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Stochastic measurements and deep-field imaging call for different approaches.

• Deep-field imaging:
Exploration mostly wasted. 
Goal of adaptive strategy: 
      --> quickly converge and exploit.

• Stochastic fluctuations:  
Exploration mitigates cosmic variance. 
Goal of adaptive strategy: 
      --> find ideal patches to exploit.
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• A preferred method of detection is prolonged integration over a small sky patch. 
• Tradeoff is between finding lower-foreground patches and integrating over them. 

      Templates for polarized emission from dust (PED) in the Galaxy at 150GHz

Exploration vs. Exploitation: B-mode Surveys

(Clark et al. arXiv:1211.6404)
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• Worst patches can probably be avoided.
• But cleanest patches not yet detected. 
• If we find the cleanest patches... 
• Sensitivity might improve!
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• Competing signals?
• Lensing converts E-modes into B-modes.
• Detected! (Hanson et al. arXiv:1307.5830)

• De-lensing?

Exploration vs. Exploitation: B-mode Surveys
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• The goal: 
                      Facing slots with different odds, maximize winnings.

• With infinite funds, this is easy. You learn the odds.

• With a finite number of plays, problem is unsolved. 

• Heuristics have been developed and compared.  

The Multi-Armed-Bandit Problem



µ⇤(a)

Multi-Armed-Bandit Strategies

N (µ⇤(a),�a)



An MAB strategy: 

µ⇤(a)

Multi-Armed-Bandit Strategies

N (µ⇤(a),�a)



An MAB strategy: 

• Expected reward estimates are based on a sample-average of previous rewards:

µ⇤(a)

Multi-Armed-Bandit Strategies

µt(a) =
r1 + r2 + · · ·+ rNt(a)

Nt(a)

N (µ⇤(a),�a)



An MAB strategy: 

• Expected reward estimates are based on a sample-average of previous rewards:

µ⇤(a)

Multi-Armed-Bandit Strategies

µt(a) =
r1 + r2 + · · ·+ rNt(a)

Nt(a)
µt(a) �! µ⇤(a)

Nt(a) ! 1

N (µ⇤(a),�a)



An MAB strategy: 

• Expected reward estimates are based on a sample-average of previous rewards:

• These estimates are then used in order to choose the action at          .

µ⇤(a)

Multi-Armed-Bandit Strategies

µt(a) =
r1 + r2 + · · ·+ rNt(a)

Nt(a)
µt(a) �! µ⇤(a)

Nt(a) ! 1

t+ 1

N (µ⇤(a),�a)



An MAB strategy: 

• Expected reward estimates are based on a sample-average of previous rewards:

• These estimates are then used in order to choose the action at          .

• Strategies can be compared to one another or to an asymptotic lower bound.

µ⇤(a)

Multi-Armed-Bandit Strategies

µt(a) =
r1 + r2 + · · ·+ rNt(a)

Nt(a)
µt(a) �! µ⇤(a)

Nt(a) ! 1

t+ 1

N (µ⇤(a),�a)

(Lai & Robbins, 1985)
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•    - greedy 

   Always explores --> has linear total regret.

•    - greedy with a decaying strategy:  

  --> can achieve logarithmic regret!

• Probability matching 
         (Boltzmann)

   Limits:                           (greedy)                        (uniformly random)       

• Upper Confidence Bound (UCB)

   define:                                             and choose:

   for normal distributions:
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B-mode Surveys: Bandit Simulations

What do we measure?
• Initially: the PED amplitudes: 
• Ultimately: the CMB B-modes.
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• In an optimistic scenario - low dust fraction, 80% de-lensing:
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MAB Strategies Elsewhere

• 21-cm stochastic fluctuations.
   A 3D-bandit problem.
   Adds another dimension.
   MWA: Greedy
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(Thyagarajan et al. arXiv:1308.0565)
✏ = 0 vs. 1
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• Deep-field imaging: 
   From HST to JWST?
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Measuring the Luminosity function and calibrating simulations.
• Cosmic variance uncertainty plays a huge role. 

CANDELS fields and HUDF differ at z~7,8 by factors of 3−4.
• An efficient adaptive strategy would converge onto the cosmic mean.
   (Not useful in a Casino, but may save considerable telescope time)

MAB Strategies Elsewhere

(Oesch et al. arXiv:1201.0755) (Grogin et al. arXiv:1105.3753)

(with P. Behroozi @CANDELS)
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