Chapter 2

Introduction to C++ and Fortran

Computers in the future may weigh no more than 1.5 t&agular Mechanics, 1949

There is a world market for maybe five computéfeomas Watson, IBM chairman, 1943

2.1 Introduction

This chapters aims at catching two birds with a stone; t@thice to you essential features of the pro-
gramming languages C++ and Fortran with a brief reminder yihd? specific topics, and to stress
problems like overflow, underflow, round off errors and euefly loss of precision due to the finite
amount of numbers a computer can represent. The programiseuessl are taylored to these aims.

2.2 Getting started

In programming Ianguadasve encounter data entities such as constants, variab$estsref evaluations
of functions etc. Common to these objects is that they carepeesented through the type concept.
There are intrinsic types and derived types. Intrinsic $ypee provided by the programming language
whereas derived types are provided by the programmer. Ifspeeifies the type to be for example
INTEGER (KIND=2) for Fortranfl or short int/int in C++, the programmer selects a particular
date type with 2 bytes (16 bits) for every item of the claS8TEGER (KIND=2) or int. Intrinsic types
come in two classes, numerical (like integer, real or comj@ad non-numeric (as logical and character).
The general form for declaring variables igata type name of variable and TabldZR lists the
standard variable declarations of C++ and Fortran (noté tivat there be may compiler and machine
differences from the table below). An important aspect wdtetlaring variables is their region of validity.

'For more detailed texts on C++ programming in engineerind science are the books by Flowers [19] and Bar-
ton and Nackman [20]. The classic text on C++ programminghés ook of Bjarne Stoustrup [21]. See also the lec-
ture notes on C++ éhittp://heim.ifi.uio.no/ hpl/INF-VERK4830. For Fortran we recommend the online lectures at
http://folk.uio.no/gunnarw/INF-VERK4820. These web pages contain extensive references to other @Fatran
resources. Both web pages contain enough material, lectites and exercises, in order to serve as material for ovaiestu
The Fortran 95 standard is well documented in Refs. [11-18lewhe new details of Fortran 2003 can be found in Ref. [14].
The reader should note that this is not a text on C++ or Fortréinis therefore important than one tries to find additional
literature on these programming languages. Good Pythds ¢exscientific computing are [22, 23].

20ur favoured display mode for Fortran statements will betahfetters for language statements and low key letters for
user-defined statements. Note that Fortran does not dissimgetween capital and low key letters while C++ does.

http://heim.ifi.uio.no/~hpl/INF-VERK4830
http://folk.uio.no/gunnarw/INF-VERK4820

Introduction to C++ and Fortran

Inside a function we define a a variable through the expresgi® var or INTEGER :: var . The
question is whether this variable is available in other fioms as well, moreover where var initialized
and finally, if we call the function where it is declared, is alue conserved from one call to the other?

type in C++ and Fortran bits range
iN/INTEGER (2) 16 —32768to 32767

unsigned int 16 0to 65535

signed int 16 —32768 to 32767

short int 16 —32768 to 32767

unsigned short int 16 0to 65535

signed short int 16 —32768 to 32767

int/long int/INTEGER(4) 32 —2147483648 to 2147483647
signed long int 32 2147483648 to 2147483647
float/REAL(4) 32 107*to10138
double/REAL(8) 64 107322 to 10308

Table 2.1: Examples of variable declarations for C++ andr&or. We reserve capital letters for Fortran
declaration statements throughout this text, althouglr&ois not sensitive to upper or lowercase letters.
Note that there are machines which allow for more than 64fbitdoubles. The ranges listed here may
therefore vary.

Both C++ and Fortran operate with several types of variables the answers to these questions
depend on how we have defined for example an integer via ttenstatint var. Python on the other
hand does not use variable or function types (they are ndicégfy written), allowing thereby for a
better potential for reuse of the code.

The following list may help in clarifying the above points:

type of variable validity

local variables defined within a function, only availablethin the scope of
the function.

formal parameter If it is defined within a function it is onlyadlable within that
specific function.

global variables Defined outside a given function, avadatdr all functions
from the point where it is defined.

In Table[Z:2 we show a list of some of the most used languagenséats in Fortran and C++.

In addition, both C++ and Fortran allow for complex variablén Fortran we would declare a com-
plex variable a€0MPLEX (KIND=16):: x, y which refers to a double with word length of 16 bytes.
In C++ we would need to include a complex library through ttaéesnents

#include <complex>
complex<double> x, vy;

We will discuss the above declarationmplex<double> x,y; in more detail in appendix]A.

10

2.2 — Getting started

Fortran

C++

Program structure

PROGRAM something
FUNCTION something(input)
SUBROUTINE something(inout)

main ()
double (int) something(input)

Data type declarations

REAL (4) x,y

REAL(8) :: X,y

INTEGER :: x, ¥

CHARACTER :: name

REAL(8), DIMENSION(dim1,dim2) :: x
INTEGER, DIMENSION(dim1,dim2) :: x
LOGICAL :: X

float x, v;
double X, v;
int x,y;
char name;
double x[dim1][dim2];
int x[dim1][dim2];

TYPE name
declarations

struct name {
declarations;

END TYPE name }
POINTER :: a double (int) *a;
ALLOCATE new;
DEALLOCATE delete;

Logical statements and control structure
IF (a==Db) THEN if (a==b)
b=0 {b=0;
ENDIF }

DO WHILE (logical statement)
do something

while (logical statement)
{do something

ENDDO }

IF (a>=b) THEN if (a>=Dh)

b=0 { b=0;

ELSE else

a=0 a=0; }

ENDIF

SELECT CASE (variable) switch(variable)
CASE (variable=valuel) {

do something case 1.

CASE(..) variable=valuel;
do something;
break;
END SELECT case 2:
do something; break;. .
}
DO i=0, end, 1 for(i=0; &= end; i++)
do something { do something ;
ENDDO }

Table 2.2: Elements of programming syntax.

11

Introduction to C++ and Fortran

2.2.1 Scientific hello world

Our first programming encounter is the ’classical’ one, fbim almost every textbook on computer
languages, the 'hello world’ code, here in a scientific disguWe present first the C version.

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/cpp/programl . cpp

[+ comments in C begin like this and end with/
#include <stdlib.h> /« atof function x/
#include <math.h> [/« sine function x/
#include <stdio.h> [/« printf function x/

int main (int argc, charx argv/(])
{
double r, s; /I« declare variables x/
r = atof(argv[l]); /x convert the text argv[l] to doublex/
s = sin(r);
printf("Hello, World! sin(%g)=kg\n", r, s);
return O; /x success execution of the program/

The compiler must see a declaration of a function before youaall it (the compiler checks the
argument and return types). The declaration of library fions appears in so-called header files that
must be included in the program, for exampleclude < stdlib .h>

We call three functionsatof, sin, printf and these are declared in three different header files. The
main program is a function called main with a return valuetgetn integer, returning O if success. The
operating system stores the return value, and other praguéifities can check whether the execution
was successful or not. The command-line arguments arefdrea$ to the main function through the
statementnt main (int argc, charx argv[]). The integerargc stands for the number of command-line
arguments, set to one in our case, whiegvis a vector of strings containing the command-line argu-
ments with argv[0] containing the name of the program aadv[1], argv[2], ... are the command-line
args, i.e., the number of lines of input to the program.

This means that we would run the programs as

mhjensen@compphys: ./myprogram.exe 0.3

argv[0] while the text strind).2 enters argv[1].

Here we define a floating point variable, see also below, titrabhe keywordsfloat for single pre-
cision real numbers angbuble for double precision. The functiomatof transforms a tex{argv[1]) to a
float. The sine function is declared in math.h, a library whiiknot automatically included and needs to
be linked when computing an executable file.

With the commandprintf we obtain a formatted printout. Therintf syntax is used for formatting
output in many C-inspired languages (Perl, Python, awk|yp&r-+).

In C++ this program can be written as

/I A comment line begins like this in C++ programs

using namespacestd;

#include <iostream >

int main (int argc, charx argv|[])

{

/I convert the text argv[l] to double using atof:
double r = atof(argv[1l]);

12

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/cpp/program1.cpp

2.2 — Getting started

double s = sin(r);

cout << "Hello, World! sin(" << r << ")=" << s << endl;
/!l success

return O0;

}

We have replaced the call torintf with the standard C++ functiorcout The header fildostreamis then
needed. In addition, we don't need to declare variablesriked s at the beginning of the program. |
personally prefer however to declare all variables at tlggnipeng of a function, as this gives me a feeling
of greater readability. Note that we have used the dectaratiing namespacetd; Namespace is a way
to collect all functions defined in C++ libraries. If we onilitis declaration on top of the program we
would have to add the declaratisid in front of coutor cin. Our program would then read

/I Hello world code without using namespace std
#include <iostream >
int main (int argc, charx argv|[])
{
I/l convert the text argv[l] to double using atof:

double r atof (argv[1l]);

double s sin(r);

std :: cout <<"Hello, World! sin(" << r << ")=" << s << endl;
/Il success

return O;
}

Another feature which is worth noting is that we have skipprdeption handlings here. In chapter
B we discuss examples that test our input from the commaed Bnt it is easy to add such a feature, as
shown in our modified hello world program

// Hello world code with exception handling

using namespacestd ;

#include <iostream >

int main (int argc, charx argv|[])

{

/l Read in output file , abort if there are too few commaithe arguments
if (argc <=1){

cout << "Bad Usage: " << argv[0] <<
" read also a number on the same line, e.g., prog.exe 0.2" << endl;
exit(1); /I here the program stops.

}

/I convert the text argv[l] to double using atof:
double r = atof(argv[1l]);
double s = sin(r);
cout << "Hello, World! sin(" << r << ")=" << s << endl;
/Il success
return O;
}

Here we test that we have more than one argument. If not, tgggn stops and writes to screen an error
message.

To run these programs, you need first to compile and link theorder to obtain an executable file
under operating systems like e.g., UNIX or Linux. Before wegeed we give therefore examples on
how to obtain an executable file under Linux/Unix.

13

Introduction to C++ and Fortran

In order to obtain an executable file for a C++ program, thiefahg instructions under Linux/Unix
can be used

ct+ -c -Wall myprogram.c
ct++ -0 myprogram myprogram.o

where the compiler is called through the commamd. The compiler option -Wall means that a warning
is issued in case of non-standard language. The executigbieif this casenyprogram. The option-c
is for compilation only, where the program is translated imachine code, while theo option links the
produced object filayprogram.o and produces the executabigprogram .

The corresponding Fortran code is

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/£f90/programl.f90

PROGRAM shw
IMPLICIT NONE
REAL (KIND =8) :: r I Input number
REAL (KIND =8) :: s I Result

I Get a number from user
WRITE (*,*) 'lnput a number: ’

READ (* ,%) r
I Calculate the sine of the number
s = SIN(r)
I Write result to screen
WRITE (x,*) 'Hello World! SINE of ', r, ' =", s

END PROGRAM shw

The first statement must be a program statement; the lashstat must have a corresponding end pro-
gram statement. Integer numerical variables and floatiingg pamerical variables are distinguished. The
names of all variables must be between 1 and 31 alphanunteiaaters of which the first must be a
letter and the last must not be an underscore. Comments Wéhim ! and can be included anywhere
in the program. Statements are written on lines which mayatomp to 132 characters. The asterisks
(*,*) following WRITE represent the default format for outf i.e., the output is e.g., written on the
screen. Similarly, the READ(*,*) statement means that ttegpam is expecting a line input. Note also
the IMPLICIT NONE statement which we strongly recommenduke of. In many Fortran 77 programs
one can find statements like IMPLICIT REAL*8(a-h,0-z), meanthat all variables beginning with any
of the above letters are by default floating numbers. Howeush a usage makes it hard to spot eventual
errors due to misspelling of variable names. With IMPLICIONE you have to declare all variables
and therefore detect possible errors already while compill recommend strongly that you declare all
variables when using Fortran.

We call the Fortran compiler (using free format) through

f90 -c -free myprogram.f90
£90 -o myprogram.x myprogram.o

Under Linux/Unix it is often convenient to create a so-aleakefile, which is a script which includes
possible compiling commands, in order to avoid retypingaheve lines every once and then we have
made modifcations to our program. A typical makefile for thexaecc compiling options is listed below

General makefile for ¢ - choose PROG = name of given program

14

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/f90/program1.f90

2.2 — Getting started

Here we define compiler option, libraries and the target
CC= c++ -Wall
PROG= myprogram

Here we make the executable file
${PROG} : ${PROG}.0
${CC} ${PROG}.o -o ${PROG}

whereas here we create the object file

${PROG}.0 : ${PROG}.cpp
${CC} -c ${PROG}.cpp

If you name your file for ‘'makefile’, simply type the commantike and Linux/Unix executes all of the
statements in the above makefile. Note that C++ files havexteason .cpp

For Fortran, a similar makefile is

General makefile for FO90 - choose PROG = name of given program
Here we define compiler options, libraries and the target
F90= £90
PROG= myprogram
Here we make the executable file
${PROG} : ${PROG}.o0
${F90} ${PROG}.o -o ${PROG}

whereas here we create the object file

${PROG}.0 : ${PROG}.£90
${F90} -c ${PROG}.f

Finally, for the sake of completeness, we list the corredpanPython code

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/python/programl.py

#1/usr/bin/env python

import sys, math

Read in a string a convert it to a float
r = float(sys.argv([1l])

s = math.sin(r)

print "Hello, World! sin(%g)=%12.6e" % (r,s)

where we have used a formatted printout with scientific inmtat

15

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/python/program1.py

Introduction to C++ and Fortran

2.3 Representation of integer numbers

In Fortran a keyword for declaration of an integedl$TEGER (KIND=n), n = 2 reserves 2 bytes (16 bits)
of memory to store the integer variable wheras n = 4 reserigtes (32 bits). In Fortran, although it may
be compiler dependent, just declaring a variabléNIREGER, reserves 4 bytes in memory as default.

In C++ keywords arehort int, int, long int, long long int The byte-length is compiler dependent
within some limits. The GNU C++-compilers (called by gcc et assign 4 bytes (32 bits) to variables
declared byint and long int. Typical byte-lengths are 2, 4, 4 and 8 bytes, for the typesirgabove. To
see how many bytes are reserved for a specific variable, Cs-a library function calledsizeof (type)
which returns the number of bytes foype .

An example of a program declaration is

Fortran: INTEGER (KIND=2) :: age_of participant
C++: short int age_of_participant;

Note that the(KIND=2) can be written as (2). Normally however, we will for Fortrammgrams just use
the 4 bytes default assignmenNTEGER.

In the above examples one bit is used to store the sign of tiebl@age_of participant and the other
15 bits are used to store the number, which then may rangeZesmto2'® — 1 = 32767. This should
definitely suffice for human lifespans. On the other hand,afwere to classify known fossiles by age
we may need

Fortran: INTEGER (4) :: age_of fossile
C++: int age_of fossile;

Again one bit is used to store the sign of the variable agdossile and the other 31 bits are used to
store the number which then may range from zer@*o— 1 = 2.147.483.647. In order to give you a
feeling how integer numbers are represented in the comphiek first of the decimal representation of
the number17

417 =4 x 10% + 1 x 10" + 7 x 10°,

which in binary representation becomes
417 =1 % ap2” + ap_12" "1+ ap_22"2 + -+ + ao2°,

where the coefficients, with £k = 0,...,n are zero or one. They can be calculated through successive
division by 2 and using the remainder in each division to metee the numbersg,, to ag. A given integer
in binary notation is then written as

an2™ + 412"t ay_02" 2 4 - 4 a2

In binary notation we have thus
(417)10 = (110100001)s,

since we have
(110100001)3 = 1x 28 +1x 27+ 0x 26 +1x 22 +0x 214+ 0x 252 +0x 224+ 0x 22 +0x 2 +1 x 20,
To see this, we have performed the following divisions by 2

16

2.3 — Representation of integer numbers

417/2=208 remainder 1 coefficient & is 1
208/2=104 remainder 0 coefficient 2f is O
104/2=52 remainder 0 coefficient 2t is O
52/2=26 remainder 0 coefficient 8¢ is O
26/2=13 remainder 0 coefficient 8t is O
13/2=6 remainder 1 coefficient af is 1

6/2=3 remainder 0 coefficient @f is 0
3/2=1 remainder 1 coefficient af is 1
1/2=0 remainder 1 coefficient af is 1

We see that nine bits are sufficient to represent 417. Noymadl end up using 32 bits as default for
integers, meaning that our number reads

(417)10 = (00000000000000000000000110100001)2,

A simple program which performs these operations is listeldvie. Here we employ the modulus
operation (with division by 2), which in C++ is given by théo2operator. In Fortran we would call the
function MOD(a,2)in order to obtain the remainder of a division &y

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/cpp/program?. cpp

using namespacestd ;
#include <iostream >

int main (int argc, charx argv|[])
{ . .
int i;
int terms[32]; // storage of a0, al, etc, up to 32 bits
int number = atoi(argv[1l]);
/l initialise the term a0, al etc
for (i=0; i <32 ; i++){ terms[i] = 0;}
for (i=0; i < 32 ; i++){
terms[i] = number%?2;
number /= 2;

}
Il write out results

cout << ‘* Number of bytes used=’ << sizeof(number) << endl;

for (i=0; i < 32 ; i++){
cout << ‘* Term nr: ‘' << i << ‘*Value= ‘' << terms]Ji];
cout << endl;

}

return O;

}

The C++ functionsizeof yields the number of bytes reserved for a specific variableteMlso thefor
construct. We have reserved a fixed array which containsghees ofa; being0 or 1, the remainder of
a division by two. We have enforced the integer to be reptesdny 32 bits, or four bytes, which is the

default integer representation.
Note that for417 we need 9 bits in order to represent it in a binary notatiorilexdnnumber like the

number 3 is given in an 32 bits word as

(3)10 = (00000000000000000000000000000011).

17

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/cpp/program2.cpp

Introduction to C++ and Fortran

For this number 2 significant bits would be enough.

With these prerequesites in mind, it is rather obvious thatgiven integer variable is beyond the
range assigned by the declaration statement we may encquotdems.

If we multiply two large integers; x no and the product is too large for the bit size allocated fot tha
specific integer assignement, we run into an overflow problEne most significant bits are lost and the
least significant kept. Using 4 bytes for integer variabtesresult becomes

220 5 920 —

However, there are compilers or compiler options that egss the program in such a way that an error
message like ’integer overflow’ is produced when runningptagram. Here is a small program which
may cause overflow problems when running (try to test your campiler in order to be sure how such
problems need to be handled).

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/cpp/program3. cpp

[/l Program to calculate 2xn
using namespacestd;
#include <iostream >

int main()
{
int intl, int2, int3;
/I print to screen
cout << "Read in the exponential N for 2°N =\n";
I/l read from screen
cin >> int2;
intl = (int) pow(2., (double) int2);

cout << " 2°N % 2°N = " << intl*xintl << "\n";

int3 = intl — 1;

cout << " 2°N*x(2°N - 1) = " << intl % int3 << "\n";
cout << " 2°N- 1 = " << int3 << "\n";

return O;

}

/1 End: program main()

If we run this code with an expone = 32, we obtain the following output

2°N * 2°N = 0
2°N*(2°N - 1) = -2147483648
2°N- 1 = 2147483647

We notice thaR® exceeds the limit for integer numbers with 32 bits. The pragreturng). This can be
dangerous, since the results from the opera2ity2’V — 1) is obviously wrong. One possibility to avoid
such cases is to add compilation option which flag if an oweriounderflow is reached.

2.3.1 Fortran codes
The corresponding Fortran code is

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/£90/program2.£90
PROGRAM binary_integer

18

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/cpp/program3.cpp
http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/f90/program2.f90

2.3 — Representation of integer numbers

IMPLICIT NONE
INTEGER i, number, terms(0:31)! storage of a0, al, etc, up to 32 bits,
I note array length running from 0:31. Fortran allows negat indexes as
well .

WRITE (% ,*) 'Give a number to transform to binary notation’
READ (x ,*) number
I Initialise the terms a0, al etc

terms = 0
I Fortran takes only integer loop variables
DO i=0, 31
terms (i) = MOD(humber,2) ! Modulus function in Fortran
number = number/2
ENDDO

I write out results
WRITE (% ,%) 'Binary representation

3

DO i=0, 31
WRITE (% ,%)’ Term nr and value’, i, terms(i)
ENDDO

END PROGRAM binary_integer

and

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/£90/program3.£f90

PROGRAM integer_exp
IMPLICIT NONE
INTEGER :: intl, int2, int3
I This is the begin of a comment line in Fortran 90
I Now we read from screen the variable int2
WRITE (x,*) 'Read in the number to be exponentiated’
READ (% ,%) int2
intl=2«xxint2
WRITE (% ,%) '2°N%2~N’, intlsintl
int3=intl-1
WRITE (% ,%) '2”°N*(2”"N-1)’', intlxint3
WRITE (% ,%) '2°N—1", int3

END PROGRAM integer_exp

In Fortran the modulus division is performed by thentrinsic function \
Istinline {MOD(number,2)}

in case of a division by $2%. The exponentation of maumber is given by for
example \lIstinline {2xN}

instead of thecall to the $\lstinline{pow} function in C++.

2.3.2 Python codes

In preparation for fall 2009

19

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/f90/program3.f90

Introduction to C++ and Fortran

2.4 Real numbers and numerical precision

An important aspect of computational physics is the nunaégcecision involved. To design a good
algorithm, one needs to have a basic understanding of patipagof inaccuracies and errors involved
in calculations. There is ho magic recipe for dealing witlderlow, overflow, accumulation of errors
and loss of precision, and only a careful analysis of thetfans involved can save one from serious
problems.

Since we are interested in the precision of the numericaltad, we need to understand how com-
puters represent real and integer numbers. Most compugatsaith real numbers in the binary system,
or octal and hexadecimal, in contrast to the decimal systeinvwe humans prefer to use. The binary
system uses 2 as the base, in much the same way that the degstezh uses 10. Since the typical
computer communicates with us in the decimal system, buksviotternally in e.g., the binary system,
conversion procedures must be executed by the computethase conversions involve hopefully only
small roundoff errors

Computers are also not able to operate using real numbersssga with more than a fixed number
of digits, and the set of values possible is only a subseteofitithematical integers or real numbers. The
so-called word length we reserve for a given number placestaiction on the precision with which a
given number is represented. This means in turn, that fanpi@floating numbers are always rounded
to a machine dependent precision, typically with 6-15 legdliigits to the right of the decimal point.
Furthermore, each such set of values has a processor-agpesmdallest negative and a largest positive
value.

Why do we at all care about rounding and machine precision® bEist way is to consider a simple
example first. In the following example we assume that we egmesent a floating number with a
precision of 5 digits only to the right of the decimal pointig is nothing but a mere choice of ours, but
mimicks the way numbers are represented in the machine.

Suppose we wish to evaluate the function

1 —cos(x)

fz) =

sin(z)

for small values ofr. If we multiply the denominator and numerator with4- cos(z) we obtain the
equivalent expression

sin(x)

fl) = 1+ cos(x)’

If we now chooser = 0.007 (in radians) our choice of precision results in
5in(0.007) & 0.69999 x 1072,

and
c0s(0.007) =~ 0.99998.

The first expression fof (z) results in

1 — 0.99998 0.2 x 1074 9
_ _ — 0.28572 x 10~
(@) = 569999 x 102 — 0.69999 x 102 — 028572 x 1077,

while the second expression results in

Fa) = 69999 1072 0.69999 x 102
T 14099998 1.99998

= 0.35000 x 1072,

20

2.4 — Real numbers and numerical precision

which is also the exact result. In the first expression, dusutochoice of precision, we have only one
relevant digit in the numerator, after the subtraction.sTeads to a loss of precision and a wrong result
due to a cancellation of two nearly equal numbers. If we hazseh a precision of six leading digits,
both expressions yield the same answer. If we were to eeatuat 7, then the second expression for
f(z) can lead to potential losses of precision due to cancetisitid nearly equal numbers.

This simple example demonstrates the loss of numericalgiwacdue to roundoff errors, where the
number of leading digits is lost in a subtraction of two negua numbers. The lesson to be drawn is
that we cannot blindly compute a function. We will always chémcarefully analyze our algorithm in the
search for potential pitfalls. There is no magic recipe h@vgthe only guideline is an understanding of
the fact that a machine cannot represent corregdtlpumbers.

2.4.1 Representation of real numbers

Real numbers are stored with a decimal precision (or matesd the decimal exponent range. The
mantissa contains the significant figures of the number (heckby the precision of the number). A
number like(9.90625)1¢ in the decimal representation is given in a binary repredemt by

(1001.11101)g = 1x 22 +0x 22 +0x 2! +1x 20 +1x 27 +1x 272 4+ 1x 273 4 0x 274 +1x 277,

and it has an exact machine number representation sinceadearfanite number of bits to represent this
number. This representation is however not very practRather, we prefer to use a scientific notation.
In the decimal system we would write a number 1tk80625 in what is called the normalized scientific
notation. This means simply that the decimal point is stiitied appropriate powers of 10 are supplied.
Our number could then be written as

9.90625 = 0.990625 x 10",
and a real non-zero number could be generalized as
x = £r x 10",

with ar a number in the rangé/10 < r < 1. In a similar way we can represent a binary number in
scientific notation as
x = +q x 2™,

with ag a number in the range/2 < ¢ < 1. This means that the mantissa of a binary number would be
represented by the general formula

(0.a—1a_9...a_p)2 = a_1 X 27 b ox22 4. 4a_, x27"

In a typical computer, floating-point numbers are represgbirt the way described above, but with certain
restrictions oy andm imposed by the available word length. In the machine, ourlmenmis represented
as

r = (—1)® X mantissa x 2°xponent

)

wheres is the sign bit, and the exponent gives the available rangt &\&ingle-precision word, 32 bits,
8 bits would typically be reserved for the exponent, 1 bittfar sigh and 23 for the mantissa. This means
that if we define a variable as

Fortran: REAL (4) :: size_of fossile
C++: float size_of _fossile;

21

Introduction to C++ and Fortran

we are reserving 4 bytes in memory, with 8 bits for the expankfor the sign and and 23 bits for the
mantissa, implying a numerical precision to the sixth oresg digit, since the least significant digit is
given by1/22 =~ 10~7. The range of the exponent goes fram'?® = 2.9 x 1073 t0 2'%7 = 3.4 x 1038,
where 128 stems from the fact that 8 bits are reserved forgbenent.

A modification of the scientific notation for binary numbesda require that the leading binary digit
1 appears to the left of the binary point. In this case theasgmtation of the mantisgavould be(1.f)
andl < ¢q < 2. This form is rather useful when storing binary numbers iomputer word, since we can
always assume that the leading bit 1 is there. One bit of spacehen be saved meaning that a 23 bits
mantissa has actually 24 bits. This means explicitely tHahary number with 23 bits for the mantissa
reads

(1.(1_1(1_2 . a_23)2 =1x20 +a_1 X 21 +a_9 X 272 + -+ a_p X 2723,

As an example, consider the 32 bits binary number
(10111110111101000000000000000000)2,

where the first bit is reserved for the sign, 1 in this casedyrigl a negative sign. The exponentis
given by the next 8 binary numbed$111101 resulting in 125 in the decimal system. However, since the
exponent has eight bits, this means it B&s 1 = 255 possible numbers in the intervall 28 < m < 127,

our final exponent i425 — 127 = —2 resulting in272. Inserting the sign and the mantissa yields the
final number in the decimal representation as

272 (1x 20+ 1x 27 41 x 27+ 1x 23+ 0x 27" +1x27°) = (—0.4765625) 0.

In this case we have an exact machine representation witits3gabtually, we need less than 23 bits for
the mantissa).

If our numberz can be exactly represented in the machine, weacallmachine number. Unfortu-
nately, most numbers cannot and are thereby only approadriatthe machine. When such a number
occurs as the result of reading some input data or of a cortiquitaan inevitable error will arise in
representing it as accurately as possible by a machine numbe

A floating number X, labelled(x) will therefore always be represented as

fl(x) =z(1 £ €), (2.1)

with x the exact number and the errer| < |exs|, wheree,, is the precision assigned. A number like
1/10 has no exact binary representation with single or doubleigicy. Since the mantissa

1. (a—1a-2...a_p),

is always truncated at some stagelue to its limited number of bits, there is only a limited nueniof
real binary numbers. The spacing between every real binamber is given by the chosen machine
precision. For a 32 bit words this number is approximatgly~ 10~ and for double precision (64 bits)
we haveey; ~ 10716, or in terms of a binary base &s?* and2~52 for single and double precision,
respectively.

2.4.2 Machine numbers

To understand that a given floating point number can be wrdtein Eq.[[(Z11), we assume for the sake
of simplicity that we work with real numbers with words of tgh 32 bits, or four bytes. Then a given
numberz in the binary representation can be represented as

n
T = (1.CL_1CL_2 .. _230_240_95 . ..)2 X 2 s

22

2.4 — Real numbers and numerical precision

or in a more compact form
x=rx2"

with1 < r < 2and—126 < n < 127 since our exponent is defined by eight bits.

In most cases there will not be an exact machine represemtatithe number. Our number will be
placed between two exact 32 bits machine numberandzx, . Following the discussion of Kincaid and
Cheney [24] these numbers are given by

r_ = (1.(1_1(1_2 e a_23)2 X 2”,

and
Ty = ((1.(1_1&_2 . a_gg))g + 2_23) x 2™,

If we assume that our numberis closer tox_ we have that the absolute error is constrained by the
relation
l % 2n—23 — 2n—24'
2
A similar expression can be obtainedrifs closer tar, . The absolute error conveys one type of informa-
tion. However, we may have cases where two equal absolueserise from rather different numbers.
Consider for example the decimal numbers: 2 anda = 2.001. The absolute error between these two
numbers i€).001. In a similar way, the two decimal numbers= 2000 andb = 2000.001 give exactly
the same absolute error. We note here that2000.001 has more leading digits than

If we compare the relative errors

1
=2 | < Sley —ao| =

la — @l |b—5|_

=1.0x 1073, o 1.0 x 1076,

lal

we see that the relative error bris much smaller than the relative errordn\We will see below that the
relative error is intimately connected with the number aidieg digits in the way we approximate a real
number. The relative error is therefore the quantity ofriegein scientific work. Information about the
absolute error is normally of little use in the absence ofntfagnitude of the quantity being measured.
We define then the relative error foras
o —x_| 27724 1
<

= 2 x 2 M <972
|z| T rx2r g -

Instead of using:_ andz as the machine numbers closest:tave introduce the relative error

|z — 7 < gn-24

|| ’

with T being the machine number closestitoDefining

T —x
€x = 5
X

we can write the previous inequality
fl(x) =2(1 4+ €)

wherele,| < ey = 2724 for variables of length 32 bits. The notatigit() stands for the machine ap-
proximation of the numbet. The numbet;, is given by the specified machine precision, approximately
10~ for single andl0~'6 for double precision, respectively.

23

Introduction to C++ and Fortran

There are several mathematical operations where an eVérgsaf precision may appear. A subrac-
tion, especially important in the definition of numericatigatives discussed in chapfdr 3 is one important
operation. In the computation of derivatives we end up suafittg two nearly equal quantities. In case
of such a subtraction = b — ¢, we have

fl(a) = fU(b) = fl(c) = a(l + &),
or
fl(a) =b(1+4 &) — c(1 + €.),

meaning that
C

b

flla)/a=1+ €~ e
and if b =~ c we see that there is a potential for an increased error in thehime representation of
fl(a). This is because we are subtracting two nhumbers of equabsizevhat remains is only the least
significant part of these numbers. This part is prone to rofireirors and ifa is small we see that (with
b= c))

€q = E(Eb - 6c)7

can become very large. The latter equation represents ldie/eeerror of this calculation. To see this,
we define first the absolute error as

’fl(a) - CL’,
whereas the relative error is
fia) —af _
— < €.
a

The above subraction is thus

|[fl{a) —a| _ [fU(b) = f(c) = (b—c)|

)
a a

yielding
|fl(a) —a| |bey — cel
a N a ’
An interesting question is then how many significant binaty &ére lost in a subtractiom = b — ¢ when
we haveb = c¢. The loss of precision theorem for a subtractios: b — ¢ states that [24]if b and c are
positive normalized floating-point binary machine numbeits b > ¢ and

97T < 1— g <95 (2.2)

then at most and at leasts significant binary bits are lost in the subtractien— ¢. For a proof of this
statement, see for example Ref. [24].

But even additions can be troublesome, in particular if thlbers are very different in magnitude.
Consider for example the seemingly trivial additiba- 10~® with 32 bits used to represent the various
variables. In this case, the information containinglin® is simply lost in the addition. When we
perform the addition, the computer equates first the exgsrwthe two numbers to be added. Ror®
this has however catastrophic consequences since in ardbtain an exponent equal 16°, bits in the
mantissa are shifted to the right. At the end, all bits in trentissa are zeros.

This means in turn that for calculations involving real nargy(if we omit the discussion on overflow
and underflow) we need to carefully understand the behaviouroalgorithm, and test all possible cases
where round-off errors and loss of precision can arise. Gthses which may cause serious problems
are singularities of the typ&/0 which may arise from functions likein(x)/x asx — 0. Such problems
may also need the restructuring of the algorithm.

24

2.5 — Programming examples on loss of precision and round-@frors

2.5 Programming examples on loss of precision and round-effors

2.5.1 Algorithms foe=*

In order to illustrate the above problems, we discuss haregamous and perhaps less famous problems,
including a discussion on specific programming featureseds w
We start by considering three possible algorithms for campgee=*:

1. by simply coding

x
—Tr __ _ nw=-
€ —Z(1) nl
n=0
2. or to employ a recursion relation for
[ee) (e e] [L‘n
—X n
e "= Sy = —-1)"—
> s=2 (F1"
n=0 n=0
using
X
Sn = —Sn—-1—,
n

3. or to first calculate
o0
—
n=0

and thereafter taking the inverse

o "L'n
—x __ § : 1\
€ - (1) ’I’L')
n=0

for x-values ranging fronf) to 100 in steps of 10. When doing the summation, we can always define a
desired precision, given below by the fixed value for thealsdld TRUNCATION= 1.0F — 10, so that for

a certain value of > 0, there is always a value af = NN for which the loss of precision in terminating
the series abh = N is always smaller than the next term in the seﬁjﬁs The latter is implemented
through the while{. . } statement.

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/cpp/program4 . cpp

/1 Program to calculate function exp{x)

/1 using straightforward summation with differing preci®sn
using namespacestd ;

#include <iostream >

I/l type float: 32 bits precision

/!l type double: 64 bits precision

#define TYPE double

#define PHASE(a) (1- 2 % (abs(a) % 2))

#define TRUNCATION 1.0E-10

// function declaration

25

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/cpp/program4.cpp

Introduction to C++ and Fortran

TYPE factorial (int);

int main()

{
int n;

TYPE x, term, sum;

for (x 0.0; x < 100.0; x += 10.0) {
sum 0.0; /l'initialization
n = 0;
term = 1;

while (fabs (term) > TRUNCATION) {
term = PHASE(n)* (TYPE) pow((TYPE) x,(TYPE) n) / factorial(n);
sum += term;

n++;

} // end of while() loop

cout << "' x =77 << x << 'Y exp = ' << exp(—x) << ‘' series = '' <<
sum;

cout << ‘‘ number of terms =" << n << endl;

} // end of for() loop
return 0;
} // End: function main()

// The function factorial()
// calculates and returns n!

TYPE factorial(int n)
{
int 1loop;
TYPE fac;
for(loop = 1, fac = 1.0; loop <= n; loop++) {
fac *= loop;
}
return fac;
} // End: function factorial()

There are several features to be nEteElirst, for low values ofr, the agreement is good, however for
largerz values, we see a significant loss of precision. Secondly; fer70 we have an overflow problem,
represented (from this specific compiler) by NaN (not a nubEhe latter is easy to understand, since
the calculation of a factorial of the siZ&'1! is beyond the limit set for the double precision variable
factorial. The message NaN appears since the computehsdesctorial ofl 71 equal to zero and we end
up having a division by zero in our expression ¢0r°.

The overflow problem can be dealt with via a recurrence fodthidr the terms in the sum, so that
we avoid calculating factorials. A simple recurrence folarfor our equation

o o0 T
e (0= 0= D1,
n=0 n=0

3Note that different compilers may give different messagebdeal with overflow problems in different ways.

“Recurrence formulae, in various disguises, either as waysgresent series or continued fractions, are among the mos
commonly used forms for function approximation. Examples Bessel functions, Hermite and Laguerre polynomials, dis
cussed for example in chapfér 7.

26

2.5 — Programming examples on loss of precision and round-@frors

x exp(—x) Series Number of terms in series
0.0 0.100000E+01 0.100000E+01 1
10.0 0.453999E-04 0.453999E-04 44
20.0 0.206115E-08 0.487460E-08 72
30.0 0.935762E-13 -0.342134E-04 100
40.0 0.424835E-17 -0.221033E+01 127
50.0 0.192875E-21 -0.833851E+05 155
60.0 0.875651E-26 -0.850381E+09 171

70.0 0.397545E-30 NaN 171
80.0 0.180485E-34 NaN 171
90.0 0.819401E-39 NaN 171
100.0 0.372008E-43 NaN 171

Table 2.3: Result from the brute force algorithm éap (—x).

is to note that
xr
Sn = —Spn—1—")
n

so that instead of computing factorials, we need only to agmproducts. This is exemplified through
the next program.

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/cpp/programb.cpp

[/l program to compute exp{x) without factorials
using namespacestd ;
#include <iostream >

#define TRUNCATION 1.0E-10
int main()
{
int loop, n;
double X, term, sum,;
for (loop = 0; loop <= 100; loop += 10){
X = (double) loop; /1 initialization
sum = 1.0;
term = 1;
n = 1;

while (fabs (term) > TRUNCATION){
term x= —x/((double) n);
sum += term;

n++;
} /1 end while loop
cout << ‘'x = << x << ‘‘exp = ‘' << exp(—x) << ‘‘series = ‘' << sum;
cout << ‘‘number of terms =" << n << endl;
} // end of for loop
Yy // End: function main()

In this case, we do not get the overflow problem, as can be seanthe large number of terms. Our

27

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/cpp/program5.cpp

Introduction to C++ and Fortran

x exp(—z) Series Number of terms in series
0.000000 0.10000000E+01 0.10000000E+01 1
10.000000 0.45399900E-04 0.45399900E-04 44
20.000000 0.20611536E-08 0.56385075E-08 72
30.000000 0.93576230E-13 -0.30668111E-04 100
40.000000 0.42483543E-17 -0.31657319E+01 127
50.000000 0.19287498E-21 0.11072933E+05 155
60.000000 0.87565108E-26 -0.33516811E+09 182
70.000000 0.39754497E-30 -0.32979605E+14 209
80.000000 0.18048514E-34 0.91805682E+17 237
90.000000 0.81940126E-39 -0.50516254E+22 264

100.000000 0.37200760E-43 -0.29137556E+26 291

Table 2.4: Result from the improved algorithm fetp (—z).

results do however not make much sense for larger values Bfecreasing the truncation test will not
help! (try it). This is a much more serious problem.

In order better to understand this problem, let us conshiercase of: = 20, which already differs
largely from the exact result. Writing out each term in thensation, we obtain the largest term in the
sum appears at = 19, with a value that equals43099804. However, forn = 20 we have almost the
same value, but with an interchanged sign. It means that we & error relative to the largest term
in the summation of the order @f099804 x 10710 ~ 4 x 10~2. This is much larger than the exact
value of0.21 x 1078, The large contributions which may appear at a given ordénénsum, lead to
strong roundoff errors, which in turn is reflected in the loggrecision. We can rephrase the above in
the following way: Sincexxp (—20) is a very small number and each term in the series can be rather
large (of the order of02, it is clear that other terms as largeld$, but negative, must cancel the figures
in front of the decimal point and some behind as well. Sinceraputer can only hold a fixed number
of significant figures, all those in front of the decimal paémé not only useless, they are crowding out
needed figures at the right end of the number. Unless we ayecaezful we will find ourselves adding
up series that finally consists entirely of roundoff erroksl analysis of the contribution to the sum from
various terms shows that the relative error made can be hligis.results in an unstable computation,
since small errors made at one stage are magnified in subgesjages.

To this specific case there is a simple cure. Noting¢kat(z) is the reciprocal oéxp (—z), we may
use the series farxp (x) in dealing with the problem of alternating signs, and simglye the inverse.
One has however to beware of the fact it () may quickly exceed the range of a double variable.

2.5.2 Fortran codes

The Fortran programs are rather similar in structure to the Qrogram.

In Fortran Real numbers are written as 2.0 rather than 2 arldréel as REAL (KIND=8) or REAL
(KIND=4) for double or single precision, respectively. largeral we discorauge the use of single pre-
cision in scientific computing, the achieved precision ig@mneral not good enough. Fortran uses a do
construct to have the computer execute the same statemerggiman once. Note also that Fortran does
not allow floating numbers as loop variables. In the examplew we use both a do construct for the
loop overx and aDO WHILE construction for the truncation test, as in the C++ progr&me could

28

2.5 — Programming examples on loss of precision and round-@frors

altrenatively use theEXIT statement inside a do loop. Fortran has also if statements @s+. The
IF construct allows the execution of a sequence of statesr{artilock) to depend on a condition. The if
construct is a compound statement and begins with IF ... THiEdNends with ENDIF. Examples of more
general IF constructs using ELSE and ELSEIF statementsiae i other program examples. Another
feature to observe is the CYCLE command, which allows a |laoable to start at a new value.
Subprograms are called from the main program or other sgbgmts. In the C++ codes we declared
a functionTYPE factorial (int) ;. Subprograms are always called functions in C++. If we dedkawith
void is has the same meaning as subroutines in Fortran,. Suteewtre used if we have more than one
return value. In the example below we compute the factousilsg the function factorial . This function
receives a dummy argument INTENT(IN) means that the dummy argument cannot be changidh
the subprogram. INTENT(OUT) means that the dummy argumamtet be used within the subprogram
until it is given a value with the intent of passing a value lb&x the calling program. The statement
INTENT(INOUT) means that the dummy argument has an initellg which is changed and passed
back to the calling program. We recommend that you use thgtgens when calling subprograms. This
allows better control when transfering variables from amecfion to another. In chaptEl 3 we discuss
call by value and by reference in C++. Call by value does noteh called function to change the value
of a given variable in the calling function. This is importam order to avoid unintentional changes of
variables when transfering data from one function to arrotfibe INTENT construct in Fortran allows
such a control. Furthermore, it increases the readabilitheoprogram.

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/£90/program4 . {90

I In this module you can define for example global constants
MODULE constants
I definition of variables for double precisions and complexariables
INTEGER, PARAMETER :: dp = KIND (1.0D0)
INTEGER , PARAMETER :: dpc = KIND ((1.0D0,1.0D0))
I Global Truncation parameter
REAL (DP) , PARAMETER, PUBLIC :: truncation=1.0E10
END MODULE constants

I Here you can include specific functions which can be used by
I many subroutines or functions

MODULE functions

CONTAINS
REAL (DP) FUNCTION factorial (n)
USE CONSTANTS
INTEGER , INTENT (IN) :: n
INTEGER :: loop

factorial = 1.0 _dp
IF (n > 1) THEN
DO loop = 2, n
factorial=factoriakloop
ENDDO
ENDIF
END FUNCTION factorial

END MODULE functions

29

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/f90/program4.f90

Introduction to C++ and Fortran

I Main program starts here
PROGRAM exp_prog
USE constants
USE functions
IMPLICIT NONE
REAL (DP) :: x, term, final_sum
INTEGER :: n, loop_over_x

I loop over xvalues
DO loop_over_x=0, 100, 10
x=loop_over_x
I initialize the EXP sum
final_sum= 0.0 _dp; term = 1.0 _dp; n =0
DO WHILE (ABS(term) > truncation)
term = ((—1.0_dp)=«n)=«(x*xxn)/ factorial(n)
final _sum=final _sum+term
n=n+1
ENDDO
I write the argument x, the exact value, the computed valuea an
WRITE (% ,*) x ,EXP(=x), final_sum, n
ENDDO

END PROGRAM exp_prog

The MODULE declaration in Fortran allows one to place functions like tme which calculates the
factorials. Note also the usage of the moduastantswhere we define double and complex variables.
If one wishes to switch to another precision, one just needhange the declaration in one part of the
program only. This hinders possible errors which arise & bas to change variable declarations in every
function and subroutine. In addition we have defined a glebahbletruncation which is accessible

to all functions which have thgSE constantdeclaration. These declarations have to come before any

variable declarations antPLICIT NONE statement.

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/£90/programb. {90

I In this module you can define for example global constants
MODULE constants
I definition of variables for double precisions and complexariables
INTEGER, PARAMETER :: dp = KIND (1.0D0)
INTEGER , PARAMETER :: dpc = KIND ((1.0D0,1.0D0))
I Global Truncation parameter
REAL (DP) , PARAMETER, PUBLIC :: truncation=1.0E10
END MODULE constants

PROGRAM improved_exp
USE constants

IMPLICIT NONE
REAL (dp) :: x, term, final_sum
INTEGER :: n, loop_over_x

I loop over xvalues, no floats as loop variables
DO loop_over_x=0, 100, 10
x=loop_over_x
I' initialize the EXP sum

30

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/f90/program5.f90

2.5 — Programming examples on loss of precision and round-@frors

final _sum=1.0 ; term=1.0 ; n =1
DO WHILE (ABS(term) > truncation)
term = —termxx/FLOAT(n)
final _sum=final_sum+term
n=n+1
ENDDO
! write the argument x, the exact value, the computed valuea an
WRITE (% ,*) x ,EXP(-x), final_sum, n
ENDDO

END PROGRAM improved_exp

2.5.3 Further examples
Summing1/n

Let us look at another roundoff example which may surprisempore. Consider the series

which is finite whenV is finite. Then consider the alternative way of writing thisrs

L

82 = -
which when summed analytically should give = s;. Because of roundoff errors, numerically we will
getss # s1! Computing these sums with single precision fér= 1.000.000 results ins; = 14.35736
while so = 14.39265! Note that these numbers are machine and compiler dependétti double pre-
cision, the results agree exactly, however, for largerambf NV, differences may appear even for double
precision. If we chooséV = 10® and employ double precision, we ggt = 18.9978964829915355
while s, = 18.9978964794618506, and one notes a difference even with double precision.

This example demonstrates two important topics. First weadhat the chosen precision is im-
portant, and we will always recommend that you employ dogpipéeision in all calculations with real
numbers. Secondly, the choice of an appropriate algoritsrglso seen far—*, can be of paramount
importance for the outcome.

The standard algorithm for the standard deviation

Yet another example is the calculation of the standard tewia- when o is small compared to the
average valug. Below we illustrate how one of the most frequently used i@figons can go wrong when
single precision is employed.

However, before we proceed, let us definandz. Suppose we have a set &fdata points, repre-
sented by the one-dimensional arr&y), for i = 1, N. The average value is then

Tr = N 5

while

31

Introduction to C++ and Fortran

Let us now assume that

x(i) =i+ 10°,
and thatNV = 127, just as a mere example which illustrates the kind of problarhich can arise when
the standard deviation is small compared with the mean value

The standard algorithm computes the two contributions separately, that is we supn, x(i)? and
subtract thereafter) . (7). Since these two numbers can become nearly equal and laegaaw end
up in a situation with potential loss of precision as an onoteo

The second algorithm on the other hand computesfifigt— = and then squares it when summing
up. With this recipe we may avoid having nearly equal numigrieh cancel.

Using single precision results in a standard deviation ef 40.05720139 for the first and most used
algorithm, while the exact answer is = 36.80579758, a number which also results from the above
second algorithm. With double precision, the two algorishmasult in the same answer.

The reason for such a difference resides in the fact thatr$teafgorithm includes the subtraction of
two large numbers which are squared. Since the average faltids example i = 100063.00, it is
easy to see that computing, z(i)> — z >_, (i) can give rise to very large numbers with possible loss
of precision when we perform the subtraction. To see thissicier the case whefe= 64. Then we have

x2, — Taey = 100352,

while the exact answer is
x2, — Taey = 100064!

You can even check this by calculating it by hand.
The second algorithm computes first the difference betwgénand the average value. The differ-
ence gets thereafter squared. For the second algorithmweddra = 64

Tes —T =1,

and we have no potential for loss of precision.
The standard text book algorithm is expressed through tt@niog program, where we have also
added the second algorithm

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/cpp/programb . cpp

/! program to calculate the mean and standard deviation of
/!l a user created data set stored in array Xx[]
using namespacestd ;
#include <iostream >
int main()
{ . .
int i
float sum, sumsq2, xbar, sigmal, sigmaZ2;
/I array declaration with fixed dimension
float x[127];
/I initialise the data set
for (i=0; i < 127 ; i++){
x[i] = i + 100000.;
}
/I The variable sum is just the sum over all elements
/I The variable sumsg2 is the sum over x"2
sum=0.;

32

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/cpp/program6.cpp

2.5 — Programming examples on loss of precision and round-@frors

}// End: function main()

sumsq2=0.;
/I Now we use the text book algorithm
for (i=0; i < 127; i++){
sum += x[i];
sumsqg2 += pow(fouble) x[i],2.);
}
/Il calculate the average and sigma
xbar=sum/127.;
sigmal=sqrt ((sumsgsum«xbar)/126.) ;
[*
xx Here comes the second algorithm where we evaluate
xx separately first the average and thereafter the
xx sum which defines the standard deviation. The average
xx has already been evaluated through xbar
x/
sumsq2=0.;
for (i=0; i < 127; i++){
sumsq2 += pow((@ouble) (x[i]—xbar) ,2.);

}
sigma2=sqrt(sumsg2/126.);
cout << "xbar = ‘¢ << xbar << ‘‘sigmal = ‘¢ << sigmal << ‘‘sigma2 = ‘¢

<< sigma2;
cout << endl;
return 0;

The corresponding Fortran program is given below.

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/£90/program6.f90

PROGRAM standard_deviation

IMPLICIT NONE
REAL (KIND = 4) sum, sumsqg2, xbar
REAL (KIND = 4) :: sigmal, sigma?2
REAL (KIND = 4), DIMENSION (127) :: x
INTEGER i
x=0;
DO i=1, 127

x(i) =i + 100000.
ENDDO

sum=0.; sumsq2=0.
! standard deviation calculated with the first algorithm
DO i=1, 127

sum = sum +x(i)

sumsqg2 = sumsqg2+x (i®x2
ENDDO
! average
xbar=sum/127.
sigmal=SQRT ((sumsgadumxxbar)/126.)
! second algorithm to evaluate the standard deviation
sumsq2=0.
DO i=1, 127

33

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/f90/program6.f90

Introduction to C++ and Fortran

arithmetic operators relation operators
operator effect operator effect
— Subtraction > Greater than
+ Addition >= Greater or equa
* Multiplication < Less than
/ Division <= Less or equal
% or MOD Modulus division| == Equal
—— Decrement = Not equal
++ Increment

Table 2.5: Relational and arithmetic operators. The m@atiperators act between two operands. Note
that the increment and decrement operate#sand—— are not available in Fortran .

Logical operators
C++ Effect Fortran
0 False value .FALSE
1 True value .TRUE.
IX Logical negation .NOT.x
x&&y Logical AND X.AND.y
X|ly Logical inclusive OR x.OR.y

Table 2.6: List of logical operators in C++ and Fortran .

sumsqg2=sumsqg2 +(x(Hxbar)**2
ENDDO
sigma2=SQRT(sumsq2/126.)
WRITE (% ,*) xbar, sigmal, sigmaZ2

END PROGRAM standard_deviation

2.6 Additional features of C++ and Fortran

2.6.1 Operatorsin C++

In the previous program examples we have seen several typ@seoators. In the tables below we
summarize the most important ones. Note that the modulustin i€ represented by the operator %
whereas in Fortran we employ the intrinsic functid®D. Note also that the increment operato#+
and the decrement operator-— is not available in Fortran . In C++ these operators havedhafing
meaning

++X; Or x++; hasthe same meaning asx = x + 1;
——Xx; or x——; hasthe same meaning asx =x — 1;

Table[Z5 lists several relational and arithmetic opegatbogical operators in C++ and Fortran are listed
in[Z8. while Tabld—Zl7 shows bitwise operations.
C++ offers also interesting possibilities for combined mapers. These are collected in Tabl€el 2.8.

34

2.6 — Additional features of C++ and Fortran

Bitwise operations
C++ Effect Fortran
~i Bitwise complement NOT(j)
i& Bitwise and IAND(i,))
i"j Bitwise exclusive or IEOR(i,))
i]j Bitwise inclusive or IOR(i,))
i<<j Bitwise shift left ISHFT(,j)
i>>n Bitwise shift right ISHFT(i,-))

Table 2.7: List of bitwise operations.

Expression meaning | expression meaning
a += b; a=a+ b; a -= b; a=a- b;
a *= b; a=axb;| a/=b; a=a/b;
ak=b; a=al%b;| a«=b; a=ac«b;
a »= b; a=a»>»b; a &= b; a=aé&b;
al=b; a=alb;| aAa=b; a=anb;

Table 2.8: C++ specific expressions.

Finally, we show some special operators pertinent to C+y. ofhe first one is the operator. Its
action can be described through the following example

A = expressionl ? expression2 : expression3;

Hereexpressionl is computed first. If this istrue” (# 0), thenexpression2 is computed and assigned
A. If expressionl is "false", thenexpression3 is computed and assigned A.

2.6.2 Pointers and arrays in C++.

In addition to constants and variables C++ contain imporgoes such as pointers and arrays (vectors
and matrices). These are widely used in most C++ program. &lews also for pointer algebra, a
feature not included in Fortran . Pointers and arrays areitapt elements in C++. To shed light on
these types, consider the following setup

int name defines an integer variable calledme. It is given an address in memory
where we can store an integer number.

&name is the address of a specific place in memory where the integes is
stored. Placing the operator & in front of a variable yielgsaddress in
memory.

int #*pointer defines and an integer pointer and reserves a location in nyeiorathis

specific variable The content of this location is viewed asaldress of
another place in memory where we have stored an integer.

Note that in C++ itis common to writet + pointer while in C one usually writent *pointer. Here are
some examples of legal C++ expressions.

35

Introduction to C++ and Fortran

name = 0x56;

pointer = &name; /* pointer points to name.
printf ("Address of name = %p",pointer); /[*writes out the address of name.
printf ("Value of name= %d",*pointer); /* writes out the value of name.

Here’s a program which illustrates some of these topics.

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/cpp/program? . cpp

O©CoO~NOOUA~AWNEPE

using namespacestd;
main ()
{ .
int var;
int xpointer;

pointer = &var;

var = 421,

printf("Address of the integer variable var : %p\n",&var);
printf("value of var : %d\an", var);

printf("value of the integer pointer variable: %p\n",pointer);

printf("Value which pointer is pointing at : %d\n",xpointer);
printf("Address of the pointer variable : J%p\n",&pointer);
}
Line Comments
4 ¢ Defines an integer variable var.
5 e Define an integer pointer — reserves space in memory.
7 e The content of the adddress of pointer is the address of var.
8 e The value of var is 421.
9 o Writes the address of var in hexadecimal notation for posfep.
10 o Writes the value of var in decimal notation%d.

The ouput of this program, compiled with g++, reads

Address of the integer variable var : Oxbfffeb74
Value of var: 421

Value of integer pointer variable : Oxbfffeb74
The value which pointer is pointing at : 421
Address of the pointer variable : Oxbfffeb70

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/cpp/programd. cpp

In the next example we consider the link between arrays amigs.

int matr[2] defines a matrix with two integer membersatr [0] ogmatr [1].
matr is a pointer tanatr [0].
(matr + 1) is a pointer tanatr[1].

1
2
3

36

using namespacestd ;
#included <iostream>
int main ()

/* name gets the hexadecimal value hex 56.

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/cpp/program7.cpp
http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/cpp/program8.cpp

2.6 — Additional features of C++ and Fortran

4 {

5 int matr[2];

6 int xpointer;

7 pointer = &matr[0];

8 matr[0] = 321;

9 matr[1] = 322;

10 printf("\nAddress of the matrix element matr[1]: %p",&matr[0]);
11 printf("\nValue of the matrix element matr[1]; %d",matr[0]);
12 printf("\nAddress of the matrix element matr[2]: %p",&matr[1]);
13 printf("\nValue of the matrix element matr([2]: %d\n", matr[1]);
14 printf("\nValue of the pointer : J%p",pointer);

15 printf("\nValue which pointer points at : %d",xpointer);

16 printf("\nValue which (pointer+1l) points at: %d\n",x(pointer+1));
17 printf("\nAddress of the pointer variable: %p\n",&pointer);

18 }

You should especially pay attention to the following

Line
5 e Declaration of an integer array matr with two elements
6 e Declaration of an integer pointer

7 e The pointer is initialized to point at the first element of #reay matr.
8-9 e Values are assigned to the array matr.

The ouput of this example, compiled again with g++, is

Address of the matrix element matr[1]: Oxbfffef70
Value of the matrix element matr[1]; 321
Address of the matrix element matr[2]: Oxbfffef74
Value of the matrix element matr[2]: 322

Value of the pointer: Oxbfffef70

The value pointer points at: 321

The value that (pointer+l) points at: 322
Address of the pointer variable : Oxbfffef6c

2.6.3 Macrosin C++

In C we can define macros, typically global constants or fonstthrough thedefine statements shown
in the simple C-example below for

printf("ONE=%d, TW0=%d, THREE=%d" ,ONE,TWO,THREE);

1. #define ONE 1

2. #define TWO ONE + ONE
3. #define THREE ONE + TWO
4,

5. main ()

6. {

7.

8.

}

In C++ the usage of macros is discouraged and you shouldrragieethe declaration for constant vari-
ables. You would then replace a statement#ikefine ONE 1with const int ONE = 1; There is typically
much less use of macros in C++ than in C. C++ allows also theitlefi of our own types based on other

37

Introduction to C++ and Fortran

existing data types. We can do this using the keyword typededse format istypedef existing _type
new_type_name,;where existing_type is a C++ fundamental or compound tyjkerew_type _name is
the name for the new type we are defining. For example:

typedef char new_name;
typedef unsigned int word
typedef char % test;
typedef char field [50];

In this case we have defined four data types: new_name, vestdand field as char, unsigned int, char*
and char[50] respectively, that we could perfectly use iclatations later as any other valid type

new_name mychar, anothercharxptcl;
word myword;

test ptc2;

field name;

The use of typedef does not create different types. It omgiters synonyms of existing types. That means
that the type of myword can be considered to be either worchsigued int, since both are in fact the
same type. Using typedef allows to define an alias for a tygeisifrequently used within a program. It
is also useful to define types when it is possible that we widldhto change the type in later versions of
our program, or if a type you want to use has a name that is tapdo confusing.

In C we could define macros for functions as well, as seen below

#define MIN(a,b) (((a) < (b)) 2 (a) : (b))
#define MAX(a,b) (((a) > (b)) ?2 (a) : (b))
#define ABS (a) (((a) < 0) ?—(a) : (a))
((.0
((

#define EVEN(a) a) w2 ==0 7 1
#define TOASCII(a) a) & Ox7f)

G wN P

In C++ we would replace such function definition by employstgcalledinline functions. Three of the
above functions could then read

inline double MIN(double a,double b) (return (((a)<(b)) ? (a):(b));)
inline double MAX(double a,double b)(return (((a)>(b)) ? (a):(b));)
inline double ABS(double a) (return (((a)<0) ? —(a):(a));)

where we have defined the transferred variables to be ofdypee. The functions also returndouble
type. These functions could easily be generalized throhgluse of classes and templates, see chapter
H, to return whather types of real, complex or integer vaeisb

Inline functions are very useful, especially if the overthdar calling a function implies a signifi-
cant fraction of the total function call cost. When such tiort call overhead is significant, a function
definition can be preceded by the keywadndne . When this function is called, we expect the compiler
to generate inline code without function call overhead. laesv, although inline functions eliminate
function call overhead, they can introduce other overhe&@ldsen a function is inlined, its code is du-
plicated for each call. Excessive useiofine may thus generate large programs. Large programs can
cause excessive paging in virtual memory systems. Too nming ifunctions can also lengthen compile
and link times, on the other hand not inlining small functidike the above that do small computations,
can make programs bigger and slower. However, most modenpitays know better than programmer
which functions to inline or not. When doing this, you shoaldo test various compiler options. With
the compiler option-0O3 inlining is done automatically by basically all modern calers.

38

2.6 — Additional features of C++ and Fortran

A good strategy, recommended in many C++ textbooks, is ttevericode without inline functions
first. As we also suggested in the introductory chapter, youbkl first write a as simple and clear
as possible program, without a strong emphasis on compuétspeed. Thereafter, when profiling
the program one can spot small functions which are calledyniames. These functions can then be
candidates for inlining. If the overall time comsumptiomeégluced due to inlining specific functions, we
can proceed to other sections of the program which could éedsal up.

Another problem with inlined functions is that on some sysedebugging an inline function is
difficult because the function does not exist at runtime.

2.6.4 Structures in C++ and TYPE in Fortran

A very important part of a program is the way we organize ota @ad the flow of data when running
the code. This is often a neglected aspect especially dtinmglevelopment of an algorithm. A clear
understanding of how data are represented makes the progoaereadable and easier to maintain and
extend upon by other users. Till now we have studied elemergaiable declarations through keywords
like int or INTEGER, double or REAL(KIND(8) andchar or its Fortran 90 equivale@HARACTER. These
declarations could also be extended to general multi-dénoeal arrays.

However, C++ and Fortran offer other ways as well by which @&e organize our data in a more
transparent and reusable way. One of these options is thridnggstruct declaration of C++, or the
correspondingly similafYPE in Fortran. The latter data type will also be discussed irptdr&d.

The following example illustrates how we could make a genesaable which can be reused in
defining other variables as well.

Suppose you would like to make a general program which topaiatum mechanical problems from
both atomic physics and nuclear physics. In atomic and auglRysics the single-particle degrees are
represented by quantum numbers such orbital angular mametttal angular momentum, spin and en-
ergy. An independent particle model is often assumed adaing point for building up more compli-
cated many-body correlations in systems with many interggarticles. In atomic physics the effective
degrees of freedom are often reduced to electrons integaatith each other, while in nuclear physics
the system is described by neutrons and protons. The steuctingle_particle_descriptcontains a list
over different quantum numbers through various pointerghvare initialized by a calling function.

struct single_particle_descript{
int total_orbits;
intx n;
int« lorb;
intx m_I;
intx jang;
intx spin;
doublex energy;
charx orbit_status

1

To describe an atom like Neon we would need three singleepandrbits to describe the ground state
wave function if we use a single-particle picture, i.e., #3e 2s and 2p single-particle orbits. These
orbits have a degeneray {2/ + 1), where the first number stems from the possible spin projesti
and the second from the possible projections of the orbimhentum. In total there are 10 possible
single-particle orbits when we account for spin and orliiiamentum projections. In this case we would
thus need to allocate memory for arrays containing 10 elé&nen

The above structure is written in a generic way and it can lee i3 define other variables as well.

39

Introduction to C++ and Fortran

For electrons we could writetruct single_particle_descript electronand is a new variable with the
nameelectrons containing all the elements efingle_particle_descript.

The following program segment illustrates how we accessetledements To access these elements
we could e.g., read from a given device the various quantumbeus:

for (int i = 0; i < electrons.total_orbits; i++){
cout << ‘* Read in the quantum numbergor electron i: ‘' << i <<
endl;

cin >> electrons.nf[i];

cin > electrons.lorb[i];
cin >> electrons.m_I[i];
cin >> electrons .jang[i];
cin >> electrons.spin[i];

}

The structuresingle_particle_descript can also be used for defining quantum numbers of other
particles as well, such as neutrons and protons througlaivevariablesstruct single_particle_descript
protonsandstruct single_particle_descript neutrons
The corresponding declaration in Fortran is given byRthee construct, seen in the following exam-

ple.

TYPE, PUBLIC :: single_particle_descript
INTEGER :: total_orbits
INTEGER , DIMENSION (:), POINTER :: n, lorb, jang, spin, m_l|
CHARACTER (LEN=10), DIMENSION (:), POINTER :: orbit_status
REAL (8) , DIMENSION (:), POINTER :: energy

END TYPE single_particle_descript

This structure can again be used to define variablesliketrons, protons andneutrons through the
statementTYPE (single_particle_descript) :: electrons, protons, neugr More detailed examples on
the use of these variable declarations, classes and tampldt be given in subsequent chapters and in
the appendikA.

2.7 Exercises and projects

Exercise 2.1: Converting from decimal to binary represénta

Set up an algorithm which converts a floating number giveméndecimal representation to the binary
representation. You may or may not use a scientific reprasent Write thereafter a program which
implements this algorithm.

Exercise 2.2: Summing series

a) Make a program which sums

N g

Sup = —
n
n=1

and
n=1 1
Sd. = —.
S
n=N

40

2.7 — Exercises and projects

The program should reall from screen and write the final output to screen.

b) Compares,;, 09 sqown for different NV using both single and double precision f§rup to N =
10'°. Which of the above formula is the most realiable one? Tryite gn explanation of possible
differences. One possibility for guiding the eye is for exderto make a log-log plot of the relative
difference as a function oV in steps ofl0™ with n = 1,2,...,10. This means you need to
computelogio(|(sup(IV) = Sdown(IV))/Sdown (I)]) @s function oflogio (V).

Exercise 2.3: Finding alternative expressions

Write a program which computes
f(z) =z —sinzx,

for a wide range of values of. Make a careful analysis of this function for valueszohear zero. For
x =~ 0 you may consider to write out the series expansionsrof
R
Slnm—x—y—i—y—?—k
Use the loss of precision theorem of Hg. 12.2) to show thatdse of bits can be limited to at most one
bit by restrictingz so that
sinz _ 1
> .
r = 2
One finds then that must at least be 1.9, implying that fat| < 1.9 we need to carefully consider the
series expansion. For| > 1.9 we can use directly the expression- sin z.
For|z| < 1.9 you should device a recurrence relation for the terms in¢hies expansion in order to
avoid having to compute very large factorials.

1—

Exercise 2.4: Computing *

Assume that you do not have access to the intrinsic funcboe. Write your own algorithm foe™*
for all possible values af, with special care on how to avoid the loss of precision potd discussed in
the text. Write thereafter a program which implements thgergthm.

Exercise 2.5: Computing the quadratic equation

The classical quadratic equatiam? + bx + ¢ = with solution
x = (—b + /b — 4&6) /2a,

needs particular attention whenc is small relative ta?. Find an algorithm which yields stable results
for all possible values af, b andc. Write thereafter a program and test the results of your caatipns.

Exercise 2.6: Fortran, C++ and Python functions for machmanding

Write a Fortran program which reads a real numbeand computes the precision in bits (using the
function DIGIT(x))for single and double precision, the smallest positive bem(usingTINY(x)), the
largets positive number (using the functiddGE(x)) and the number of leading digits (using the function
PRECISION(x)). Try thereafter to find similar functionalities in C++ angtRon.

41

Introduction to C++ and Fortran

Exercise 2.7: Nearest machine number

Write an algorithm and program which reads in a real numband finds the two nearest machine
numberse_ andzx., the corresponding relative errors and absolute errors.

Exercise 2.8: Recurrence relations

Recurrence relations are extremely useful in represetitingtions, and form expedient ways of rep-

resenting important classes of functions used in the Segen®Ve will see two such examples in the

discussion below. One example of recurrence relationsaappe studies of Fourier series, which enter
studies of wave mechanics, be it either in classical systemsiantum mechanical ones. We may need
to calculate in an efficient way sums like

N
F(z) = Zancos(nw), (2.3)
n=0

where the coefficients,, are known numbers andis the argument of the functiof (). If we want to
solve this problem right on, we could write a simple repetitioop that multiplies each of the cosines
with its respective coefficient,, like

for (n=0; n < N; n++){
f += anxcos(nkx)
}

Even though this seems rather straightforward, it may #ygtyield a waste of computer time iV is
large. The interesting point here is that through the theee-recurrence relation

cos(n — 1)x — 2cos(z)cos(nz) + cos(n + 1)z = 0, (2.4)

we can express the entire finite Fourier series in terms4fr) and two constants. The essential device
is to define a new sequence of coefficieltsecursively by

by, = (2cos(x))bp—1 — bpyo + an n=0,...N —1,N, (2.5)

definingby+1 = byya +..--- = 0for all n > N, the upper limit. We can then determine all the
coefficients froma,, and one evaluation dicos(x). If we replacea,, with b,, in the sum forF'(z) in
Eq. (Z3) we obtain

F(x) = by [cos(Nz) — 2cos((N — 1)x)cos(x) + cos((N — 2)z)] +
bn_1 [cos((N — 1)x) — 2cos((N — 2)x)cos(x) + cos((N — 3)z)] + ...
by [cos(2z) — 2cos?(x) + 1] + by [cos(z) — 2cos(z)] + bo. (2.6)

Using Eqg. [Z.#) we obtain the final result
F(x) = by — bicos(x), (2.7)

and by and b, are determined from Eq[{2.3). The latter relation is afttke@saw. This method of
evaluating finite series of orthogonal functions that anenexted by a linear recurrence is a technique
generally available for all standard special functions atmematical physics, like Legendre polynomials,
Bessel functions etc. They all involve two or three term$imrecurrence relations. The general relation
can then be written as

Fri1(z) = an(z) Fo(2) + Ba(z) Fre1 ().

42

2.7 — Exercises and projects

Evaluate the functior¥'(z) = Z,{LV:O ancos(nx) in two ways: first by computing the series of
Eq. (reffour-1) and then using the equation given in EQJ)(2Assume that,, = (n + 2)/(n + 1),
set e.g./N = 1000 and try with differentz-values as input.

In project 2.1 we will see another example of recurrencetiorla used to compute the associated
Legendre functions.

Exercise 2.9: Continued fractions

Often, especially when one encounters singular behaviors,may need to rewrite the function to be
evaluated in terms of a taylor expansion. Another possibiéi to used so-called continued fractions,
which may be viewed as generalizations of a Taylor expandidinen dealing with continued fractions,
one possible approach is that of successive substitutiaes.us illustrate this by a simple example,
namely the solution of a second order equation

22 —4x—1=0, (2.8)

which we rewrite as)
Xr = s
4+

which in turn could be represented through an iterativetitukien process

1
Tn+l1 = 4_1_1:)
n
with zg = 0. This means that we have
1
Tl = Zv
1
T =)
4+ %
1
€T3 = ———7 >
4+ 4il

4

and so forth. This is often rewritten in a compact way as

n al
ITn = X0
" fL'l + - a2a3 ’
1’2+W
r3tag 4
or as
al a2 a3
Tp=Tog+ ———— ...
T1+ xo+ x3+

Write a program which implements this continued fractiagoathm and solve iteratively Eq.(2.8).
The exact solution is = 0.23607 while already after three iterations you should obtain= 0.236111.
Project 2.1: Special functions, spherical harmonics ansiasated Legendre polynomials

Many physics problems have spherical harmonics as sofjtsuth as the angular part of the Schrédinger
equation for the hydrogen atom or the angular part of thestdimensional wave equation or Poisson’s
equation.

43

Introduction to C++ and Fortran

The spherical harmonics for a given orbital momentamts projectionM for —L < M < L and
angles € [0, 7] and¢ € [0, 27| are given by

Y0,) = \/ (”4:(};)%;)?4 ! 1 (cos(0)) exp (iM),

The functionsP (cos() are the so-called associated Legendre functions. Theyoaneatly determined
via the usage of recurrence relations. Recurrence refatioa unfortunately often unstable, but the
following relation is stable (with: = cos(6))

(L= M)P (x) = 2(2L —)PPy (2) — (L + M — 1) Py (x),
and with the analytic (on closed form) expressions
Pif (@) = (=)™ (2M —)11 - 2*)M/2,

and
P]\]/V[IH(JU) =xz(2M + 1)Pf%(x),

we have the starting values and the equations necessargreraing the associated Legendre functions
for a general value of.

a) Make first a function which computes the associated Lageiuhctions for different values df
andM. Compare with the closed-form results listed in chapkter 7.

b) Make thereafter a program which calculates the real gdneospherical harmonics

c) Make plots for varioud. = M as functions o (set¢ = 0) and study the behavior a5 is
increased. Try to explain why the functions become more antkmarrow ad. increases. In
order to make these plots you can use for example gnuplotsasssed in appendix4.4.

d) Study also the behavior of the spherical harmonics whienclose to 0 and when it approaches
180 degrees. Try to extract a simple explanation for whatsgmi

44

