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”RIDGE” - ANGULAR CORRELATIONS

Two particle correlations in p− p: long range in rapidity, near-side angular correlations

”High multiplicity” collisions with over a hundred charged particles produced

Forward pick. Backward ridge at the angle π – back-to-back correlation.

Same-side ridge is a new ”correlation” effect PYTHIA and friends fail

a very similar phenomenon in heavy ion collisions at RHIC



PHOBOS: high pt triggered ridge

p
trigger
t > 2.5 GeV

passociate
t > 20 MeV



STAR: soft ridge

Centrality dependence of the ridge

No ridge structure in peripheral collisions

In heavy ion collisions at RHIC, the ridge has rather simple explanation

related to explosion of high density matter



Soft ridge from ALICE
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Multiplicity dependence of the ridge in pPb
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By no means a complete summary of experimental results:

• Ridge is seen in A − A, p − A and p − p collisions at more or less the same window

in pt

• p− A and A− A are very similar when compared at the same multiplicities

• p− p is definitely a rare fluctuation

• while no ridge at all in peripheral A− A

• pt and ∆η dependencies are unclear



BIg Questions

• Origin of angular collimation?

Could be many. For sure explosive ”wind” from hydro would lead to some.

• Origin of long range rapidity correlations?

Causality: correlations exist in early stage of the collision (like in cosmology)

• Do we see a sign of universality between p− p and p− A and A− A?

Hopefully Yes! High energy QCD implies this universality. In both experiments the

effect emerges only when high densities are involved (color glass condensate (CGC))

• Do we see a collective phenomenon (QGP?) in p− p or p− A?

We don’t know yet ...



Our Goal

To discuss some general features of gluon production at high energy.

We need to compute correlations in two-gluon inclusive production rate

[

d2N

d2p dη d2k dξ
−

dN

d2k dξ

dN

d2p dη

]

/
dN

d2k dξ

dN

d2p dη

We don’t know how to compute dense on dense (F Gelis, T Lappi, R Venugopalan do know)

We do know quite a lot about dilute on dense (DIS)

For DIS, we do have QCD-derived formulae for multi-gluon production, including high

energy evolution between produced gluons.

Here I talk about only one source for the observed phenomena, INITIAL CONDITIONS,

as follows from quite general QCD-based considerations, but I have no quantitative results.

A Dumitru, K Dusling, F Gelis, J Jalilian-Marian, T Lappi, R Venugopalan



NAIVE PICTURE OF EIKONAL GLUON PRODUCTION

Long range rapidity correlations come for free with boost invariance

Incoming |P 〉 is approximately boost invariant: exactly the same gluon distribution at Y1

and Y2.

What happens at Y1, happens also at Y2: If it is probable to produce a gluon at Y1, it is

also probable to produce a gluon at Y2.

But exactly by the same logic there must be angular correlations:

Gluons scatter on exactly the same target

If the first gluon is most likely to be scattered to the right, the second gluon at the same

impact parameter will be also scattered to the right

Eikonal scattering is rapidity independent!



High Energy Scattering: CGC-type approach

Target Projectile

〈T | → ← |P 〉

S-matrix:

S(Y) = 〈T 〈P| Ŝ(ρt, ρp) |P〉T〉

CGC-type averaging

S(Y) =

∫

Dρ
p
Dρ

t
S[ρ

p
, ρ

t
] W

p

Y−Y0
[ρ

p
] W

t

Y0
[ρ

t
]

Wp,t are probability distributions, subject to high energy evolution equations

For any other observable O

〈O〉P,T =

∫

Dρp
Dρt OY0

[ρp, ρt] W
p

Y−Y0
[ρp] W

t

Y0
[ρt]



Single inclusive gluon production

z z

Ο   (κ)g
Y

0

Y1

The observable

Ôg ∼ a
† a
i
(k) aai (k)

dN

d2kdy
= 〈σ(k) 〉P,T

σ(k) =

∫

z,z̄,x1,x̄1

e
ik(z−z̄)~f(z̄− x̄1) ·~f(x1− z)

{

ρ(x1)[S
†
(x1)− S

†
(z)][S(x̄1)− S(z)]ρ(x̄1)

}

Here

fi(x−y) =
(x− y)i

(x− y)2
S(x) = P exp

{

i

∫

dx
−
T

a
α

a

t(x, x
−
)

}

. ”∆”αt = ρt (YM)



TWO GLUON INCLUSIVE PRODUCTION

Using dilute projectile formulae, but thinking of it as being dense

O = a
†
(k) a(k) a

†
(p) a(p)

dN

d2pd2kdηdξ
= σ4 = 〈σ(k) σ(p)〉P,T

Configuration by configuration

(for fixed configuration of projectile charges ρ and fixed target fields S)

σ(k) is a real function of k, which has a maximum at some value k = q0. Then the two

gluon production probability configuration by configuration has a maximum at

k = p = q0 ≃ Qs

The value of q0 depends on configuration, but the fact that k ≃ p does not.

This is the near side correlation!



Is the maximum of σ1 unique?

No, σ1 is symmetric under k→ −k and thus has two maxima at q0 and −q0

This means that σ4 has a symmetry k, p → −k, p and therefore has maxima at relative

angles φ = 0 and φ = π

The maximum at φ = π is very difficult to distinguish experimentally.

After all there seems to be some asymmetry

between 0 and π angles

The v3 story:



How big is the effect?

To be correlated two gluons have to be in the same incoming color state and have to

scatter of the same target field

Qs
−1

E

Transverse correlation length in the hadron L = 1/Qs (”mean density”)

The correlated production ∝ 1/(Qmax
s )2,

while the total multiplicity ∝ Smin
A

[

d2N

d2pd2k
−

dN

d2k

dN

d2p

]

/
dN

d2k

dN

d2p
∝

1

(Qmax
s )2 Smin

A

.

Qs grows with energy. Hence correlations should disappear with increasing energy. Less

correlations at the LHC than at RHIC? Not obvious, because we fully ignored the flow.



CONCLUSIONS 1

• Gluon production at high energy leads naturally to rapidity correlations and angular

correlations. There just have to be many gluons so that more than one is produced at

fixed impact parameter (within ∆b ∼ 1/Qs)

• ”Classical” term leads to the strongest correlations – thus the correlations should be

largest for nucleus projectile where it dominates. On the other hand effect becomes

weaker with increasing Qs. So, maybe actually the other way around – it is strongest

for p− p in a limited range in energy?

• None of these qualitative features depends on what averaging procedure we use to

average over the projectile and target fields, but quantitative of course it will.

Too Many sources of uncertainty:

– large Nc – target/projectile averaging

– target/projectile evolution – rapidity evolution between produced gluons

– the role of high multiplicity trigger – QGP hydro explosion



High Energy Evolution

Hadron wave function in the gluon Fock space

|Ψ〉Y0
= Ψ[a

†a
i (x)]|0〉Y0

|Ψ〉 = |v〉

Increase of energy = boosting one of the hadrons

High energy limit = soft gluon emission approximation

The evolved wave function

|Ψ〉Y = ΩY(ρ, a) |v〉Y0
; |v〉Y0

= |v〉 ⊗ |0a〉

dWt

dY
= H

HE
W

t dWp

dY
= H

HE
W

p



Dilute limit:

ΩY (ρ→ 0) ≡ CY = Exp

{

i

∫

d
2
z b

a
i (z)

∫ eY Λ

eY0 Λ

dk+

π1/2|k+|1/2

[

a
a
i (k

+
, z) + a

†a
i (k

+
, z))

]

}

.

The classical WW field ba
i (z) = g

2π

∫

d2x
(z−x)i
(z−x)2

ρa(x)

HKLWMIJ = HHE(ρ → 0) - A. Kovner and M.L., Phys.Rev.D71:085004, 2005

Dense limit: Ω(ρ ∼ 1/αs) = C B A. Kovner, M.L, and U. Wiedemann (2007)

HJIMWLK = HHE(ρ → ∞) - Jalilian Marian, Iancu, McLerran, Leonidov, Kovner (1997-2002)

Baltitsky-Kovchegov (BK) is the large Nc version of JIMWLK

Evolution with Pomeron Loops (model):

H
HE
≃ H

JIMWLK
(ρ → ∞)

′′
+
′′

H
KLWMIJ

(ρ → 0)



Target correlations 〈tr[S†S] tr[S†S]〉T from the BK equation

BKe for imaginary part of the dipole scattering amplitude N(~r) = 1 − tr[S†x Sy]/Nc

∂Y N(~r) =
CF αs

2π

∫

d
2~r
′ ~r2

~r′ 2 (~r−~r)2
[N(~r

′
) + N(~r−~r

′
) − N(~r) − N(~r

′
)N(~r−~r

′
)]

~r = ~x− ~y is a vector of the dipole moment.

Anisotropic initial conditions at some initial rapidity Y0 = ln 102.

N(Y0,~r) = 1 − Exp[− a r
2
xg

LOCTEQ6
(x0, 4/r

2
)F(θ)]; a =

αs(r
2)π

2Nc R2

F(θ) = 1− A + 2A cos
2(θ) A = 3/4
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W[δ] = 1/2π, constant for any δ ranging from 0 to 2π.

〈F〉δ =

∫ 2π

0

dδ F(θ + δ)W[δ] = 1

We are interested in the two-dipole correlator 〈N(Y, r1, θ1, δ)N(Y, r2, θ2, δ)〉δ.



Single configuration solution
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Angular correlations of the saturation radius

Two quantities of interest: correlator of two saturation scales 〈Rs(θ1)Rs(θ2)〉δ and

∆Rs(Y, r, θ) ≡
〈Rs(Y, θ1, δ)Rs(Y, θ2, δ)〉δ − 〈Rs(Y, θ1, δ)〉δ 〈Rs(Y, θ2, δ)〉δ

〈Rs(Y, θ1, δ)〉2δ
, θ = θ1−θ2
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Angular correlations 〈N(Y, r, θ1)N(Y, r, θ2)〉δ
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Again fast anizotropization

Ang. correlations ∼ e
−λY

, λ ≃ 0.6

Presumably related to the second BFKL eigenvalue

ωn=0 = 4 ln 2 ᾱs; ωn=2 = 4 (ln 2 − 1) ᾱs



CONCLUSIONS 2

• Within the ”projectile” dipole model, we find an exponentially fast isotropization with

the exponent λA ≃ 0.6.

• Observed correlations must arise dynamically. Those we find in the ”target” dipole

model. Pomeron loops are needed

A. Dumitru, A. Giannini, arXiv:1406.5781 [hep-ph]
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Work in progress

with Andrej Kormilitzin
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Towards correlations in symmetric collisions.

T. Altinoluk, A. Kovner, E. Levin, ML, JHEP 1404 (2014) 075

dN

d2pd2kdηdξ
= 〈σ(k) σ(p)〉P,T

σ(k) =

∫

z,z̄,x1,x̄1

e
ik(z−z̄)~f(z̄− x̄1) ·~f(x1− z)

{

ρ(x1)[S
†
(x1)− S

†
(z)][S(x̄1)− S(z)]ρ(x̄1)

}

Identify target Pomeron P T
A (x, y) ≡ 1− 〈S(x)S†(y)〉T/Nc

and projectile Pomeron as P P
A (x, y) ∼ 1

∇2(x − x̄) 1
∇2(y − ȳ) 〈ρ(x̄)ρ(ȳ)〉P



after color projection algebra and some little massage

dσ

dη dk2 dξ dp2
∼

1

k2

1

p2

∫

x,y,u,v

cos k(x− y) cos p(u− v)

×

{

1

4

∂

∂(ijīj̄)
[P̄

T
A (x, y)P̄

T
A (u, v)]∆

ijkl
∆

īj̄k̄l̄ ∂

∂(klk̄l̄)
[P̄

P
A (x, y)P̄

P
A (u, v)]

−
8

N2
c

∂

∂(ijīj̄)
[N̄

T
xyN̄

T
uvQ̄

T
yuvx]∆

ijkl
∆

īj̄k̄l̄ ∂

∂(klk̄l̄)
[N̄

P
yxN̄

P
vuQ̄

P
xvuy]

}

where we have defined

∂

∂(ijkl)
≡

∂

∂xi

∂

∂yj

∂

∂uk

∂

∂vl

∆
ijkl
≡ δ

ij
δ
kl
+ δ

ik
δ
jl
− δ

il
δ
jk

Here QT(yuvx) = tr[S(y)S†(u)S(v)S†(y)] (quadrupole/B-Reggeon)

The expression is manifestly symmetric with respect to target/projectile.


