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Stochastic measurements and deep-field imaging call for different approaches.

* Deep-field imaging:

Exploration mostly wasted.

Goal of adaptive strategy:

--> quickly converge and exploit.

(Hubble UDF) [

« Stochastic fluctuations:

Exploration mitigates cosmic variance.

Goal of adaptive strategy:

--> find ideal patches to exploit.
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A preferred method of detection is prolonged integration over a small sky patch.

 Tradeoff is between finding lower-foreground patches and integrating over them.

Templates for polarized emission from dust (PED) in the Galaxy at 150GHz

(Clark et al. arXiv:1211.6404)
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* Worst patches can probably be avoided.

 But cleanest patches not yet detected.

* If we find the cleanest patches...

- Sensitivity might improve!
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Recombination

« Competing signals?

 Lensing converts E-modes into B-modes.

» Detected! (Hanson et al. arXiv:1307.5830) | E-modes

* De-lensing?
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The Multi-Armed-Bandit Problem

The goal:
Facing slots with different odds, maximize winnings.

With infinite funds, this is easy. You /learn the odds.
« With a finite number of plays, problem is unsolved.

* Heuristics have been developed and compared.
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Multi-Armed-Bandit Strategies

An MAB strategy:

» Expected reward estimates are based on a sample-average of previous rewards:

'L+ T2+ T TN(a *
o) = LB ) )

 These estimates are then used in order to choose the actionat ¢t + 1.

- Strategies can be compared to one another or to an asymptotic lower bound.

(Lai & Robbins, 1985)
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Heuristic Solution Algorithms: Forced Exploration

.

P = € Uniformly Random

\

Always explores --> has linear total regret.
* €;- greedy with a decaying strategy: €4 X 1/ta

--> can achieve logarithmic regret!

. : elut (a’)/T
» Probability matching Dy (a) _ / (W.R. Thompson, 1933)
(Boltzmann) D ett(a’)/T
Cl,/
Limits: 7 —0 (greedy) T — 00 (uniformly random)
° Upper Confidence Bound (UCB) (Auer, Cesa-Bianchi, and Fischer, 2002)

define: 1™ (a) < pe(a) + Up(a) and choose: a; = argmax { s (a) + Us(a)}

Qa

for normal distributions: Uy (a) o< 04 /+/Ni(a)
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B-mode Signals [uK 2]
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Recombination

What do we measure?

B-modes

» Ultimately: the CMB B-modes.

Figure of merit: o'
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* In an optimistic scenario - low dust fraction, 80% de-lensing:
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* In an optimistic scenario - low dust fraction, 80% de-lensing:
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. . Recombination
« 21-cm stochastic fluctuations.

A 3D-bandit problem. Reionization

Adds another dimension. ‘

MWA: Greedy € = 0 vs. 1
(Thyagarajan et al. arXiv:1308.0565)
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» Deep-field imaging:
From HST to JWST?
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Measuring the Luminosity function and calibrating simulations. (with P. Behroozi @ CANDELS)

- Cosmic variance uncertainty plays a huge role.

(Oesch et al. arXiv:1201.0755) (Grogin et al. arXiv:1105.3753)
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Measuring the Luminosity function and calibrating simulations. (with P. Behroozi @ CANDELS)

- Cosmic variance uncertainty plays a huge role.

(Oesch et al. arXiv:1201.0755) (Grogin et al. arXiv:1105.3753)
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Measuring the Luminosity function and calibrating simulations. (with P. Behroozi @ CANDELS)

- Cosmic variance uncertainty plays a huge role.

(Oesch et al. arXiv:1201.0755) (Grogin et al. arXiv:1105.3753)
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CANDELS fields and HUDF differ at z~7,8 by factors of 3—-4. Mov(AP)

 An efficient adaptive strategy would converge onto the cosmic mean.

(Not useful in a Casino, but may save considerable telescope time)
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