
Chapter 2

Introduction to C++ and Fortran

Computers in the future may weigh no more than 1.5 tons.Popular Mechanics, 1949

There is a world market for maybe five computers.Thomas Watson, IBM chairman, 1943

2.1 Introduction

This chapters aims at catching two birds with a stone; to introduce to you essential features of the pro-
gramming languages C++ and Fortran with a brief reminder on Python specific topics, and to stress
problems like overflow, underflow, round off errors and eventually loss of precision due to the finite
amount of numbers a computer can represent. The programs we discuss are taylored to these aims.

2.2 Getting started

In programming languages1 we encounter data entities such as constants, variables, results of evaluations
of functions etc. Common to these objects is that they can be represented through the type concept.
There are intrinsic types and derived types. Intrinsic types are provided by the programming language
whereas derived types are provided by the programmer. If onespecifies the type to be for exampleINTEGER (KIND=2) for Fortran2 or short int/int in C++, the programmer selects a particular
date type with 2 bytes (16 bits) for every item of the classINTEGER (KIND=2) or int. Intrinsic types
come in two classes, numerical (like integer, real or complex) and non-numeric (as logical and character).
The general form for declaring variables isdata type name of variable and Table 2.2 lists the
standard variable declarations of C++ and Fortran (note well that there be may compiler and machine
differences from the table below). An important aspect whendeclaring variables is their region of validity.

1For more detailed texts on C++ programming in engineering and science are the books by Flowers [19] and Bar-
ton and Nackman [20]. The classic text on C++ programming is the book of Bjarne Stoustrup [21]. See also the lec-
ture notes on C++ athttp://heim.ifi.uio.no/~hpl/INF-VERK4830. For Fortran we recommend the online lectures athttp://folk.uio.no/gunnarw/INF-VERK4820 . These web pages contain extensive references to other C++ and Fortran
resources. Both web pages contain enough material, lecturenotes and exercises, in order to serve as material for own studies.
The Fortran 95 standard is well documented in Refs. [11–13] while the new details of Fortran 2003 can be found in Ref. [14].
The reader should note that this is not a text on C++ or Fortran. It is therefore important than one tries to find additional
literature on these programming languages. Good Python texts on scientific computing are [22, 23].

2Our favoured display mode for Fortran statements will be capital letters for language statements and low key letters for
user-defined statements. Note that Fortran does not distinguish between capital and low key letters while C++ does.

9

http://heim.ifi.uio.no/~hpl/INF-VERK4830
http://folk.uio.no/gunnarw/INF-VERK4820

Introduction to C++ and Fortran

Inside a function we define a a variable through the expression int var or INTEGER :: var . The
question is whether this variable is available in other functions as well, moreover where isvar initialized
and finally, if we call the function where it is declared, is the value conserved from one call to the other?

type in C++ and Fortran bits range

int/INTEGER (2) 16 −32768 to 32767
unsigned int 16 0 to 65535
signed int 16 −32768 to 32767
short int 16 −32768 to 32767
unsigned short int 16 0 to 65535
signed short int 16 −32768 to 32767
int/long int/INTEGER(4) 32 −2147483648 to 2147483647
signed long int 32 −2147483648 to 2147483647
float/REAL(4) 32 10−44 to 10+38

double/REAL(8) 64 10−322 to 10e+308

Table 2.1: Examples of variable declarations for C++ and Fortran . We reserve capital letters for Fortran
declaration statements throughout this text, although Fortran is not sensitive to upper or lowercase letters.
Note that there are machines which allow for more than 64 bitsfor doubles. The ranges listed here may
therefore vary.

Both C++ and Fortran operate with several types of variablesand the answers to these questions
depend on how we have defined for example an integer via the statementint var. Python on the other
hand does not use variable or function types (they are not explicitely written), allowing thereby for a
better potential for reuse of the code.

The following list may help in clarifying the above points:

type of variable validity

local variables defined within a function, only available within the scope of
the function.

formal parameter If it is defined within a function it is only available within that
specific function.

global variables Defined outside a given function, available for all functions
from the point where it is defined.

In Table 2.2 we show a list of some of the most used language statements in Fortran and C++.
In addition, both C++ and Fortran allow for complex variables. In Fortran we would declare a com-

plex variable asCOMPLEX (KIND=16):: x, y which refers to a double with word length of 16 bytes.
In C++ we would need to include a complex library through the statements

inc lude <complex>
complex<double> x , y ;

We will discuss the above declarationcomplex<double> x,y; in more detail in appendix A.

10

2.2 – Getting started

Fortran C++
Program structure

PROGRAM something main ()
FUNCTION something(input) double (int) something(input)
SUBROUTINE something(inout)

Data type declarations
REAL (4) x, y float x, y;
REAL(8) :: x, y double x, y;
INTEGER :: x, y int x,y;
CHARACTER :: name char name;
REAL(8), DIMENSION(dim1,dim2) :: x double x[dim1][dim2];
INTEGER, DIMENSION(dim1,dim2) :: x int x[dim1][dim2];
LOGICAL :: x
TYPE name struct name {
declarations declarations;
END TYPE name }
POINTER :: a double (int) *a;
ALLOCATE new;
DEALLOCATE delete;

Logical statements and control structure
IF (a == b) THEN if (a == b)
b=0 { b=0;
ENDIF }
DO WHILE (logical statement) while (logical statement)
do something {do something
ENDDO }
IF (a>= b) THEN if (a>= b)
b=0 { b=0;
ELSE else
a=0 a=0; }
ENDIF
SELECT CASE (variable) switch(variable)
CASE (variable=value1) {
do something case 1:
CASE (. . .) variable=value1;
. . . do something;

break;
END SELECT case 2:

do something; break;. . .
}

DO i=0, end, 1 for(i=0; i<= end; i++)
do something { do something ;
ENDDO }

Table 2.2: Elements of programming syntax.

11

Introduction to C++ and Fortran

2.2.1 Scientific hello world

Our first programming encounter is the ’classical’ one, found in almost every textbook on computer
languages, the ’hello world’ code, here in a scientific disguise. We present first the C version.http://www.fys.uio.no/
ompphys/
p/programs/FYS3150/
hapter02/
pp/program1.
pp
/∗ comments i n C beg in l i k e t h i s and end wi th∗ /
inc lude < s t d l i b . h> /∗ a t o f f u n c t i o n ∗ /
inc lude <math . h> /∗ s i n e f u n c t i o n ∗ /
inc lude < s t d i o . h> /∗ p r i n t f f u n c t i o n ∗ /

i n t main (i n t argc , char∗ argv [])
{

double r , s ; /∗ d e c l a r e v a r i a b l e s ∗ /
r = a t o f (a rgv [1]) ; /∗ c o n v e r t t h e t e x t argv [1] t o doub le∗ /
s = s i n (r) ;
p r i n t f ("Hello, World! sin(%g)=%g\n" , r , s) ;
re turn 0 ; /∗ s u c c e s s e x e c u t i o n o f t h e program∗ /

}

The compiler must see a declaration of a function before you can call it (the compiler checks the
argument and return types). The declaration of library functions appears in so-called header files that
must be included in the program, for example#include < stdlib .h>.

We call three functionsatof , sin , printf and these are declared in three different header files. The
main program is a function called main with a return value setto an integer, returning 0 if success. The
operating system stores the return value, and other programs/utilities can check whether the execution
was successful or not. The command-line arguments are transferred to the main function through the
statementint main (int argc , char∗ argv []) . The integerargc stands for the number of command-line
arguments, set to one in our case, whileargv is a vector of strings containing the command-line argu-
ments with argv[0] containing the name of the program andargv[1], argv[2], ... are the command-line
args, i.e., the number of lines of input to the program.

This means that we would run the programs asmhjensen�
ompphys:./myprogram.exe 0.3
argv[0] while the text string0.2 enters argv[1].

Here we define a floating point variable, see also below, through the keywordsfloat for single pre-
cision real numbers anddouble for double precision. The functionatof transforms a text(argv [1]) to a
float. The sine function is declared in math.h, a library which is not automatically included and needs to
be linked when computing an executable file.

With the commandprintf we obtain a formatted printout. Theprintf syntax is used for formatting
output in many C-inspired languages (Perl, Python, awk, partly C++).

In C++ this program can be written as

/ / A comment l i n e b e g i n s l i k e t h i s i n C++ programs
us ing namespace s t d ;
inc lude < ios t ream >
i n t main (i n t argc , char∗ argv [])
{
/ / c o n v e r t t h e t e x t argv [1] t o doub le u s i n g a t o f :

double r = a t o f (a rgv [1]) ;

12

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/cpp/program1.cpp

2.2 – Getting started

double s = s i n (r) ;
cou t << "Hello, World! sin(" << r << ")=" << s << end l ;

/ / s u c c e s s
re turn 0 ;

}

We have replaced the call toprintf with the standard C++ functioncout. The header fileiostreamis then
needed. In addition, we don’t need to declare variables liker ands at the beginning of the program. I
personally prefer however to declare all variables at the beginning of a function, as this gives me a feeling
of greater readability. Note that we have used the declaration using namespacestd;. Namespace is a way
to collect all functions defined in C++ libraries. If we omit this declaration on top of the program we
would have to add the declarationstd in front of coutor cin. Our program would then read

/ / He l l o wor ld code w i t h o u t u s i n g namespace s t d
inc lude < ios t ream >
i n t main (i n t argc , char∗ argv [])
{
/ / c o n v e r t t h e t e x t argv [1] t o doub le u s i n g a t o f :

double r = a t o f (a rgv [1]) ;
double s = s i n (r) ;
s t d : : cou t << "Hello, World! sin(" << r << ")=" << s << end l ;

/ / s u c c e s s
re turn 0 ;

}

Another feature which is worth noting is that we have skippedexception handlings here. In chapter
3 we discuss examples that test our input from the command line. But it is easy to add such a feature, as
shown in our modified hello world program

/ / He l l o wor ld code wi th e x c e p t i o n hand l i ng
us ing namespace s t d ;
inc lude < ios t ream >
i n t main (i n t argc , char∗ argv [])
{
/ / Read i n o u t p u t f i l e , a b o r t i f t h e r e are too few command− l i n e arguments

i f (a rgc <= 1) {
cou t << "Bad Usage: " << argv [0] <<" read also a number on the same line, e.g., prog.exe 0.2" << end l ;
e x i t (1) ; / / here t h e program s t o p s .

}
/ / c o n v e r t t h e t e x t argv [1] t o doub le u s i n g a t o f :

double r = a t o f (a rgv [1]) ;
double s = s i n (r) ;
cou t << "Hello, World! sin(" << r << ")=" << s << end l ;

/ / s u c c e s s
re turn 0 ;

}

Here we test that we have more than one argument. If not, the program stops and writes to screen an error
message.

To run these programs, you need first to compile and link them in order to obtain an executable file
under operating systems like e.g., UNIX or Linux. Before we proceed we give therefore examples on
how to obtain an executable file under Linux/Unix.

13

Introduction to C++ and Fortran

In order to obtain an executable file for a C++ program, the following instructions under Linux/Unix
can be used
++ -
 -Wall myprogram.

++ -o myprogram myprogram.o
where the compiler is called through the command
++. The compiler option -Wall means that a warning
is issued in case of non-standard language. The executable file is in this casemyprogram. The option-

is for compilation only, where the program is translated into machine code, while the-o option links the
produced object filemyprogram.o and produces the executablemyprogram .

The corresponding Fortran code ishttp://www.fys.uio.no/
ompphys/
p/programs/FYS3150/
hapter02/f90/program1.f90
PROGRAM shw

IMPLICIT NONE
REAL (KIND =8) : : r ! I n p u t number
REAL (KIND =8) : : s ! R e s u l t

! Get a number from use r
WRITE (∗ ,∗) ’ I n p u t a number : ’
READ (∗ ,∗) r

! C a l c u l a t e t h e s i n e o f t h e number
s = SIN (r)

! Wr i t e r e s u l t t o s c r e e n
WRITE (∗ ,∗) ’ He l l o World ! SINE o f ’ , r , ’ = ’ , s

END PROGRAM shw

The first statement must be a program statement; the last statement must have a corresponding end pro-
gram statement. Integer numerical variables and floating point numerical variables are distinguished. The
names of all variables must be between 1 and 31 alphanumeric characters of which the first must be a
letter and the last must not be an underscore. Comments beginwith a ! and can be included anywhere
in the program. Statements are written on lines which may contain up to 132 characters. The asterisks
(*,*) following WRITE represent the default format for output, i.e., the output is e.g., written on the
screen. Similarly, the READ(*,*) statement means that the program is expecting a line input. Note also
the IMPLICIT NONE statement which we strongly recommend theuse of. In many Fortran 77 programs
one can find statements like IMPLICIT REAL*8(a-h,o-z), meaning that all variables beginning with any
of the above letters are by default floating numbers. However, such a usage makes it hard to spot eventual
errors due to misspelling of variable names. With IMPLICIT NONE you have to declare all variables
and therefore detect possible errors already while compiling. I recommend strongly that you declare all
variables when using Fortran.

We call the Fortran compiler (using free format) throughf90 -
 -free myprogram.f90f90 -o myprogram.x myprogram.o
Under Linux/Unix it is often convenient to create a so-called makefile, which is a script which includes
possible compiling commands, in order to avoid retyping theabove lines every once and then we have
made modifcations to our program. A typical makefile for the abovecc compiling options is listed below# General makefile for
 -
hoose PROG = name of given program

14

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/f90/program1.f90

2.2 – Getting started# Here we define
ompiler option, libraries and the targetCC=
++ -WallPROG= myprogram# Here we make the exe
utable file${PROG} : ${PROG}.o${CC} ${PROG}.o -o ${PROG}# whereas here we
reate the obje
t file${PROG}.o : ${PROG}.
pp${CC} -
 ${PROG}.
pp
If you name your file for ’makefile’, simply type the commandmakeand Linux/Unix executes all of the
statements in the above makefile. Note that C++ files have the extension .cpp

For Fortran, a similar makefile is# General makefile for F90 -
hoose PROG = name of given program# Here we define
ompiler options, libraries and the targetF90= f90PROG= myprogram# Here we make the exe
utable file${PROG} : ${PROG}.o${F90} ${PROG}.o -o ${PROG}# whereas here we
reate the obje
t file${PROG}.o : ${PROG}.f90${F90} -
 ${PROG}.f
Finally, for the sake of completeness, we list the corresponding Python codehttp://www.fys.uio.no/
ompphys/
p/programs/FYS3150/
hapter02/python/program1.py

! / us r / b in / env py thon

import sys , math
Read i n a s t r i n g a c o n v e r t i t t o a f l o a t
r = f l o a t (sys . a rgv [1])
s = math . s i n (r)
p r i n t "Hello, World! sin(%g)=%12.6e" % (r , s)

where we have used a formatted printout with scientific notation.

15

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/python/program1.py

Introduction to C++ and Fortran

2.3 Representation of integer numbers

In Fortran a keyword for declaration of an integer isINTEGER (KIND=n) , n = 2 reserves 2 bytes (16 bits)
of memory to store the integer variable wheras n = 4 reserves 4bytes (32 bits). In Fortran, although it may
be compiler dependent, just declaring a variable asINTEGER, reserves 4 bytes in memory as default.

In C++ keywords areshort int , int , long int , long long int. The byte-length is compiler dependent
within some limits. The GNU C++-compilers (called by gcc or g++) assign 4 bytes (32 bits) to variables
declared byint and long int. Typical byte-lengths are 2, 4, 4 and 8 bytes, for the types given above. To
see how many bytes are reserved for a specific variable, C++ has a library function calledsizeof (type)
which returns the number of bytes fortype .

An example of a program declaration is

Fortran: INTEGER (KIND=2) :: age_of_participant
C++: short int age_of_participant;

Note that the(KIND=2) can be written as (2). Normally however, we will for Fortran programs just use
the 4 bytes default assignmentINTEGER.

In the above examples one bit is used to store the sign of the variable age_of_participant and the other
15 bits are used to store the number, which then may range fromzero to215 − 1 = 32767. This should
definitely suffice for human lifespans. On the other hand, if we were to classify known fossiles by age
we may need

Fortran: INTEGER (4) :: age_of_fossile
C++: int age_of_fossile;

Again one bit is used to store the sign of the variable age_of_fossile and the other 31 bits are used to
store the number which then may range from zero to231 − 1 = 2.147.483.647. In order to give you a
feeling how integer numbers are represented in the computer, think first of the decimal representation of
the number417

417 = 4× 102 + 1× 101 + 7× 100,

which in binary representation becomes

417 = 1× an2n + an−12
n−1 + an−22

n−2 + · · · + a02
0,

where the coefficientsak with k = 0, . . . , n are zero or one. They can be calculated through successive
division by 2 and using the remainder in each division to determine the numbersan to a0. A given integer
in binary notation is then written as

an2n + an−12
n−1 + an−22

n−2 + · · · + a02
0.

In binary notation we have thus
(417)10 = (110100001)2 ,

since we have

(110100001)2 = 1×28 +1×27 +0×26 +1×25 +0×24 +0×23 +0×22 +0×22 +0×21 +1×20.

To see this, we have performed the following divisions by 2

16

2.3 – Representation of integer numbers

417/2=208 remainder 1 coefficient of20 is 1
208/2=104 remainder 0 coefficient of21 is 0
104/2=52 remainder 0 coefficient of22 is 0
52/2=26 remainder 0 coefficient of23 is 0
26/2=13 remainder 0 coefficient of24 is 0
13/2= 6 remainder 1 coefficient of25 is 1
6/2= 3 remainder 0 coefficient of26 is 0
3/2= 1 remainder 1 coefficient of27 is 1
1/2= 0 remainder 1 coefficient of28 is 1

We see that nine bits are sufficient to represent 417. Normally we end up using 32 bits as default for
integers, meaning that our number reads

(417)10 = (00000000000000000000000110100001)2 ,

A simple program which performs these operations is listed below. Here we employ the modulus
operation (with division by 2), which in C++ is given by thea%2operator. In Fortran we would call the
function MOD(a,2) in order to obtain the remainder of a division by2.http://www.fys.uio.no/
ompphys/
p/programs/FYS3150/
hapter02/
pp/program2.
pp
us ing namespace s t d ;
inc lude < ios t ream >

i n t main (i n t argc , char∗ argv [])
{

i n t i ;
i n t t e rms [3 2] ; / / s t o r a g e o f a0 , a1 , e tc , up t o 32 b i t s
i n t number = a t o i (a rgv [1]) ;

/ / i n i t i a l i s e t h e term a0 , a1 e t c
f o r (i =0 ; i < 32 ; i ++) { te rms [i] = 0 ; }
f o r (i =0 ; i < 32 ; i ++) {

te rms [i] = number%2;
number /= 2 ;

}
/ / w r i t e ou t r e s u l t s

cou t << ‘ ‘ Number o f b y t e s used='' << s i z e o f(number) << end l ;
f o r (i =0 ; i < 32 ; i ++) {

cou t << ‘ ‘ Term nr : ‘ ‘ << i << ‘ ‘ Value= ‘ ‘ << te rms [i] ;
cou t << end l ;

}
re turn 0 ;

}

The C++ functionsizeof yields the number of bytes reserved for a specific variable. Note also thefor
construct. We have reserved a fixed array which contains the values ofai being0 or 1, the remainder of
a division by two. We have enforced the integer to be represented by 32 bits, or four bytes, which is the
default integer representation.

Note that for417 we need 9 bits in order to represent it in a binary notation, while a number like the
number 3 is given in an 32 bits word as

(3)10 = (00000000000000000000000000000011)2 .

17

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/cpp/program2.cpp

Introduction to C++ and Fortran

For this number 2 significant bits would be enough.
With these prerequesites in mind, it is rather obvious that if a given integer variable is beyond the

range assigned by the declaration statement we may encounter problems.
If we multiply two large integersn1×n2 and the product is too large for the bit size allocated for that

specific integer assignement, we run into an overflow problem. The most significant bits are lost and the
least significant kept. Using 4 bytes for integer variables the result becomes

220 × 220 = 0.

However, there are compilers or compiler options that preprocess the program in such a way that an error
message like ’integer overflow’ is produced when running theprogram. Here is a small program which
may cause overflow problems when running (try to test your owncompiler in order to be sure how such
problems need to be handled).http://www.fys.uio.no/
ompphys/
p/programs/FYS3150/
hapter02/
pp/program3.
pp
/ / Program t o c a l c u l a t e 2∗∗n
us ing namespace s t d ;
inc lude < ios t ream >

i n t main ()
{

i n t i n t 1 , i n t 2 , i n t 3 ;
/ / p r i n t t o s c r e e n

cou t << "Read in the exponential N for 2^N =\n" ;
/ / read from s c r e e n

c i n >> i n t 2 ;
i n t 1 = (i n t) pow (2 . , (double) i n t 2) ;
cou t << " 2^N * 2^N = " << i n t 1∗ i n t 1 << "\n" ;
i n t 3 = i n t 1 − 1 ;
cou t << " 2^N*(2^N - 1) = " << i n t 1 ∗ i n t 3 << "\n" ;
cou t << " 2^N- 1 = " << i n t 3 << "\n" ;
re turn 0 ;

}
/ / End : program main ()

If we run this code with an exponentN = 32, we obtain the following output2^N * 2^N = 02^N*(2^N - 1) = -21474836482^N- 1 = 2147483647
We notice that264 exceeds the limit for integer numbers with 32 bits. The program returns0. This can be
dangerous, since the results from the operation2N (2N − 1) is obviously wrong. One possibility to avoid
such cases is to add compilation option which flag if an overflow or underflow is reached.

2.3.1 Fortran codes

The corresponding Fortran code ishttp://www.fys.uio.no/
ompphys/
p/programs/FYS3150/
hapter02/f90/program2.f90
PROGRAM b i n a r y _ i n t e g e r

18

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/cpp/program3.cpp
http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/f90/program2.f90

2.3 – Representation of integer numbers

IMPLICIT NONE
INTEGER i , number , t e rms (0 : 3 1) ! s t o r a g e o f a0 , a1 , e tc , up t o 32 b i t s ,

! no te a r ray l e n g t h runn ing from 0 : 3 1 . Fo r t ran a l l o w s n e g a t iv e i n d e x e s as
w e l l .

WRITE (∗ ,∗) ’ Give a number to t r a n s f o r m to b i n a r y n o t a t i o n ’
READ (∗ ,∗) number

! I n i t i a l i s e t h e te rms a0 , a1 e t c
t e rms = 0

! Fo r t ran t a k e s on ly i n t e g e r loop v a r i a b l e s
DO i =0 , 31

te rms (i) = MOD(number , 2) ! Modulus f u n c t i o n i n Fo r t ran
number = number / 2

ENDDO
! w r i t e ou t r e s u l t s

WRITE (∗ ,∗) ’ B inary r e p r e s e n t a t i o n ’
DO i =0 , 31

WRITE (∗ ,∗) ’ Term nr and va lue ’ , i , t e rms (i)
ENDDO

END PROGRAM b i n a r y _ i n t e g e r

andhttp://www.fys.uio.no/
ompphys/
p/programs/FYS3150/
hapter02/f90/program3.f90
PROGRAM i n t e g e r _ e x p

IMPLICIT NONE
INTEGER : : i n t 1 , i n t 2 , i n t 3
! Th i s i s t h e beg in o f a comment l i n e i n Fo r t ran 90
! Now we read from s c r e e n t h e v a r i a b l e i n t 2
WRITE (∗ ,∗) ’ Read in t h e number to be e x p o n e n t i a t e d ’
READ (∗ ,∗) i n t 2
i n t 1 =2∗∗ i n t 2
WRITE (∗ ,∗) ’2^N∗2^N’ , i n t 1 ∗ i n t 1
i n t 3 = i n t 1−1
WRITE (∗ ,∗) ’2^N∗ (2^N−1) ’ , i n t 1 ∗ i n t 3
WRITE (∗ ,∗) ’2^N−1 ’ , i n t 3

END PROGRAM i n t e g e r _ e x p

In F o r t r a n t h e modulus d i v i s i o n i s per fo rmed by t h ei n t r i n s i c f unc t i on \
l s t i n l i n e {MOD(number , 2) }

i n case o f a d i v i s i o n by 2 . The e x p o n e n t a t i o n o f anumber i s g i ven by f o r
example \ l s t i n l i n e {2∗∗N}

i n s t e a d o f t h e c a l l to t h e $ \ l s t i n l i n e {pow} f unc t i on in C++.

2.3.2 Python codes

In preparation for fall 2009

19

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/f90/program3.f90

Introduction to C++ and Fortran

2.4 Real numbers and numerical precision

An important aspect of computational physics is the numerical precision involved. To design a good
algorithm, one needs to have a basic understanding of propagation of inaccuracies and errors involved
in calculations. There is no magic recipe for dealing with underflow, overflow, accumulation of errors
and loss of precision, and only a careful analysis of the functions involved can save one from serious
problems.

Since we are interested in the precision of the numerical calculus, we need to understand how com-
puters represent real and integer numbers. Most computers deal with real numbers in the binary system,
or octal and hexadecimal, in contrast to the decimal system that we humans prefer to use. The binary
system uses 2 as the base, in much the same way that the decimalsystem uses 10. Since the typical
computer communicates with us in the decimal system, but works internally in e.g., the binary system,
conversion procedures must be executed by the computer, andthese conversions involve hopefully only
small roundoff errors

Computers are also not able to operate using real numbers expressed with more than a fixed number
of digits, and the set of values possible is only a subset of the mathematical integers or real numbers. The
so-called word length we reserve for a given number places a restriction on the precision with which a
given number is represented. This means in turn, that for example floating numbers are always rounded
to a machine dependent precision, typically with 6-15 leading digits to the right of the decimal point.
Furthermore, each such set of values has a processor-dependent smallest negative and a largest positive
value.

Why do we at all care about rounding and machine precision? The best way is to consider a simple
example first. In the following example we assume that we can represent a floating number with a
precision of 5 digits only to the right of the decimal point. This is nothing but a mere choice of ours, but
mimicks the way numbers are represented in the machine.

Suppose we wish to evaluate the function

f(x) =
1− cos(x)
sin(x)

,

for small values ofx. If we multiply the denominator and numerator with1 + cos(x) we obtain the
equivalent expression

f(x) =
sin(x)

1 + cos(x)
.

If we now choosex = 0.007 (in radians) our choice of precision results in

sin(0.007) ≈ 0.69999 × 10−2,

and
cos(0.007) ≈ 0.99998.

The first expression forf(x) results in

f(x) =
1− 0.99998

0.69999 × 10−2
=

0.2× 10−4

0.69999 × 10−2
= 0.28572 × 10−2,

while the second expression results in

f(x) =
0.69999 × 10−2

1 + 0.99998
=

0.69999 × 10−2

1.99998
= 0.35000 × 10−2,

20

2.4 – Real numbers and numerical precision

which is also the exact result. In the first expression, due toour choice of precision, we have only one
relevant digit in the numerator, after the subtraction. This leads to a loss of precision and a wrong result
due to a cancellation of two nearly equal numbers. If we had chosen a precision of six leading digits,
both expressions yield the same answer. If we were to evaluate x ∼ π, then the second expression for
f(x) can lead to potential losses of precision due to cancellations of nearly equal numbers.

This simple example demonstrates the loss of numerical precision due to roundoff errors, where the
number of leading digits is lost in a subtraction of two near equal numbers. The lesson to be drawn is
that we cannot blindly compute a function. We will always need to carefully analyze our algorithm in the
search for potential pitfalls. There is no magic recipe however, the only guideline is an understanding of
the fact that a machine cannot represent correctlyall numbers.

2.4.1 Representation of real numbers

Real numbers are stored with a decimal precision (or mantissa) and the decimal exponent range. The
mantissa contains the significant figures of the number (and thereby the precision of the number). A
number like(9.90625)10 in the decimal representation is given in a binary representation by

(1001.11101)2 = 1×23 +0×22 +0×21 +1×20 +1×2−1 +1×2−2 +1×2−3 +0×2−4 +1×2−5,

and it has an exact machine number representation since we need a finite number of bits to represent this
number. This representation is however not very practical.Rather, we prefer to use a scientific notation.
In the decimal system we would write a number like9.90625 in what is called the normalized scientific
notation. This means simply that the decimal point is shifted and appropriate powers of 10 are supplied.
Our number could then be written as

9.90625 = 0.990625 × 101,

and a real non-zero number could be generalized as

x = ±r × 10n,

with a r a number in the range1/10 ≤ r < 1. In a similar way we can represent a binary number in
scientific notation as

x = ±q × 2m,

with a q a number in the range1/2 ≤ q < 1. This means that the mantissa of a binary number would be
represented by the general formula

(0.a−1a−2 . . . a−n)2 = a−1 × 2−1 + a−2 × 2−2 + · · ·+ a−n × 2−n.

In a typical computer, floating-point numbers are represented in the way described above, but with certain
restrictions onq andm imposed by the available word length. In the machine, our numberx is represented
as

x = (−1)s ×mantissa× 2exponent,

wheres is the sign bit, and the exponent gives the available range. With a single-precision word, 32 bits,
8 bits would typically be reserved for the exponent, 1 bit forthe sign and 23 for the mantissa. This means
that if we define a variable as

Fortran: REAL (4) :: size_of_fossile
C++: float size_of_fossile;

21

Introduction to C++ and Fortran

we are reserving 4 bytes in memory, with 8 bits for the exponent, 1 for the sign and and 23 bits for the
mantissa, implying a numerical precision to the sixth or seventh digit, since the least significant digit is
given by1/223 ≈ 10−7. The range of the exponent goes from2−128 = 2.9×10−39 to 2127 = 3.4×1038,
where 128 stems from the fact that 8 bits are reserved for the exponent.

A modification of the scientific notation for binary numbers is to require that the leading binary digit
1 appears to the left of the binary point. In this case the representation of the mantissaq would be(1.f)2
and1 ≤ q < 2. This form is rather useful when storing binary numbers in a computer word, since we can
always assume that the leading bit 1 is there. One bit of spacecan then be saved meaning that a 23 bits
mantissa has actually 24 bits. This means explicitely that abinary number with 23 bits for the mantissa
reads

(1.a−1a−2 . . . a−23)2 = 1× 20 + a−1 × 2−1 + a−2 × 2−2 + · · · + a−n × 2−23.

As an example, consider the 32 bits binary number

(10111110111101000000000000000000)2 ,

where the first bit is reserved for the sign, 1 in this case yielding a negative sign. The exponentm is
given by the next 8 binary numbers01111101 resulting in 125 in the decimal system. However, since the
exponent has eight bits, this means it has28−1 = 255 possible numbers in the interval−128 ≤ m ≤ 127,
our final exponent is125 − 127 = −2 resulting in2−2. Inserting the sign and the mantissa yields the
final number in the decimal representation as

−2−2
(
1× 20 + 1× 2−1 + 1× 2−2 + 1× 2−3 + 0× 2−4 + 1× 2−5

)
= (−0.4765625)10 .

In this case we have an exact machine representation with 32 bits (actually, we need less than 23 bits for
the mantissa).

If our numberx can be exactly represented in the machine, we callx a machine number. Unfortu-
nately, most numbers cannot and are thereby only approximated in the machine. When such a number
occurs as the result of reading some input data or of a computation, an inevitable error will arise in
representing it as accurately as possible by a machine number.

A floating number x, labelledfl(x) will therefore always be represented as

fl(x) = x(1± ǫx), (2.1)

with x the exact number and the error|ǫx| ≤ |ǫM |, whereǫM is the precision assigned. A number like
1/10 has no exact binary representation with single or double precision. Since the mantissa

1. (a−1a−2 . . . a−n)2

is always truncated at some stagen due to its limited number of bits, there is only a limited number of
real binary numbers. The spacing between every real binary number is given by the chosen machine
precision. For a 32 bit words this number is approximatelyǫM ∼ 10−7 and for double precision (64 bits)
we haveǫM ∼ 10−16, or in terms of a binary base as2−23 and2−52 for single and double precision,
respectively.

2.4.2 Machine numbers

To understand that a given floating point number can be written as in Eq. (2.1), we assume for the sake
of simplicity that we work with real numbers with words of length 32 bits, or four bytes. Then a given
numberx in the binary representation can be represented as

x = (1.a−1a−2 . . . a−23a−24a−25 . . .)2 × 2n,

22

2.4 – Real numbers and numerical precision

or in a more compact form
x = r × 2n,

with 1 ≤ r < 2 and−126 ≤ n ≤ 127 since our exponent is defined by eight bits.
In most cases there will not be an exact machine representation of the numberx. Our number will be

placed between two exact 32 bits machine numbersx− andx+. Following the discussion of Kincaid and
Cheney [24] these numbers are given by

x− = (1.a−1a−2 . . . a−23)2 × 2n,

and
x+ =

(
(1.a−1a−2 . . . a−23))2 + 2−23

)
× 2n.

If we assume that our numberx is closer tox− we have that the absolute error is constrained by the
relation

|x− x−| ≤
1

2
|x+ − x−| =

1

2
× 2n−23 = 2n−24.

A similar expression can be obtained ifx is closer tox+. The absolute error conveys one type of informa-
tion. However, we may have cases where two equal absolute errors arise from rather different numbers.
Consider for example the decimal numbersa = 2 anda = 2.001. The absolute error between these two
numbers is0.001. In a similar way, the two decimal numbersb = 2000 andb = 2000.001 give exactly
the same absolute error. We note here thatb = 2000.001 has more leading digits thanb.

If we compare the relative errors

|a− a|
|a| = 1.0× 10−3,

|b− b|
|b| = 1.0× 10−6,

we see that the relative error inb is much smaller than the relative error ina. We will see below that the
relative error is intimately connected with the number of leading digits in the way we approximate a real
number. The relative error is therefore the quantity of interest in scientific work. Information about the
absolute error is normally of little use in the absence of themagnitude of the quantity being measured.

We define then the relative error forx as

|x− x−|
|x| ≤ 2n−24

r × 2n
=

1

q
× 2−24 ≤ 2−24.

Instead of usingx− andx+ as the machine numbers closest tox, we introduce the relative error

|x− x|
|x| ≤ 2n−24,

with x being the machine number closest tox. Defining

ǫx =
x− x
x

,

we can write the previous inequality
fl(x) = x(1 + ǫx)

where|ǫx| ≤ ǫM = 2−24 for variables of length 32 bits. The notationfl(x) stands for the machine ap-
proximation of the numberx. The numberǫM is given by the specified machine precision, approximately
10−7 for single and10−16 for double precision, respectively.

23

Introduction to C++ and Fortran

There are several mathematical operations where an eventual loss of precision may appear. A subrac-
tion, especially important in the definition of numerical derivatives discussed in chapter 3 is one important
operation. In the computation of derivatives we end up subtracting two nearly equal quantities. In case
of such a subtractiona = b− c, we have

fl(a) = fl(b)− fl(c) = a(1 + ǫa),

or
fl(a) = b(1 + ǫb)− c(1 + ǫc),

meaning that

fl(a)/a = 1 + ǫb
b

a
− ǫc

c

a
,

and if b ≈ c we see that there is a potential for an increased error in the machine representation of
fl(a). This is because we are subtracting two numbers of equal sizeand what remains is only the least
significant part of these numbers. This part is prone to roundoff errors and ifa is small we see that (with
b ≈ c)

ǫa ≈
b

a
(ǫb − ǫc),

can become very large. The latter equation represents the relative error of this calculation. To see this,
we define first the absolute error as

|fl(a)− a|,
whereas the relative error is

|fl(a)− a|
a

≤ ǫa.
The above subraction is thus

|fl(a)− a|
a

=
|fl(b)− f(c)− (b− c)|

a
,

yielding
|fl(a)− a|

a
=
|bǫb − cǫc|

a
.

An interesting question is then how many significant binary bits are lost in a subtractiona = b− c when
we haveb ≈ c. The loss of precision theorem for a subtractiona = b − c states that [24]:if b andc are
positive normalized floating-point binary machine numberswith b > c and

2−r ≤ 1− c

b
≤ 2−s, (2.2)

then at mostr and at leasts significant binary bits are lost in the subtractionb − c. For a proof of this
statement, see for example Ref. [24].

But even additions can be troublesome, in particular if the numbers are very different in magnitude.
Consider for example the seemingly trivial addition1 + 10−8 with 32 bits used to represent the various
variables. In this case, the information containing in10−8 is simply lost in the addition. When we
perform the addition, the computer equates first the exponents of the two numbers to be added. For10−8

this has however catastrophic consequences since in order to obtain an exponent equal to100, bits in the
mantissa are shifted to the right. At the end, all bits in the mantissa are zeros.

This means in turn that for calculations involving real numbers (if we omit the discussion on overflow
and underflow) we need to carefully understand the behavior of our algorithm, and test all possible cases
where round-off errors and loss of precision can arise. Other cases which may cause serious problems
are singularities of the type0/0 which may arise from functions likesin(x)/x asx→ 0. Such problems
may also need the restructuring of the algorithm.

24

2.5 – Programming examples on loss of precision and round-off errors

2.5 Programming examples on loss of precision and round-offerrors

2.5.1 Algorithms fore−x

In order to illustrate the above problems, we discuss here some famous and perhaps less famous problems,
including a discussion on specific programming features as well.

We start by considering three possible algorithms for computing e−x:

1. by simply coding

e−x =
∞∑

n=0

(−1)n
xn

n!

2. or to employ a recursion relation for

e−x =

∞∑

n=0

sn =

∞∑

n=0

(−1)n
xn

n!

using

sn = −sn−1
x

n
,

3. or to first calculate

ex =

∞∑

n=0

sn

and thereafter taking the inverse

e−x =
1

ex

Below we have included a small program which calculates

e−x =

∞∑

n=0

(−1)n
xn

n!
,

for x-values ranging from0 to 100 in steps of 10. When doing the summation, we can always define a
desired precision, given below by the fixed value for the variable TRUNCATION= 1.0E−10, so that for
a certain value ofx > 0, there is always a value ofn = N for which the loss of precision in terminating
the series atn = N is always smaller than the next term in the seriesxN

N ! . The latter is implemented
through the while{. . . } statement.http://www.fys.uio.no/
ompphys/
p/programs/FYS3150/
hapter02/
pp/program4.
pp
/ / Program t o c a l c u l a t e f u n c t i o n exp(−x)
/ / u s i n g s t r a i g h t f o r w a r d summation w i th d i f f e r i n g p r e c i s io n
us ing namespace s t d ;
inc lude < ios t ream >
/ / t y p e f l o a t : 32 b i t s p r e c i s i o n
/ / t y p e doub le : 64 b i t s p r e c i s i o n
d e f i n e TYPE double
d e f i n e PHASE(a) (1− 2 ∗ (abs (a) % 2))
d e f i n e TRUNCATION 1 .0E−10
/ / f u n c t i o n d e c l a r a t i o n

25

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/cpp/program4.cpp

Introduction to C++ and Fortran

TYPE f a c t o r i a l (i n t) ;

i n t main ()
{

i n t n ;
TYPE x , term , sum ;
f o r (x = 0 . 0 ; x < 1 0 0 . 0 ; x += 1 0 . 0) {

sum = 0 . 0 ; / / i n i t i a l i z a t i o n
n = 0 ;
term = 1 ;
whi le (f a b s (term) > TRUNCATION) {

term = PHASE(n) ∗ (TYPE) pow ((TYPE) x , (TYPE) n) / f a c t o r i a l (n) ;
sum += term ;
n ++;

} / / end o f w h i l e () loop
cou t << ‘ ‘ x ='' << x << ‘ ‘ exp = ‘ ‘ << exp(−x) << ‘ ‘ s e r i e s = ‘ ‘ <<

sum ;
cou t << ‘ ‘ number o f te rms =" << n << endl;} // end of for() loopreturn 0;} // End: fun
tion main()// The fun
tion fa
torial()//
al
ulates and returns n!TYPE fa
torial(int n){ int loop;TYPE fa
;for(loop = 1, fa
 = 1.0; loop <= n; loop++) {fa
 *= loop;}return fa
;} // End: fun
tion fa
torial()

There are several features to be noted3. First, for low values ofx, the agreement is good, however for
largerx values, we see a significant loss of precision. Secondly, forx = 70 we have an overflow problem,
represented (from this specific compiler) by NaN (not a number). The latter is easy to understand, since
the calculation of a factorial of the size171! is beyond the limit set for the double precision variable
factorial. The message NaN appears since the computer sets the factorial of171 equal to zero and we end
up having a division by zero in our expression fore−x.

The overflow problem can be dealt with via a recurrence formula4 for the terms in the sum, so that
we avoid calculating factorials. A simple recurrence formula for our equation

exp (−x) =

∞∑

n=0

sn =

∞∑

n=0

(−1)n
xn

n!
,

3Note that different compilers may give different messages and deal with overflow problems in different ways.
4Recurrence formulae, in various disguises, either as ways to represent series or continued fractions, are among the most

commonly used forms for function approximation. Examples are Bessel functions, Hermite and Laguerre polynomials, dis-
cussed for example in chapter 7.

26

2.5 – Programming examples on loss of precision and round-off errors

x exp (−x) Series Number of terms in series
0.0 0.100000E+01 0.100000E+01 1

10.0 0.453999E-04 0.453999E-04 44
20.0 0.206115E-08 0.487460E-08 72
30.0 0.935762E-13 -0.342134E-04 100
40.0 0.424835E-17 -0.221033E+01 127
50.0 0.192875E-21 -0.833851E+05 155
60.0 0.875651E-26 -0.850381E+09 171
70.0 0.397545E-30 NaN 171
80.0 0.180485E-34 NaN 171
90.0 0.819401E-39 NaN 171

100.0 0.372008E-43 NaN 171

Table 2.3: Result from the brute force algorithm forexp (−x).

is to note that
sn = −sn−1

x

n
,

so that instead of computing factorials, we need only to compute products. This is exemplified through
the next program.http://www.fys.uio.no/
ompphys/
p/programs/FYS3150/
hapter02/
pp/program5.
pp
/ / program t o compute exp(−x) w i t h o u t f a c t o r i a l s
us ing namespace s t d ;
inc lude < ios t ream >
d e f i n e TRUNCATION 1 .0E−10

i n t main ()
{

i n t loop , n ;
double x , term , sum ;

f o r (loop = 0 ; loop <= 100 ; loop += 10) {
x = (double) loop ; / / i n i t i a l i z a t i o n
sum = 1 . 0 ;
term = 1 ;
n = 1 ;
whi le (f a b s (term) > TRUNCATION) {

term ∗= −x / ((double) n) ;
sum += term ;
n ++;

} / / end w h i l e loop
cou t << ‘ ‘ x ='' << x << ‘ ‘ exp = ‘ ‘ << exp(−x) << ‘ ‘ s e r i e s = ‘ ‘ << sum ;
cou t << ‘ ‘ number o f te rms =" << n << endl;} // end of for loop} // End: fun
tion main()

In this case, we do not get the overflow problem, as can be seen from the large number of terms. Our

27

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/cpp/program5.cpp

Introduction to C++ and Fortran

x exp (−x) Series Number of terms in series
0.000000 0.10000000E+01 0.10000000E+01 1

10.000000 0.45399900E-04 0.45399900E-04 44
20.000000 0.20611536E-08 0.56385075E-08 72
30.000000 0.93576230E-13 -0.30668111E-04 100
40.000000 0.42483543E-17 -0.31657319E+01 127
50.000000 0.19287498E-21 0.11072933E+05 155
60.000000 0.87565108E-26 -0.33516811E+09 182
70.000000 0.39754497E-30 -0.32979605E+14 209
80.000000 0.18048514E-34 0.91805682E+17 237
90.000000 0.81940126E-39 -0.50516254E+22 264

100.000000 0.37200760E-43 -0.29137556E+26 291

Table 2.4: Result from the improved algorithm forexp (−x).

results do however not make much sense for larger values ofx. Decreasing the truncation test will not
help! (try it). This is a much more serious problem.

In order better to understand this problem, let us consider the case ofx = 20, which already differs
largely from the exact result. Writing out each term in the summation, we obtain the largest term in the
sum appears atn = 19, with a value that equals−43099804. However, forn = 20 we have almost the
same value, but with an interchanged sign. It means that we have an error relative to the largest term
in the summation of the order of43099804 × 10−10 ≈ 4 × 10−2. This is much larger than the exact
value of0.21 × 10−8. The large contributions which may appear at a given order inthe sum, lead to
strong roundoff errors, which in turn is reflected in the lossof precision. We can rephrase the above in
the following way: Sinceexp (−20) is a very small number and each term in the series can be rather
large (of the order of108, it is clear that other terms as large as108, but negative, must cancel the figures
in front of the decimal point and some behind as well. Since a computer can only hold a fixed number
of significant figures, all those in front of the decimal pointare not only useless, they are crowding out
needed figures at the right end of the number. Unless we are very careful we will find ourselves adding
up series that finally consists entirely of roundoff errors!An analysis of the contribution to the sum from
various terms shows that the relative error made can be huge.This results in an unstable computation,
since small errors made at one stage are magnified in subsequent stages.

To this specific case there is a simple cure. Noting thatexp (x) is the reciprocal ofexp (−x), we may
use the series forexp (x) in dealing with the problem of alternating signs, and simplytake the inverse.
One has however to beware of the fact thatexp (x) may quickly exceed the range of a double variable.

2.5.2 Fortran codes

The Fortran programs are rather similar in structure to the C++ program.
In Fortran Real numbers are written as 2.0 rather than 2 and declared as REAL (KIND=8) or REAL

(KIND=4) for double or single precision, respectively. In general we discorauge the use of single pre-
cision in scientific computing, the achieved precision is ingeneral not good enough. Fortran uses a do
construct to have the computer execute the same statements more than once. Note also that Fortran does
not allow floating numbers as loop variables. In the example below we use both a do construct for the
loop overx and aDO WHILE construction for the truncation test, as in the C++ program.One could

28

2.5 – Programming examples on loss of precision and round-off errors

altrenatively use theEXIT statement inside a do loop. Fortran has also if statements asin C++. The
IF construct allows the execution of a sequence of statements (a block) to depend on a condition. The if
construct is a compound statement and begins with IF ... THENand ends with ENDIF. Examples of more
general IF constructs using ELSE and ELSEIF statements are given in other program examples. Another
feature to observe is the CYCLE command, which allows a loop variable to start at a new value.

Subprograms are called from the main program or other subprograms. In the C++ codes we declared
a functionTYPE factorial (int) ; . Subprograms are always called functions in C++. If we declare it with
void is has the same meaning as subroutines in Fortran,. Subroutines are used if we have more than one
return value. In the example below we compute the factorialsusing the function factorial . This function
receives a dummy argumentn. INTENT(IN) means that the dummy argument cannot be changedwithin
the subprogram. INTENT(OUT) means that the dummy argument cannot be used within the subprogram
until it is given a value with the intent of passing a value back to the calling program. The statement
INTENT(INOUT) means that the dummy argument has an initial value which is changed and passed
back to the calling program. We recommend that you use these options when calling subprograms. This
allows better control when transfering variables from one function to another. In chapter 3 we discuss
call by value and by reference in C++. Call by value does not allow a called function to change the value
of a given variable in the calling function. This is important in order to avoid unintentional changes of
variables when transfering data from one function to another. The INTENT construct in Fortran allows
such a control. Furthermore, it increases the readability of the program.http://www.fys.uio.no/
ompphys/
p/programs/FYS3150/
hapter02/f90/program4.f90
! In t h i s module you can d e f i n e f o r example g l o b a l c o n s t a n t s
MODULE c o n s t a n t s

! d e f i n i t i o n o f v a r i a b l e s f o r doub le p r e c i s i o n s and complexv a r i a b l e s
INTEGER , PARAMETER : : dp = KIND (1 . 0D0)
INTEGER , PARAMETER : : dpc = KIND ((1 . 0 D0 , 1 . 0 D0))
! G loba l T r u n c a t i o n parameter
REAL (DP) , PARAMETER , PUBLIC : : t r u n c a t i o n =1 .0E−10

END MODULE c o n s t a n t s

! Here you can i n c l u d e s p e c i f i c f u n c t i o n s which can be used by
! many s u b r o u t i n e s or f u n c t i o n s

MODULE f u n c t i o n s

CONTAINS
REAL (DP) FUNCTION f a c t o r i a l (n)

USE CONSTANTS
INTEGER , INTENT (IN) : : n
INTEGER : : loop

f a c t o r i a l = 1 .0 _dp
IF (n > 1) THEN

DO l oop = 2 , n
f a c t o r i a l = f a c t o r i a l∗ l oop

ENDDO
ENDIF

END FUNCTION f a c t o r i a l

END MODULE f u n c t i o n s

29

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/f90/program4.f90

Introduction to C++ and Fortran

! Main program s t a r t s here
PROGRAM exp_prog

USE c o n s t a n t s
USE f u n c t i o n s
IMPLICIT NONE
REAL (DP) : : x , term , f i n a l _ s u m
INTEGER : : n , l oop_ove r_x

! loop over x−v a l u e s
DO l oop_ove r_x =0 , 100 , 10

x= loop_ove r_x
! i n i t i a l i z e t h e EXP sum
f i n a l _ s u m= 0 .0 _dp ; term = 1 .0 _dp ; n = 0
DO WHILE (ABS(term) > t r u n c a t i o n)

term = ((−1.0 _dp)∗∗n) ∗ (x∗∗n) / f a c t o r i a l (n)
f i n a l _ s u m= f i n a l _ s u m+term
n=n+1

ENDDO
! w r i t e t h e argument x , t h e e x a c t va lue , t h e computed v a l u e and n
WRITE (∗ ,∗) x ,EXP(−x) , f i na l_sum , n

ENDDO

END PROGRAM exp_prog

The MODULE declaration in Fortran allows one to place functions like the one which calculates the
factorials. Note also the usage of the moduleconstantswhere we define double and complex variables.
If one wishes to switch to another precision, one just needs to change the declaration in one part of the
program only. This hinders possible errors which arise if one has to change variable declarations in every
function and subroutine. In addition we have defined a globalvariabletruncation which is accessible
to all functions which have theUSEconstantsdeclaration. These declarations have to come before any
variable declarations andIMPLICIT NONE statement.http://www.fys.uio.no/
ompphys/
p/programs/FYS3150/
hapter02/f90/program5.f90
! In t h i s module you can d e f i n e f o r example g l o b a l c o n s t a n t s
MODULE c o n s t a n t s

! d e f i n i t i o n o f v a r i a b l e s f o r doub le p r e c i s i o n s and complexv a r i a b l e s
INTEGER , PARAMETER : : dp = KIND (1 . 0D0)
INTEGER , PARAMETER : : dpc = KIND ((1 . 0 D0 , 1 . 0 D0))
! G loba l T r u n c a t i o n parameter
REAL (DP) , PARAMETER , PUBLIC : : t r u n c a t i o n =1 .0E−10

END MODULE c o n s t a n t s

PROGRAM improved_exp
USE c o n s t a n t s
IMPLICIT NONE
REAL (dp) : : x , term , f i n a l _ s u m
INTEGER : : n , l oop_ove r_x

! loop over x−va lues , no f l o a t s as loop v a r i a b l e s
DO l oop_ove r_x =0 , 100 , 10

x= loop_ove r_x
! i n i t i a l i z e t h e EXP sum

30

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/f90/program5.f90

2.5 – Programming examples on loss of precision and round-off errors

f i n a l _ s u m =1.0 ; term =1.0 ; n = 1
DO WHILE (ABS(term) > t r u n c a t i o n)

term = −term∗x /FLOAT(n)
f i n a l _ s u m= f i n a l _ s u m+term
n=n+1

ENDDO
! w r i t e t h e argument x , t h e e x a c t va lue , t h e computed v a l u e and n
WRITE (∗ ,∗) x ,EXP(−x) , f i na l_sum , n

ENDDO

END PROGRAM improved_exp

2.5.3 Further examples

Summing1/n

Let us look at another roundoff example which may surprise you more. Consider the series

s1 =
N∑

n=1

1

n
,

which is finite whenN is finite. Then consider the alternative way of writing this sum

s2 =
1∑

n=N

1

n
,

which when summed analytically should gives2 = s1. Because of roundoff errors, numerically we will
gets2 6= s1! Computing these sums with single precision forN = 1.000.000 results ins1 = 14.35736
while s2 = 14.39265! Note that these numbers are machine and compiler dependent. With double pre-
cision, the results agree exactly, however, for larger values ofN , differences may appear even for double
precision. If we chooseN = 108 and employ double precision, we gets1 = 18.9978964829915355
while s2 = 18.9978964794618506, and one notes a difference even with double precision.

This example demonstrates two important topics. First we notice that the chosen precision is im-
portant, and we will always recommend that you employ doubleprecision in all calculations with real
numbers. Secondly, the choice of an appropriate algorithm,as also seen fore−x, can be of paramount
importance for the outcome.

The standard algorithm for the standard deviation

Yet another example is the calculation of the standard deviation σ whenσ is small compared to the
average valuex. Below we illustrate how one of the most frequently used algorithms can go wrong when
single precision is employed.

However, before we proceed, let us defineσ andx. Suppose we have a set ofN data points, repre-
sented by the one-dimensional arrayx(i), for i = 1, N . The average value is then

x =

∑N
i=1 x(i)

N
,

while

σ =

√∑
i x(i)

2 − x∑i x(i)

N − 1
.

31

Introduction to C++ and Fortran

Let us now assume that
x(i) = i+ 105,

and thatN = 127, just as a mere example which illustrates the kind of problems which can arise when
the standard deviation is small compared with the mean valuex.

The standard algorithm computes the two contributions toσ separately, that is we sum
∑

i x(i)
2 and

subtract thereafterx
∑

i x(i). Since these two numbers can become nearly equal and large, we may end
up in a situation with potential loss of precision as an outcome.

The second algorithm on the other hand computes firstx(i) − x and then squares it when summing
up. With this recipe we may avoid having nearly equal numberswhich cancel.

Using single precision results in a standard deviation ofσ = 40.05720139 for the first and most used
algorithm, while the exact answer isσ = 36.80579758, a number which also results from the above
second algorithm. With double precision, the two algorithms result in the same answer.

The reason for such a difference resides in the fact that the first algorithm includes the subtraction of
two large numbers which are squared. Since the average valuefor this example isx = 100063.00, it is
easy to see that computing

∑
i x(i)

2 − x
∑

i x(i) can give rise to very large numbers with possible loss
of precision when we perform the subtraction. To see this, consider the case wherei = 64. Then we have

x2
64 − xx64 = 100352,

while the exact answer is
x2

64 − xx64 = 100064!

You can even check this by calculating it by hand.
The second algorithm computes first the difference betweenx(i) and the average value. The differ-

ence gets thereafter squared. For the second algorithm we have for i = 64

x64 − x = 1,

and we have no potential for loss of precision.
The standard text book algorithm is expressed through the following program, where we have also

added the second algorithmhttp://www.fys.uio.no/
ompphys/
p/programs/FYS3150/
hapter02/
pp/program6.
pp
/ / program t o c a l c u l a t e t h e mean and s tanda rd d e v i a t i o n o f
/ / a use r c r e a t e d da ta s e t s t o r e d i n a r ray x []
us ing namespace s t d ;
inc lude < ios t ream >
i n t main ()
{

i n t i ;
f l o a t sum , sumsq2 , xbar , sigma1 , sigma2 ;
/ / a r ray d e c l a r a t i o n w i th f i x e d d imens ion
f l o a t x [1 2 7] ;
/ / i n i t i a l i s e t h e da ta s e t
f o r (i =0 ; i < 127 ; i ++) {

x [i] = i + 1 0 0 0 0 0 . ;
}
/ / The v a r i a b l e sum i s j u s t t h e sum over a l l e l e m e n t s
/ / The v a r i a b l e sumsq2 i s t h e sum over x ^2
sum = 0 . ;

32

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/cpp/program6.cpp

2.5 – Programming examples on loss of precision and round-off errors

sumsq2 = 0 . ;
/ / Now we use t h e t e x t book a l g o r i t h m
f o r (i =0 ; i < 127 ; i ++) {

sum += x [i] ;
sumsq2 += pow ((double) x [i] , 2 .) ;

}
/ / c a l c u l a t e t h e average and sigma
xbar =sum / 1 2 7 . ;
sigma1= s q r t ((sumsq2−sum∗ xbar) / 1 2 6 .) ;
/∗
∗∗ Here comes t h e second a l g o r i t h m where we e v a l u a t e
∗∗ s e p a r a t e l y f i r s t t h e average and t h e r e a f t e r t h e
∗∗ sum which d e f i n e s t h e s tanda rd d e v i a t i o n . The average
∗∗ has a l r e a d y been e v a l u a t e d th rough xbar
∗ /
sumsq2 = 0 . ;
f o r (i =0 ; i < 127 ; i ++) {

sumsq2 += pow((double) (x [i]−xbar) , 2 .) ;
}
sigma2= s q r t (sumsq2 / 1 2 6 .) ;
cou t << "xbar = `` << xbar << ``sigma1 = `` << sigma1 << ``sigma2 = ``<< sigma2;
out << endl;return 0;}// End: fun
tion main()

The corresponding Fortran program is given below.http://www.fys.uio.no/
ompphys/
p/programs/FYS3150/
hapter02/f90/program6.f90
PROGRAM s t a n d a r d _ d e v i a t i o n

IMPLICIT NONE
REAL (KIND = 4) : : sum , sumsq2 , xbar
REAL (KIND = 4) : : sigma1 , sigma2
REAL (KIND = 4) , DIMENSION (1 2 7) : : x
INTEGER : : i

x =0 ;
DO i =1 , 127

x (i) = i + 100000 .
ENDDO
sum = 0 . ; sumsq2 =0.
! s tanda rd d e v i a t i o n c a l c u l a t e d w i th t h e f i r s t a l g o r i t h m
DO i =1 , 127

sum = sum +x (i)

sumsq2 = sumsq2+x (i)∗∗2
ENDDO
! average
xbar=sum / 1 2 7 .
sigma1=SQRT ((sumsq2−sum∗ xbar) / 1 2 6 .)
! second a l g o r i t h m t o e v a l u a t e t h e s tanda rd d e v i a t i o n
sumsq2 =0.
DO i =1 , 127

33

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/f90/program6.f90

Introduction to C++ and Fortran

arithmetic operators relation operators
operator effect operator effect
− Subtraction > Greater than
+ Addition >= Greater or equal
∗ Multiplication < Less than
/ Division <= Less or equal

% or MOD Modulus division == Equal
−− Decrement ! = Not equal
++ Increment

Table 2.5: Relational and arithmetic operators. The relation operators act between two operands. Note
that the increment and decrement operators++ and−− are not available in Fortran .

Logical operators
C++ Effect Fortran

0 False value .FALSE.
1 True value .TRUE.
!x Logical negation .NOT.x

x&& y Logical AND x.AND.y
x||y Logical inclusive OR x.OR.y

Table 2.6: List of logical operators in C++ and Fortran .

sumsq2=sumsq2 +(x (i)−xbar)∗∗2
ENDDO
sigma2=SQRT(sumsq2 / 1 2 6 .)
WRITE (∗ ,∗) xbar , sigma1 , sigma2

END PROGRAM s t a n d a r d _ d e v i a t i o n

2.6 Additional features of C++ and Fortran

2.6.1 Operators in C++

In the previous program examples we have seen several types of operators. In the tables below we
summarize the most important ones. Note that the modulus in C++ is represented by the operator %
whereas in Fortran we employ the intrinsic functionMOD. Note also that the increment operator++
and the decrement operator−− is not available in Fortran . In C++ these operators have the following

meaning

++x; or x++; has the same meaning asx = x + 1;
−−x; or x−−; has the same meaning asx = x − 1;

Table 2.5 lists several relational and arithmetic operators. Logical operators in C++ and Fortran are listed
in 2.6. while Table 2.7 shows bitwise operations.

C++ offers also interesting possibilities for combined operators. These are collected in Table 2.8.

34

2.6 – Additional features of C++ and Fortran

Bitwise operations
C++ Effect Fortran
~i Bitwise complement NOT(j)
i&j Bitwise and IAND(i,j)
i^j Bitwise exclusive or IEOR(i,j)
i | j Bitwise inclusive or IOR(i,j)
i<<j Bitwise shift left ISHFT(i,j)
i>>n Bitwise shift right ISHFT(i,-j)

Table 2.7: List of bitwise operations.

Expression meaning expression meaninga += b; a = a + b; a -= b; a = a - b;a *= b; a = a * b; a /= b; a = a / b;a %= b; a = a % b; a �= b; a = a � b;a �= b; a = a � b; a &= b; a = a & b;a |= b; a = a | b; a ∧= b; a = a ∧ b;
Table 2.8: C++ specific expressions.

Finally, we show some special operators pertinent to C++ only. The first one is the? operator. Its
action can be described through the following exampleA = expression1 ? expression2 : expression3;
Hereexpression1 is computed first. If this is"true" (6= 0), thenexpression2 is computed and assigned
A. If expression1 is "false", thenexpression3 is computed and assigned A.

2.6.2 Pointers and arrays in C++.

In addition to constants and variables C++ contain important types such as pointers and arrays (vectors
and matrices). These are widely used in most C++ program. C++allows also for pointer algebra, a
feature not included in Fortran . Pointers and arrays are important elements in C++. To shed light on
these types, consider the following setupint name defines an integer variable calledname. It is given an address in memory

where we can store an integer number.&name is the address of a specific place in memory where the integername is
stored. Placing the operator & in front of a variable yields its address in
memory.int *pointer defines and an integer pointer and reserves a location in memory for this
specific variable The content of this location is viewed as the address of
another place in memory where we have stored an integer.

Note that in C++ it is common to writeint∗ pointer while in C one usually writesint ∗pointer. Here are
some examples of legal C++ expressions.

35

Introduction to C++ and Fortranname = 0x56; /* name gets the hexadecimal value hex 56. */pointer = &name; /* pointer points to name. */printf("Address of name = %p",pointer); /* writes out the address of name. */printf("Value of name= %d",*pointer); /* writes out the value of name. */

Here’s a program which illustrates some of these topics.http://www.fys.uio.no/
ompphys/
p/programs/FYS3150/
hapter02/
pp/program7.
pp
1 us ing namespace s t d ;
2 main ()
3 {
4 i n t va r ;
5 i n t ∗ p o i n t e r ;
6
7 p o i n t e r = &va r ;
8 va r = 421 ;
9 p r i n t f ("Address of the integer variable var : %p\n" ,& va r) ;

10 p r i n t f ("Value of var : %d\n" , va r) ;
11 p r i n t f ("Value of the integer pointer variable: %p\n" , p o i n t e r) ;
12 p r i n t f ("Value whi
h pointer is pointing at : %d\n" ,∗ p o i n t e r) ;
13 p r i n t f ("Address of the pointer variable : %p\n" ,& p o i n t e r) ;
14 }

Line Comments

4 • Defines an integer variable var.
5 • Define an integer pointer – reserves space in memory.
7 • The content of the adddress of pointer is the address of var.
8 • The value of var is 421.
9 •Writes the address of var in hexadecimal notation for pointers %p.
10 •Writes the value of var in decimal notation%d.

The ouput of this program, compiled with g++, readsAddress of the integer variable var : 0xbfffeb74Value of var: 421Value of integer pointer variable : 0xbfffeb74The value whi
h pointer is pointing at : 421Address of the pointer variable : 0xbfffeb70
In the next example we consider the link between arrays and pointers.int matr[2℄ defines a matrix with two integer members –matr[0℄ ogmatr[1℄.matr is a pointer tomatr[0℄.(matr + 1) is a pointer tomatr[1℄.http://www.fys.uio.no/
ompphys/
p/programs/FYS3150/
hapter02/
pp/program8.
pp

1 us ing namespace s t d ;
2 # i n c l u d e d < ios t ream >
3 i n t main ()

36

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/cpp/program7.cpp
http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/cpp/program8.cpp

2.6 – Additional features of C++ and Fortran

4 {
5 i n t matr [2] ;
6 i n t ∗ p o i n t e r ;
7 p o i n t e r = &matr [0] ;
8 matr [0] = 321 ;
9 matr [1] = 322 ;

10 p r i n t f ("\nAddress of the matrix element matr[1℄: %p" ,& matr [0]) ;
11 p r i n t f ("\nValue of the matrix element matr[1℄; %d" , matr [0]) ;
12 p r i n t f ("\nAddress of the matrix element matr[2℄: %p" ,& matr [1]) ;
13 p r i n t f ("\nValue of the matrix element matr[2℄: %d\n" , matr [1]) ;
14 p r i n t f ("\nValue of the pointer : %p" , p o i n t e r) ;
15 p r i n t f ("\nValue whi
h pointer points at : %d" ,∗ p o i n t e r) ;
16 p r i n t f ("\nValue whi
h (pointer+1) points at: %d\n" ,∗ (p o i n t e r +1)) ;
17 p r i n t f ("\nAddress of the pointer variable: %p\n" ,& p o i n t e r) ;
18 }

You should especially pay attention to the following

Line

5 • Declaration of an integer array matr with two elements
6 • Declaration of an integer pointer
7 • The pointer is initialized to point at the first element of thearray matr.
8–9 • Values are assigned to the array matr.

The ouput of this example, compiled again with g++, isAddress of the matrix element matr[1℄: 0xbfffef70Value of the matrix element matr[1℄; 321Address of the matrix element matr[2℄: 0xbfffef74Value of the matrix element matr[2℄: 322Value of the pointer: 0xbfffef70The value pointer points at: 321The value that (pointer+1) points at: 322Address of the pointer variable : 0xbfffef6

2.6.3 Macros in C++

In C we can define macros, typically global constants or functions through thedefinestatements shown
in the simple C-example below for

1 . # d e f i n e ONE 1
2 . # d e f i n e TWO ONE + ONE
3 . # d e f i n e THREE ONE + TWO
4 .
5 . main ()
6 . {
7 . p r i n t f ("ONE=%d, TWO=%d, THREE=%d" ,ONE,TWO,THREE) ;
8 . }

In C++ the usage of macros is discouraged and you should rather use the declaration for constant vari-
ables. You would then replace a statement like#define ONE 1with const int ONE = 1;. There is typically
much less use of macros in C++ than in C. C++ allows also the definition of our own types based on other

37

Introduction to C++ and Fortran

existing data types. We can do this using the keyword typedef, whose format is:typedef existing _type
new_type_name ;, where existing_type is a C++ fundamental or compound type and new_type_name is
the name for the new type we are defining. For example:

t ypede f char new_name ;
t ypede f unsigned i n t word ;
t ypede f char ∗ t e s t ;
t ypede f char f i e l d [5 0] ;

In this case we have defined four data types: new_name, word, test and field as char, unsigned int, char*
and char[50] respectively, that we could perfectly use in declarations later as any other valid type

new_name mychar , a n o t h e r c h a r ,∗ p tc1 ;
word myword ;
t e s t p t c2 ;
f i e l d name ;

The use of typedef does not create different types. It only creates synonyms of existing types. That means
that the type of myword can be considered to be either word or unsigned int, since both are in fact the
same type. Using typedef allows to define an alias for a type that is frequently used within a program. It
is also useful to define types when it is possible that we will need to change the type in later versions of
our program, or if a type you want to use has a name that is too long or confusing.

In C we could define macros for functions as well, as seen below.

1 . # d e f i n e MIN(a , b) (((a) < (b)) ? (a) : (b))
2 . # d e f i n e MAX(a , b) (((a) > (b)) ? (a) : (b))
3 . # d e f i n e ABS(a) (((a) < 0) ?−(a) : (a))
4 . # d e f i n e EVEN(a) ((a) %2 == 0 ? 1 : 0)
5 . # d e f i n e TOASCII (a) ((a) & 0 x7 f)

In C++ we would replace such function definition by employingso-calledinline functions. Three of the
above functions could then read

i n l i n e double MIN(double a ,double b) (re turn (((a) <(b)) ? (a) : (b)) ;)
i n l i n e double MAX(double a ,double b) (re turn (((a) >(b)) ? (a) : (b)) ;)
i n l i n e double ABS(double a) (re turn (((a) <0) ? −(a) : (a)) ;)

where we have defined the transferred variables to be of typedouble. The functions also return adouble
type. These functions could easily be generalized through the use of classes and templates, see chapter
4, to return whather types of real, complex or integer variables.

Inline functions are very useful, especially if the overhead for calling a function implies a signifi-
cant fraction of the total function call cost. When such function call overhead is significant, a function
definition can be preceded by the keywordinline . When this function is called, we expect the compiler
to generate inline code without function call overhead. However, although inline functions eliminate
function call overhead, they can introduce other overheads. When a function is inlined, its code is du-
plicated for each call. Excessive use ofinline may thus generate large programs. Large programs can
cause excessive paging in virtual memory systems. Too many inline functions can also lengthen compile
and link times, on the other hand not inlining small functions like the above that do small computations,
can make programs bigger and slower. However, most modern compilers know better than programmer
which functions to inline or not. When doing this, you shouldalso test various compiler options. With
the compiler option−O3 inlining is done automatically by basically all modern compilers.

38

2.6 – Additional features of C++ and Fortran

A good strategy, recommended in many C++ textbooks, is to write a code without inline functions
first. As we also suggested in the introductory chapter, you should first write a as simple and clear
as possible program, without a strong emphasis on computational speed. Thereafter, when profiling
the program one can spot small functions which are called many times. These functions can then be
candidates for inlining. If the overall time comsumption isreduced due to inlining specific functions, we
can proceed to other sections of the program which could be speeded up.

Another problem with inlined functions is that on some systems debugging an inline function is
difficult because the function does not exist at runtime.

2.6.4 Structures in C++ and TYPE in Fortran

A very important part of a program is the way we organize our data and the flow of data when running
the code. This is often a neglected aspect especially duringthe development of an algorithm. A clear
understanding of how data are represented makes the programmore readable and easier to maintain and
extend upon by other users. Till now we have studied elementary variable declarations through keywords
like int or INTEGER, doubleor REAL(KIND(8) andchar or its Fortran 90 equivalentCHARACTER. These
declarations could also be extended to general multi-dimensional arrays.

However, C++ and Fortran offer other ways as well by which we can organize our data in a more
transparent and reusable way. One of these options is through the struct declaration of C++, or the
correspondingly similarTYPE in Fortran. The latter data type will also be discussed in chapter 4.

The following example illustrates how we could make a general variable which can be reused in
defining other variables as well.

Suppose you would like to make a general program which treatsquantum mechanical problems from
both atomic physics and nuclear physics. In atomic and nuclear physics the single-particle degrees are
represented by quantum numbers such orbital angular momentum, total angular momentum, spin and en-
ergy. An independent particle model is often assumed as the starting point for building up more compli-
cated many-body correlations in systems with many interacting particles. In atomic physics the effective
degrees of freedom are often reduced to electrons interacting with each other, while in nuclear physics
the system is described by neutrons and protons. The structure single_particle_descriptcontains a list
over different quantum numbers through various pointers which are initialized by a calling function.

s t r u c t s i n g l e _ p a r t i c l e _ d e s c r i p t {
i n t t o t a l _ o r b i t s ;
i n t ∗ n ;
i n t ∗ l o r b ;
i n t ∗ m_l ;
i n t ∗ j ang ;
i n t ∗ s p i n ;
double∗ energy ;
char∗ o r b i t _ s t a t u s

} ;

To describe an atom like Neon we would need three single-particle orbits to describe the ground state
wave function if we use a single-particle picture, i.e., the1s, 2s and2p single-particle orbits. These
orbits have a degeneray of2(2l + 1), where the first number stems from the possible spin projections
and the second from the possible projections of the orbital momentum. In total there are 10 possible
single-particle orbits when we account for spin and orbitalmomentum projections. In this case we would
thus need to allocate memory for arrays containing 10 elements.

The above structure is written in a generic way and it can be used to define other variables as well.

39

Introduction to C++ and Fortran

For electrons we could writestruct single_particle_descript electrons; and is a new variable with the
nameele
trons containing all the elements ofsingle_parti
le_des
ript.

The following program segment illustrates how we access these elements To access these elements
we could e.g., read from a given device the various quantum numbers:

f o r (i n t i = 0 ; i < e l e c t r o n s . t o t a l _ o r b i t s ; i ++) {
cou t << ‘ ‘ Read i n t h e quantum numbersf o r e l e c t r o n i : ‘ ‘ << i <<

end l ;
c i n >> e l e c t r o n s . n [i] ;
c i n > e l e c t r o n s . l o r b [i] ;
c i n >> e l e c t r o n s . m_l [i] ;
c i n >> e l e c t r o n s . j ang [i] ;
c i n >> e l e c t r o n s . s p i n [i] ;

}

The structuresingle_parti
le_des
ript can also be used for defining quantum numbers of other
particles as well, such as neutrons and protons throughthe new variablesstruct single_particle_descript
protonsandstruct single_particle_descript neutrons

The corresponding declaration in Fortran is given by theTYPE construct, seen in the following exam-
ple.

TYPE , PUBLIC : : s i n g l e _ p a r t i c l e _ d e s c r i p t
INTEGER : : t o t a l _ o r b i t s
INTEGER , DIMENSION (:) , POINTER : : n , l o rb , jang , sp in , m_l
CHARACTER (LEN=10) , DIMENSION (:) , POINTER : : o r b i t _ s t a t u s
REAL (8) , DIMENSION (:) , POINTER : : energy

END TYPE s i n g l e _ p a r t i c l e _ d e s c r i p t

This structure can again be used to define variables likeele
trons, protons andneutrons through the
statementTYPE (single_particle_descript) :: electrons , protons , neutrons. More detailed examples on
the use of these variable declarations, classes and templates will be given in subsequent chapters and in
the appendix A.

2.7 Exercises and projects

Exercise 2.1: Converting from decimal to binary representation

Set up an algorithm which converts a floating number given in the decimal representation to the binary
representation. You may or may not use a scientific representation. Write thereafter a program which
implements this algorithm.

Exercise 2.2: Summing series

a) Make a program which sums

sup =
N∑

n=1

1

n
,

and

sdown =

n=1∑

n=N

1

n
.

40

2.7 – Exercises and projects

The program should readN from screen and write the final output to screen.

b) Comparesup og sdown for differentN using both single and double precision forN up toN =
1010. Which of the above formula is the most realiable one? Try to give an explanation of possible
differences. One possibility for guiding the eye is for example to make a log-log plot of the relative
difference as a function ofN in steps of10n with n = 1, 2, . . . , 10. This means you need to
computelog10(|(sup(N)− sdown(N))/sdown(N)|) as function oflog10(N).

Exercise 2.3: Finding alternative expressions

Write a program which computes
f(x) = x− sinx,

for a wide range of values ofx. Make a careful analysis of this function for values ofx near zero. For
x ≈ 0 you may consider to write out the series expansions ofsinx

sinx = x− x3

3!
+
x5

5!
− x7

7!
+ . . .

Use the loss of precision theorem of Eq. (2.2) to show that theloss of bits can be limited to at most one
bit by restrictingx so that

1− sinx

x
≥ 1

2
.

One finds then thatx must at least be 1.9, implying that for|x| < 1.9 we need to carefully consider the
series expansion. For|x| ≥ 1.9 we can use directly the expressionx− sinx.

For |x| < 1.9 you should device a recurrence relation for the terms in the series expansion in order to
avoid having to compute very large factorials.

Exercise 2.4: Computinge−x

Assume that you do not have access to the intrinsic function for ex. Write your own algorithm fore−x

for all possible values ofx, with special care on how to avoid the loss of precision problems discussed in
the text. Write thereafter a program which implements this algorithm.

Exercise 2.5: Computing the quadratic equation

The classical quadratic equationax2 + bx+ c = with solution

x =
(
−b±

√
b2 − 4ac

)
/2a,

needs particular attention when4ac is small relative tob2. Find an algorithm which yields stable results
for all possible values ofa, b andc. Write thereafter a program and test the results of your computations.

Exercise 2.6: Fortran, C++ and Python functions for machinerounding

Write a Fortran program which reads a real numberx and computes the precision in bits (using the
function DIGIT(x))for single and double precision, the smallest positive number (usingTINY(x)), the
largets positive number (using the functionHUGE(x)) and the number of leading digits (using the function
PRECISION(x)). Try thereafter to find similar functionalities in C++ and Python.

41

Introduction to C++ and Fortran

Exercise 2.7: Nearest machine number

Write an algorithm and program which reads in a real numberx and finds the two nearest machine
numbersx− andx+, the corresponding relative errors and absolute errors.

Exercise 2.8: Recurrence relations

Recurrence relations are extremely useful in representingfunctions, and form expedient ways of rep-
resenting important classes of functions used in the Sciences. We will see two such examples in the
discussion below. One example of recurrence relations appears in studies of Fourier series, which enter
studies of wave mechanics, be it either in classical systemsor quantum mechanical ones. We may need
to calculate in an efficient way sums like

F (x) =
N∑

n=0

ancos(nx), (2.3)

where the coefficientsan are known numbers andx is the argument of the functionF (). If we want to
solve this problem right on, we could write a simple repetitive loop that multiplies each of the cosines
with its respective coefficientan like

f o r (n =0 ; n < N; n++) {
f += an∗ cos (n∗x)

}

Even though this seems rather straightforward, it may actually yield a waste of computer time ifN is
large. The interesting point here is that through the three-term recurrence relation

cos(n− 1)x− 2cos(x)cos(nx) + cos(n + 1)x = 0, (2.4)

we can express the entire finite Fourier series in terms ofcos(x) and two constants. The essential device
is to define a new sequence of coefficientsbn recursively by

bn = (2cos(x))bn−1 − bn+2 + an n = 0, . . . N − 1, N, (2.5)

definingbN+1 = bN+2 + .. · · · = 0 for all n > N , the upper limit. We can then determine all thebn
coefficients froman and one evaluation of2cos(x). If we replacean with bn in the sum forF (x) in
Eq. (2.3) we obtain

F (x) = bN [cos(Nx)− 2cos((N − 1)x)cos(x) + cos((N − 2)x)] +

bN−1 [cos((N − 1)x) − 2cos((N − 2)x)cos(x) + cos((N − 3)x)] + . . .

b2
[
cos(2x)− 2cos2(x) + 1

]
+ b1 [cos(x)− 2cos(x)] + b0. (2.6)

Using Eq. (2.4) we obtain the final result

F (x) = b0 − b1cos(x), (2.7)

and b0 and b1 are determined from Eq. (2.3). The latter relation is after Chensaw. This method of
evaluating finite series of orthogonal functions that are connected by a linear recurrence is a technique
generally available for all standard special functions in mathematical physics, like Legendre polynomials,
Bessel functions etc. They all involve two or three terms in the recurrence relations. The general relation
can then be written as

Fn+1(x) = αn(x)Fn(x) + βn(x)Fn−1(x).

42

2.7 – Exercises and projects

Evaluate the functionF (x) =
∑N

n=0 ancos(nx) in two ways: first by computing the series of
Eq. (reffour-1) and then using the equation given in Eq. (2.5). Assume thatan = (n + 2)/(n + 1),
set e.g.,N = 1000 and try with differentx-values as input.

In project 2.1 we will see another example of recurrence relations used to compute the associated
Legendre functions.

Exercise 2.9: Continued fractions

Often, especially when one encounters singular behaviors,one may need to rewrite the function to be
evaluated in terms of a taylor expansion. Another possibility is to used so-called continued fractions,
which may be viewed as generalizations of a Taylor expansion. When dealing with continued fractions,
one possible approach is that of successive substitutions.Let us illustrate this by a simple example,
namely the solution of a second order equation

x2 − 4x− 1 = 0, (2.8)

which we rewrite as

x =
1

4 + x
,

which in turn could be represented through an iterative substitution process

xn+1 =
1

4 + xn
,

with x0 = 0. This means that we have

x1 =
1

4
,

x2 =
1

4 + 1
4

,

x3 =
1

4 + 1
4+ 1

4

,

and so forth. This is often rewritten in a compact way as

xn = x0 +
a1

x1 + a2

x2+
a3

x3+
a4

x4+...

,

or as

xn = x0 +
a1

x1+

a2

x2+

a3

x3+
. . .

Write a program which implements this continued fraction algorithm and solve iteratively Eq. (2.8).
The exact solution isx = 0.23607 while already after three iterations you should obtainx3 = 0.236111.

Project 2.1: Special functions, spherical harmonics and associated Legendre polynomials

Many physics problems have spherical harmonics as solutions, such as the angular part of the Schrödinger
equation for the hydrogen atom or the angular part of the three-dimensional wave equation or Poisson’s
equation.

43

Introduction to C++ and Fortran

The spherical harmonics for a given orbital momentumL, its projectionM for −L ≤ M ≤ L and
anglesθ ∈ [0, π] andφ ∈ [0, 2π] are given by

YM
L (θ, φ) =

√
(2L+ 1)(L−M)!

4π(L+M)!
PM

L (cos(θ)) exp (iMφ),

The functionsPM
L (cos(θ) are the so-called associated Legendre functions. They are normally determined

via the usage of recurrence relations. Recurrence relations are unfortunately often unstable, but the
following relation is stable (withx = cos(θ))

(L−M)PM
L (x) = x(2L− 1)PM

L−1(x)− (L+M − 1)PM
L−2(x),

and with the analytic (on closed form) expressions

PM
M (x) = (−1)M (2M − 1)!!(1 − x2)M/2,

and
PM

M+1(x) = x(2M + 1)PM
M (x),

we have the starting values and the equations necessary for generating the associated Legendre functions
for a general value ofL.

a) Make first a function which computes the associated Legendre functions for different values ofL
andM . Compare with the closed-form results listed in chapter 7.

b) Make thereafter a program which calculates the real part of the spherical harmonics

c) Make plots for variousL = M as functions ofθ (setφ = 0) and study the behavior asL is
increased. Try to explain why the functions become more and more narrow asL increases. In
order to make these plots you can use for example gnuplot, as discussed in appendix A.4.

d) Study also the behavior of the spherical harmonics whenθ is close to 0 and when it approaches
180 degrees. Try to extract a simple explanation for what yousee.

44

