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Abstract: 

This paper is intended to clarify and explain the meaning of ergodicity in physical 
systems as well as non-ergodic processes and the aging phenomena. The first approach to 
ergodicity is done by introducing a general setup of "particles in a box", with emphasis 
on different boxes that result both ergodic outcome and non-ergodic one. Following this 
"graphical" introduction a mathematical view on ensemble vs. time average will show 
through equations how a stationary system implies "ergodic system". I then show a 
theoretical model with some examples of aging as an introduction to real, physical, non-
ergodic systems that demonstrate the aging process. The systems shown here are simple 
glass and a more modern topic, of spin-glasses. Many experiments have been done in the 
last couple of decades in the spin-glasses field, this paper show only one experiment that, 
in a way, summarize many of the experiments in spin-glasses that exhibit aging and non-
ergodicity.    



Ergodization: 

If we take a system with some d-
dimensions (d>1) with energy   

H(xi,pi) =E   , i =1,2,3…d ,    

The system will fill all of its "energy 
envelope" within some typical time. 

 

Rectangular Box 

 

If we put some particles in a specific 
location and with some specific 
momentum, with in a short time the 
system will have d frequencies for the 
system: 

 

 

 

 

 

 

 

 

Sinai Billiard:   

 
In a more complex surface, the system 
will not remain with its two basic 
frequencies, but will fill the entire space 
randomly. 

In some computer simulation it was 
shown that within 6 hits with the walls, 
we have complete chaos. 
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Ergodicity is reached when θ has 
covered all angles. 
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Ellipsoid:   

 

In this special shape there are ergodic 
and non-ergodic areas: 

Focusing areas:   

 

 

 

 

 

 

Whispering Gallery: 

 

 

 

 

 

 

We can define Puankare sections if we 
call the angle of impact as θ  and the 
location along the circumference S and 
than plot the locations where there is no 
ergodicity, on an axis of S versus sinθ. 

These sections denote specific areas 
where there is no ergodicity. 

 

 

 

In the green section, there is complete 
ergodization. 

In that case, all measurement of the 
system will yield the same result. 

This can be described as a stationary 
state, another characteristic of 
ergodicity. 

As we know stationary state is defined 
by that that it does not change it time, or 
in other words that it commute with the 
Hamiltonian.  
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Ensemble and time averages 

There are two types of averages that are 
of interest. The first of these is the 
ordinary average of y at a given time 
over all systems of the ensemble. 

This ensemble average which we denote 
by <y>, is defined by: 
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Where y(k)(t) is the value assumed by y(t) 
in the kth system of the ensemble and 
where N is the very large total number of 
systems in the ensemble. 

The second average of interest is the 
average of y for a given system of the 
ensemble over some very large time 
interval 2θ  (where θ → ∞ ). We shall 
denote this time average by {y} and 
define it for the kth system of the 
ensemble by 
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In more pictorial terms illustrated in the 
following figure (1), the ensemble 
average is taken vertically for a given t, 
while the time average is taken 
horizontally for a given k.  

 

 

      

 

Figure (1) 

 

Let us show that the operations of taking 
a time average and taking an ensemble 
average commute.[3]   

We can see that:  
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Consider now a situation which is 
"stationary" with respect to y. This 
means that there is no preferred origin in 
time for the statistical description of y 
i.e., the same ensemble ensues when all 
member functions y(k)(t) of the ensemble 
are shifted by arbitrary amounts in time.  
(In an equilibrium situation this would, 
of course, be true for all statistical 
quantities.)   
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For such stationary ensembles there is an 
intimate connection between ensemble 
and time averages if one assumes that 
(with the possible exception of a 
negligible number of exceptional 
systems in the ensemble) the function 
y(k)(t) for each system of the ensemble 
will in the course of a sufficiently long 
time pass through all the values 
accessible to it.  – This is called the 
"ergodic" assumption. 

One can then imagine that one takes, for 
example, the kth system of the ensemble 
and subdivides the time scale into very 
long sections (or intervals) of magnitude 
2θ, as shown in figure (2,3). 

Figure (2) 

 

Figure(3) 

 

Since θ is very large, the behavior of 
y(k)(t) in each such section will then be 
independent of its behavior in any other 
section. Some large number of M such 
sections should then constitute as good a 
representative ensemble of the statistical 
behavior of y as the original ensemble 
average. 

More precisely, in such a stationary 
ensemble the time average of y taken 
over some very long time interval θ must 
be independent of the time t.  
Furthermore, the ergodic assumption 
implies that the time average must be the 
same for essentially all systems of the 
ensembles.  

Thus,  

{ } { }y=(t)y(k)
   independent of k . 

 

Similarly, it must be true that in such a 
stationary ensemble the ensemble 
average of y must be independent of 
time.  

 Thus,  

yy(t) =
   independent of t . 

The general relation regarding the 
commutation of the two averages leads 
then immediately to an interesting 
conclusion, by taking the ensemble 
average (independent of k), we can get 
the relation: 
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{ } { }y=(t)y(k)

 

and if we take the time average of the 
second we will get: 

{ } y=(t)y(k)

 

Hence from the above we can conclude 
that for a stationary ergodic ensemble we 
have: 

{ } yy =
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Aging – History-
dependent relaxation 

Aging in an infinite-range 
Hamiltonian system of 
coupled rotators  

 

The Hamiltonian of the system is: 
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Aging can be characterized by 
measuring the two-time autocorrelation 
function along the system trajectories. If 
the state of the system in phase space 
can be completely characterized giving a 
state vector xr , then the two-time 
autocorrelation function is defined as 
follows: [1] 
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where σt' are standard deviations and the 
symbol <...> stands for average over 
several realizations of the dynamics. In 
the case of a Hamiltonian system with N 
degrees of freedom the state vector is 
decomposed in coordinates and their 
conjugate momenta, therefore we 
establish the following notation:  

),( Lx
rr
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The difference between the experiments 
was the waiting time ( tw ) in which the 
system was held "frozen" before letting 
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it evolve with time. In this case, these 
initial conditions where keeping all 
angles at zero while giving the system a 
random momenta form a uniform 
distribution, such that the system has a 
total energy K+U.   

In the following example we can see the 
autocorrelation versus the time. (log-log 
graph) 

 

 

 

 

 

 

 

 

We can see that the autocorrelation 
function obeys a power law – but for 
every waiting time we have a different 
decay factor – the system "remembers" 
the waiting time. 

This is the aging phenomena. 

Let us now look at the graph with 
"scaled" time axis, the scaling is done to 
the system's "own time" – the waiting 
time. 

 

 

 

  

 

 

 

 

 

 

 

In the new, scaled graph we can see that 
the autocorrelation for all different 
waiting times behaves the same. 
 

Note that the scaling is not "simple 
division" but has some power factor to it. 
Now we can fit the graph to some power 
law function to analyze the 
autocorrelation function: 

λ

β

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∝⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=+

ww
ww t

t
t
tftttC ),(  

In this case the constants came out to be: 

74.0=λ  and 90.0=β  
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Simple-glass: 

 

Glass as we know it is an amorphous 
SiO2 which would, according to its 
lowest free energy be in a crystalline 
shape (like sand) although it is "frozen" 
in a metastable state, which is in a 
higher free energy level.  

This state will, in a finite (but VERY 
long) time decay into crystalline state by 
nucleating sufficiently large domains of 
the crystalline phase, which will then 
grow and cover all the material. [2] 

This system is none ergodic since it has 
not yet reached its equilibrium. 

Helmholtz's free energy:  F = E - TS 

Spin-glass: 

 Non-ergodic process with aging 
(Ising model) 

In this equilibrium picture the spin-glass 
phase is believed to be an ensemble of 
randomly oriented spins, which are 
frozen due to short and infinite-range 
correlations. 

In other words, in order for the system to 
get to "ergodization" it has to move 
though all its possible states, and in this 
case the glass – structure is making this 
process very long. 

 

Since the discovery of aging effects in 
spin glasses approximately 20 years ago, 
much effort has gone into determining 
the exact time dependence of the 
memory decay functions. In particular, 
memory effects show up in the 
thermoremagnet magnetization (TRM) 
(or zero-field cooled magnetization), 
where the sample is cooled through its 
spin glass transition temperature in a 
small magnetic field (zero field) and 
held in that particular field and 
temperature configuration for a waiting 
time tw. At time tw, a change in the 
magnetic field produces a very long time 
decay in the magnetization. The decay is 
dependent on the waiting time. Hence, 
the system has a memory of the time it 
spent in the magnetic field. [4,5] 

A rather persuasive argument suggests 
that, for systems with infinite 
equilibration times, the decays must 
scale with the only relevant time scale in 
the experiment, tw. This would imply 
that plotting the magnetization on a t=tw 
axis would collapse the different waiting 
time curves onto each other. This effect 
has not been observed. 

∆F 
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In these two examples (above and 
below) we can see an experiment result 
[4], that show relaxation with time of a 
sample that was cooled for different 
periods of times prior to the 
measurement. This experiment  was 
done with several cooling sequences (not 
shown here) that show more or less the 
same results, although the article [4] 
elaborates more about the different 
cooling techniques used and their effect 
on the aging process. 

 

 

 

A mathematical analysis: 

The free energy barrier (for a spin to 
flip) is ∆F, it is in the order the sample 
volume, i.e. it is proportional to Ld .  

The time needed for such a transition to 
take place is the ratio of the boltsman 
factors of the transition: (initial/final) 

 
KTF /∆e∝τ

From this relation we can see that the 
time to cross the barrier between the two 
phases diverges exponentially as  

∞→)( dLorN  

The name we call such systems that for 

them ∞→maxτ  as ∞→N  ,   
nonergodic. [6,7] 
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Final remarks - conclusion: 

Over the last two decades and still today, 
a lot of work is being done in research, 
both theoretical and experimental, in the 
area of long and short range correlations. 
Many of these works deal with the non-
ergodic and aging processes as been 
shown above. This paper gave both 
conceptual idea through "particles in a 
box" models and a mathematical one of 
ergodicity and the lack of it in physical 
systems through time and ensemble 
averages. Stationarity of a system has 
been shown to imply ergodicity by its 
nature. The last examples show that 
many physical systems can be simulated 
and analyzed by a relatively simple 
Hamiltonian, although in many cases, 
full understanding and correct 
predictions are not always reached. 
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