. Note that the only difference
between chain and cochain complexes is that the degree of their homomorphisms is increasing
in the case of a cochain complex, while decreasing for a chain complex.

A familiar example of a chain complex is the de Rham complex on a smooth manifold
Y , where An = Ωn(Y ) is the set of n-forms, and where all homomorphisms are taken to be
the exterior derivative d. Its cochain complex counterpart is An = Ωn equipped with the
codifferential δ:

Ω0(Y )
d−−→ Ω1(Y )

d−−→ Ω2(Y )
d−−→ · · · d−−→ Ωd(Y )

Ωd(Y )
δ−→ Ωd−1(Y )

δ−→ Ωd−2(Y )
δ−→ · · · δ−→ Ω0(Y ) (A.4)

This example motivates the difference between chain and cochain complexes as the exterior
derivative increases the degree of a form while the codifferential decreases it.

One can then define the (co-)homology group1 Hn(A•, R) (resp. Hn(A•, R)) as the cok-
ernel of dn

Hn(Y,R) = Coker(dn) := Ker(dn)/Im(dn+1) Hn(Y,R) = Ker(dn)/Im(dn−1) (A.5)

1A note on notation: when there is an underlying space Y associated to the An or An, we write
Hn(Y,R), Hn(Y,R), Moreover, if the ring of these modules is unambiguously R or C, we omit it.
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In the case of a manifold, the dimensions bn = dim(Hn(M,R)) are called the betti numbers.
They are topological invariants, and satisfy the relation χ(M) =

∑
i(−1)ibi, where χ is the

Euler characteristic of M .
These definitions allow one to define most of the familiar related notions in an economical

fashion: A Riemannian manifold (M, g) is a manifold equipped with a section, the metric,
of T ∗M ⊗ T ∗M so that at each point there is a symmetric definite-positive bilinear form. In
this thesis we work only with either Euclidean metrics, or Lorentzian metrics in the mostly
minus signature. Similarly, a fiber metric k on E can be defined as a map k : E ×E → ×BR
such that it defines a metric at each point of B.

Moreover, a complex manifold is a manifold of dimension 2n with a complex structure,
i.e. a globally defined map J : TM → TM such that J2 = −Id. If additionally it is endowed
with a metric satisfying g(Ju, Jv) = g(u, v), it is called a Kähler manifold. In a similar
way, a fiber bundle over a complex manifold with a holomorphic projection map is called
a holomorphic vector bundle. For complex manifold, the p-forms can written in terms of
holomorphic and anti-holomorphic indices, i.e. Ωp =

∑
r+s=p Ωr,s. The canonical bundle on

a real dimension n complex manifold M is then defined as KM = Ω0,n. It is also possible
to associate a chain complex with the groups Ωr,s, where the role of the differential maps
are played by the Dolbeault operator ∂, obtain by splitting the de Rham differential with
holomorphic and anti-holomorphic indices d = ∂ + ∂. The cohomology group are then given
by H(r,s) = Coker(∂ : Ω(r,s) → Ω(r,s+1)). There dimensions hr,s = dim(H(r,s)) are called
the Hodge numbers. For Kähler manifolds, they satisfy the two properties hr,s = hs,r and
hr,s = hn−r,n−s.

If the fibers of a holomorphic vector bundle over B are homeomorphic to a Lie group
G, it is called a principal G-bundle. One can then associate a connection, a g-valued 1-form
A ∈ Ω1(B, g), and a curvature F = dA+ a ∧ A, and define the total Chern class c(E) by

c(E) = det

(
1 +

i

2π
F

)
= 1 + c1(E) + c2(E) + · · ·+ cr(E) (A.6)

The elements of the series cr(E) ∈ Ω2r(B) are called the r-th Chern class. Any manifold M
of dimension n has a natural O(n)-bundle, representing the change of coordinates in a local
patch of M , whose endowed with curvature given by the Riemann tensor. Other related
quantities are the Chern character ch(E) and Todd class Td(E)

ch(E) = Tr
(
e
i
2π
F
)

Td(E) =
∏
i

xi
1− e−xi

, xi ∈ Spec(
i

2π
F ). (A.7)

These two quantities are important as they appear in the Hirzebruch-Riemann-Roch theo-
rem:

Theorem 1. Let E a holomorphic vector bundle over a compact complex manifold B. The
holomorphic Euler characteristic is given by

χ(E , B) :=

dimCB∑
i=0

(−1)idimC(H i(B, E)) =

∫
B

ch(E) ∧ Td(TB) (A.8)

125



In some cases, we are interested in applying this theorem to a submanifold C ∈ B, and
the adjunction formula KB|C = KC ⊗N−1

S/B can prove useful, where the NS/B is the normal
bundle.

An important class of complex manifolds throughout this thesis are manifolds with re-
stricted :

Definition 4. A Calabi–Yau manifold is a Kähler manifold of complex dimension n satis-
fying one of the following equivalent conditions:

• Its first Chern class vanishes

• It has vanishing Ricci curvature

• the holonomy of its metric is contained in SU(n)

The Hodge numbers of a Calabi–Yau have constraints in addition to those of a Kähler
manifold. It is common to arrange them in an so-called Hodge diamond. For a three-fold,
we have

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h3,0 h2,1 h1,2 h0,3

h3,1 h2,2 h3,1

h3,2 h2,3

h3,3

=

1
0 0

0 h1,1 0
1 h2,1 h2,1 1

0 h1,1 0
0 0

1

(A.9)

When dealing with F-theory, we will need generalisation of fiber bundles, as the fiber can
be different:

Definition 5. A fibration Y is a collection of spaces (Y,B) with a projection map π : Y → B,
satisfying the homotopy lifting property for any space X. For each point b ∈ B of the base,
the space π−1(b) is called the fiber.

The homotopy lifting condition, see e.g. [130], ensures that every fiber is equivalent in the
homotopic sense, but not necessarily isomorphic. For instance, in a singular elliptic fibration,
singular and smooth tori are not isomorphic, as their topology is different.

Finally, the second part of this thesis focuses on tori. A torus T 2 is defined through the
quotient R2/Λ = C/Λ, where Λ = {αv1 + βv2|α, β ∈ Z} is a lattice generated by v1, v2 ∈ C.
The quotient action is done by identifying x ∼ x + v1 ∼ x + v2. As we can always rescale
the elements defining the lattice such that v1 = τ , v2 = 1, any lattice is uniquely defined
by a single complex number τ . Then τ + 1 clearly generates the same lattice, as τ + 1 ∼ τ .
Indeed, thinking of v1, v2 as vectors in the plane, v1 + v2 gives the upper-right corner
of the parallelogram defining the lattice, which can be thought of as defining the initial
parallelogram “shifted by one to the right”. Similarly, we could exchange the role of v1 and
v2. Properly rescaling, this amounts to send τ → − 1

τ
. Those two operations happen to

form a group generating all the possible equivalent change of bases defining the same lattice,
which can be thought of as sending τ → aτ+b

cτ+d
for ( a bc d ) ∈ SL(2,Z).
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Appendix B

Embedding in the Presence of
Non-Flat Points

Some of the two U(1) models studied in [166] are not directly embeddable in the E8 Higgsing
tree (figure 5.1). They however contain non-flat points that once turned off also turn off
matter curves. These models are labeled by their Kodaira fiber I, and the two sets

(n1, n2, n3, n4, n5, n6, n7, n8)

[d2,n1 , d0,n2 , b0,n3 , d1,n4 , b1,n5 , c2,n6 , b2,n7 , c1,n8 ] . (B.1)

The integers ni denote the leading non-vanishing order of the Tate model coefficients, while
the terms in square brackets define a specialisation of the Tate form coefficients. The ho-
mology classes of the coefficients are combinations of three classes on the base B3 denoted
K̄, α, and β and are given in table B.1. There are five a priori non-embeddable models:

1. The first model is

I
s(0|1||2)
5 :

{
(2, 2, 2, 0, 0, 0, 0, 0)

[−,−,−, σ2σ5, σ2σ4 + σ3σ5, σ3σ4, σ1σ2, σ1σ3]

}
. (B.2)

It has non flat points at the loci {σ2 = σ3 = 0} and {σ4 = σ5 = 0}. From table B.1,

b0 b1 b2 c1 c2 d0 d1 d2

α− β + K̄ K̄ −α + β + K̄ −α + K̄ −β + K̄ α + K̄ β + K̄ α + β + K̄

Table B.1: The classes of the sections in the fibration of [145,155,166]. K̄ is the anti-canonical
class of the base B3.
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we can read off the classes of the sections σi to be:

[d2,2] = α + β + K̄ − 2ω

[d0,2] = α + K̄ − 2ω

[b0,2] = α− β + K̄ − 2ω

[d1] = [σ2] + [σ5] = β + K̄
[b1] = [σ2] + [σ4] = [σ3] + [σ5] = K̄
[c2] = [σ3] + [σ4] = −β + K̄
[b2] = [σ1] + [σ2] = −α + β + K̄
[c1] = [σ1] + [σ3] = −α + K̄

There are thus four possibilities to turn them off:

(a) [σ2] = [σ4] = 0: This implies that the anti-canonical bundle K̄ = 0, which is
inconsistent.

(b) [σ3] = [σ5] = 0: Same case as the previous one, hence inconsistent.

(c) [σ2] = [σ5] = 0: This implies [d1] = −α and [b2] = α. At least one of those classes
is not effective, which is inconsistent.

(d) [σ3] = [σ4] = 0. In that case, we must turn off two 5̄ curves. The resulting
spectrum is then embeddable in several models (see table 5.3).

2. Model

I
s(0|1||2)
5 :

{
(2, 1, 1, 1, 0, 0, 0, 0)

[−, σ1ξ3, σ1ξ2,−, σ4ξ3, σ4ξ2, ξ3ξ4, ξ2ξ4]

}
(B.3)

has three non-flat points at {σ1 = σ4 = 0}, {σ4 = ξ4 = 0} and {ξ2 = ξ3 = 0}. Using a
similar reasoning as before, one finds that the only consistent possibility to turn off
these points is to set at least [ξ4] trivial, turning off a 5̄ that then allow an embedding
in a {3, 5, 6} model.

3.

I
s(1|02)
5 :

{
(4, 2, 0, 2, 0, 0, 0, 0)

[−,−, σ3σ4,−, σ2σ4 + σ3σ5, σ1σ3, σ2σ5, σ1σ2]

}
(B.4)

has non flat points at the loci {σ2 = σ3 = 0} and {σ4 = σ5 = 0}. There are therefore
four consistent ways to turn off the non flat points. The first is to set [σ2] = [σ5] = 0.
This constraints the classes to β = α − K̄ ≤ 0, ω ≤ α/2. The second possibility is
to set [σ3] = 0 = [σ4]. This leads to the same constraints as before, with the role of
α and β reversed. The two remaining possibilities lead to a vanishing anti-canonical
class, which is inconsistent.

We however find that even with a reduced spectrum, there is still no possible embedding
into the tree.
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4.

I
s(012)
5 :

{
(5, 2, 0, 2, 0, 0, 0, 0)

[−, σ1σ2, σ2σ5, σ1σ3, σ2σ4 + σ3σ5,−, σ3σ4,−]

}
(B.5)

is similar to the previous one: It has non-flat points at the same loci, and there
are two consistent ways to turn off the non-flat points. Either one sets the classes
[σ2] = 0 = [σ5]. The classes are then constrained to α ≤ 0, β = α + K̄ ≥ 5ω/2.
The other consistent possibility is to set [σ3] = 0 = [σ4]. This gives rise to the same
constraints on the classes, with the role of α and β reversed.

As for the previous case, we find no possible embedding in the tree.

5. The last case,

I
s(0|1||2)
5 :

{ (1, 1, 1, 0, 0, 0, 0, 0)
[ξ3δ3δ4, δ4(δ3ξ2 + δ2ξ3), ξ2δ2δ4, ξ3δ1δ4,

δ1(δ2ξ3 + δ3ξ2), δ1δ2ξ2, σ1ξ3, σ1ξ2]

}
(B.6)

has five non flat points:

{δ1 = δ2 = 0} {δ1 = δ4 = 0}
{δ1 = σ1 = 0} {δ2 = δ3 = 0}

{ξ2 = ξ3 = 0}

We find that there is no consistent way to turn them off by setting classes of the
different sections to zero.
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Appendix C

Ext Groups for an SU(2) Model

In this appendix, we explain the procedure leading to the Ext group for the SU(2) model.
We find that there are two Matrix Factorisation. One is 4× 4:

[ϕ4×4, ψ4×4] =

[(
y x(x+a2)+a1a3 a3 0
x y 0 −a3

a0a3 0 y x(x+a2)+a1a3
0 −a0a3 x y

)
, PWϕ

−1
4×4

]
, (C.1)

where PW is given by equation (7.34). The other is a 6× 6 MF, that one can find to be:

ϕ6×6 =


y 1

2
a1 0 a3 0 s+a2

sa3 y 1
2
a1a3+s(s+a2) 0 a23 0

0 s y 0 0 −a3
−a0a3− 1

2
a1s 0 1

4
(a21−4a0(s+a2)) −y 1

2
a1a3+s(s+a2) 0

0 −a0 0 s −y − 1
2
a1

−s2 0 a0a3+ 1
2
a1s 0 −sa3 −y

 , (C.2)

with ψ6×6 = PWϕ
−1
6×6. Let us start with the Ext group Ext1(ϕ4×4, ϕ4×4). The associated

complexes are:

E(L) E(L)⊗K−3
B E(L)⊗K−6

B

E(L′) E(L′)⊗K−3
B E(L)⊗K−6

B

g
ρ

ϕ4×4

h
ρ̃

ψ4×4

l
ϕ4×4 ψ4×4

(C.3)

ρ, ρ̃ must satisfy the relation ψ4×4ρ = ρ̃ϕ4×4 so that the square commutes, and are defined
up to homotopies

ρ ∼ ρ+ Φ4×4g + hΦ4×4, ρ̃ ∼ ρ̃+ Ψ4×4h+ lΨ4×4 (C.4)

It is possible to use all of the homotopies to work in the class where the following dependences
on the vertical maps have been cut:

ρ :


− − a3, s, y a3

− − a3, s, y a3

− − a3, s, y a3

− − a3, s, y a3

 ρ̃ :


− − a3, s, y a3

− − a3, s a3

− − a3, s, y a3

− − a3, s a3

 (C.5)
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The symbol − signifies that no dependence was cut and that the associated coefficient
generically depend on all the variables. Let us come back to the relation imposed by the
commuting square. One finds that they are all of the form

yA(y) + sB(y, s) + a3C(y, s, a3) = 0 (C.6)

As A,B cannot factor a3, we deduce that the only way for this equation to hold is C = 0.
The same argument for s ensures that A = B = 0. As an example, let us consider the entry
(2, 3)

a3(ρ43 − ρ̃21) + y(ρ23 − ρ̃23)− s(ρ13 + ρ̃24) = 0. (C.7)

An inspection of (C.5) shows that ρ13, ρ23, ρ43, ρ̃23 and the line of argument of equation (C.6)
reveal that ρ̃23 = ρ23, ρ̃24 = −ρ13, ρ̃21 = ρ43. The third and fourth columns are enough to
completely fix ρ̃ as a function of ρ. Using the remaining equations, one finds

ρ =


−a1ρ23 − ρ33 −(s+ a2)ρ43 ρ13 −(s+ a2)ρ23

ρ43 a1ρ23 + ρ33 ρ23 −ρ13

−a0ρ13 − a1ρ43 −a0(s+ a2)ρ23 ρ33 −(s+ a2)ρ43

a0ρ23 a0ρ13 + a1ρ43 ρ43 −ρ33

 = ρ̃ (C.8)

The elements are sections of

ρ13 ∈ H0(S, L−1 ⊗ L′ ⊗K−3 ⊗ J −1
∣∣
S) ρ23 ∈ H0(S, L−1 ⊗ L′ ⊗K−2 ⊗ J −1

∣∣
S)

ρ33 ∈ H0(S, L−1 ⊗ L′ ⊗K−3
∣∣
S) ρ43 ∈ H0(S, L−1 ⊗ L′ ⊗K−2

∣∣
S) (C.9)

where S is the surface defined by {a3 = 0}. In a similar fashion, one can compute Ext1(ϕ4×4, ϕ6×6),
using the following complexes

. . . L ⊗ C L ⊗ C ⊗K−3
B . . .

. . . L′ ⊗D L′ ⊗D ⊗K−3
B L′ ⊗D ⊗K−6

B . . .

g
ρ

ϕ4×4

h
ρ̃

l

ϕ6×6 ψ6×6

(C.10)

Commutation of the diagram imposes that one needs to satisfy ψ6×6 ◦ ρ = ρ̃ ◦ ϕ4×4, and the
vertical maps are defined up the homotopies relations

ρ ∼ ρ+ ϕ6×6g + hϕ4×4,

ρ̃ ∼ ρ̃+ ψ6×6h+ lψ4×4. (C.11)

Using these relations, it is possible to remove the following dependencies:

ρ :


− − a3, y, x a3

− − a3, y, x a3

a3, y, x − a3, y, x a3, x, y
− − a3, y, x a3

− − a3, y, x a3, x, y
− − a3, y, x a3

 ρ̃ :


− − a3, x a3

− − a3, x a3

− − a3, x a3

− − a3, x a3

− − a3, x a3

− − a3, x a3

 (C.12)
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Using this parameterisation, one gets that vertical maps are given by:

ρ =


ρ43

a1
2
ρ13 − (a2 + s)ρ53 ρ13 0

−sρ13 + a3ρ53 a3ρ43 0 0
0 sρ13 0 0

a0ρ13 + a1
2
ρ53

a1
2
ρ43 ρ43

a1
2
ρ13 + (s+ a2)ρ53

0 a1ρ53 ρ53 ρ43

−sρ53 sρ43 0 sρ13

 (C.13)

The procedure to get this result is the following: Starting with the third and fourth columns
of the commutation relation, and using the same arguments as for the 4 × 4 case, one can
infer the value of ρ̃i1, ρ̃i2 from the fact that the various coefficients do not depend on a3

after fixing part of the homotopy maps. Using the same argument with s and y to the third
column to fix completely fix ρ̃.

The third column then gives three equations leading to ρ23 = ρ33 = ρ63 = 0. The
remaining 6 equations can then be used to fix ρi4 as function of ρ13, ρ43, ρ53 in a holomorphic
way. One can then use the fact that ρ31 doesn’t depend on y, x, a3 to set it to zero using the
first column, and similarly for ρ52 in the second column.

One is left with the parameters ρ13, ρ43, ρ53, and one can use the remaining homotopies
to show that there is a combination of ρ13, ρ43 that is localised on C.
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