
Width dependent collisionless electron dynamics in the static
fields of the shock ramp, 2, Phase space portrait

M. Gedalin1, U. Griv1, and M.A. Balikhin2

1Ben-Gurion University, Beer-Sheva, Israel
2Sheffield University, Sheffield, England

Manuscript submitted to

Nonlinear Processes in Geophysics
Manuscript-No. NPG 97023

Offset requests to:
Department of Physics, Ben-Gurion University, P.O. Box 653, Beer-Sheva, 84105, Israel



1 INTRODUCTION Nonl. Proc. Geophys., 4, 173, 1997

Width dependent collisionless electron dynamics in the static fields
of the shock ramp, 2, Phase space portrait
M. Gedalin1, U. Griv1, and M.A. Balikhin2

1Ben-Gurion University, Beer-Sheva, Israel
2Sheffield University, Sheffield, England

Abstract. We study numerically in detail the behavior of
electrons in the strongly inhomogeneous static magnetic and
electric fields, which are typical for thin quasiperpendicular
collisionless shocks. We pay particular attention to the de-
pendence of the final electron velocities on their initial ve-
locities, for different shock widths. Electrons are completely
magnetized when the shock is wide, but become demagne-
tized, and the energies that they acquire rapidly increase with
the steepening of the field structure. One of the clear mani-
festations of the electron demagnetization is the loss of even
approximate one-to-one correspondence of the downstream
perpendicular velocity to the upstream perpendicular veloc-
ity. Electron reflection occurs despite the large cross-shock
potential which accelerates electrons along the magnetic field
(the regime of complete magnetization) or across the shock
(strong demagnetization). The reflected ion fraction is sensi-
tive to the potential, magnetic field jump, and ramp width.

1 Introduction

In the present paper we continue the studies of the charged
particle behavior is strongly inhomogeneous electric and
magnetic fields, typical for oblique shock profiles. It has
been known (Cole, 1976; Balikhin et al., 1993; Gedalin et al.,
1995b; Rothwell et al, 1995) that the charged particle motion
in sufficiently inhomogeneous E ⊥ B may become demag-
netized even if the typical inhomogeneity scale it larger then
the particle thermal v⊥/Ω (where Ω = eB/mc) and con-
vective vd/Ω (where vd is the particle drift velocity across
the magnetic field) gyroradii. This fact was used by Ba-
likhin et al. (1993); Balikhin and Gedalin (1994); Gedalin
et al. (1995c); Balikhin et al. (1997) to the explanation of
strong prompt perpendicular electron heating at quasiperpen-
dicular collisionless shocks. The mechanism is efficient for
strong electric field gradients and subsonic incident electron

Correspondence to: Department of Physics, Ben-Gurion
University, P.O. Box 653, Beer-Sheva, 84105, Israel

distribution in the de Hoffman-Teller frame (Gedalin et al.,
1995a,c). Its natural continuation onto the wide shock or hot
initial electron distribution regimes is the well-known mech-
anism of electron heating due to their acceleration along the
magnetic field by the de Hoffman-Teller cross-shock poten-
tial (Feldman et al., 1982; Feldman, 1985; Scudder et al.,
1986c; Thomsen et al., 1987a; Schwartz et al., 1988; Scud-
der, 1995). The electron demagnetization is sensitive to the
fine structure of the shock front, which is not studied very
well so far, and especially to the details of the electric field
behavior. The last is rarely available with sufficient resolu-
tion and if available (Formisano, 1982; Wygant et al., 1987).
In both limits (thin shock with demagnetization and thick
shock with acceleration along the magnetic field) it is usu-
ally assumed that the shock structure is one-dimensional and
stationary. The very definition and transition between the
normal incidence frame (where the incident plasma flow is
along the shock normal) and the de Hoffman-Teller frame
(where the incident plasma flow is along the upstream mag-
netic field) makes physical sense if the structure is one-di-
mensional and stationary, at least within some appropriate
approximation.

Gedalin et al. (1995b) have shown that in the one dimen-
sional stationary structure the drastic transition from com-
plete magnetization to strong demagnetization occurs when
λ = e|dEx/dx|/meΩ2

e & 1. Using the equation of motion
with the massless electron approximation, one has in the nor-
mal incident frame

eEx = − 1
n

dpe,xx

dx
− e

c
n̂ · (Ve ×B), (1)

where the first part in the right hand side represents the de
Hoffman-Teller electric field, pe,xx and n are the electron
pressure and number density, respectively, n̂ is the unit vec-
tor along the shock normal, and Ve is the electron current
velocity. If the electron current dominates and the electron
pressure anisotropy is weak, this expression take the follow-
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ing approximate form:

eEx ≈ −
1
n

d

dx

(
pe +

B2

8π

)
. (2)

Scudder et al. (1986a,b,c) argued that the ion current may be
non-negligible, but the de Hoffman-Teller cross-shock poten-
tial is substantially smaller than the normal incidence frame
potential. As a first order approximation we shall estimate
the demagnetization parameter using (2). Thomsen et al.
(1987a) found that in the shock with weak electron heating
pe ∝ nγ , γ ≈ 2, while in the case of the strong heating
γ > 2. Scudder et al. (1986b) argued that n/B ≈ const
across the shock. Using these approximations we find the
cross-shock potential

s =
2eϕ

miV 2
u

≈ (1 + βe)(Bd/Bu − 1)
M2

, (3)

where Bu and Bd are the magnetic fields at the upstream
and downstream edges of the ramp. If the ramp width is L,
and we assume for the electric field a triangle profile with
the maximum approximately in the middle of the ramp, one
finds

λ ≈ 2(1 + βe)(Bd/Bu − 1)
(ωpeL/c)2

. (4)

For the low Mach number 77 Nov 26, 0610 UT shock the ap-
proximation (2) should be quite appropriate (Gedalin, 1996;
Newbury et al., 1997a), although the found L ≈ (c/ωpi) un-
derestimates the magnetic field gradient in the ramp by a fac-
tor of ≈ 1.2. Using the parameters of the shock (M = 2.7,
βe = 0.36, and Bd/Bu ≈ 3, one finds λ ≈ 0.003 � 1,
which perfectly agrees with our understanding that electrons
are completely magnetized in low Mach number shocks. For
the high Mach number 77 Nov 7, 2251 shock the ramp width
is estimated to be 2 < L/(c/ωpe) < 8 (Scudder et al.,
1986a). Using for our estimate L ≈ 6(c/ωpe) and the shock
parameters Bd/Bu ≈ 5, βe = 1.6, one finds λ ≈ 0.6,
which is marginal, taking into account the uncertainties of
our knowledge of the actual electric field distribution inside
the ramp. For the thin, high Mach number, 80 Aug 1, 2135
shock the ramp width is as small as only 2(c/ωpe) (New-
bury and Russell, 1996), and using Bd/Bu ≈ 3, βe ≈ 0.5,
one finds λ ≈ 2.25, which is well into the demagnetization
regime.

Given the lack of the knowledge of the electric field pro-
file in the shock front, it is impossible to make any general
conclusion as to whether the demagnetization is a common
or an exceptional effect. Recent full-particle numerical sim-
ulations (Liewer et al., 1991; Savoini and Lembege, 1994;
Krauss-Varban et al., 1995) are not unambiguous. Explicit
code simulations with higher mass-ratio (Liewer et al., 1991;
Savoini and Lembege, 1994) (mi/me = 400 and in several
cases mi/me = 1600) show strong electron heating associ-
ated with the high gradients of electric field, but these sim-
ulations cannot be run for sufficiently long time to produce
a stable shock profile. Implicit code simulations with lower
mass ratio show weak heating close to what is expected in

the adiabatic regime (complete magnetization), but have been
unable so far to reproduce observed strong heating regimes.

The situation is even more complicated due to the evi-
dence of a three-dimensional structure of the shock front in
the ramp vicinity (Scudder et al., 1986a), which is confirmed
by presence of large amplitude fluctuations of the normal
component of the magnetic field (which is supposed to be
constant in the one-dimensional stationary case). Oscillat-
ing shock front or small-scale large amplitude moving struc-
tures inside the shock (Newbury et al., 1997b; Gedalin et al.,
1998) also do not conform the usual assumptions of one-di-
mensionality of stationarity of the shock front, nor does the
reforming front of a very high Mach number shock (Quest,
1985). Yet all this cases have in common a strongly inhomo-
geneous E ⊥ B. Since the fields are slowly varying at the
typical electron timescale 1/Ωe, one can expect that elec-
tron motion in these structures will be qualitatively similar
to what happens in a thin shock front. Therefore, modeling
electron dynamics in the shock front, one can shed light on
the electron interaction with large-amplitude thin nonstation-
ary structures.

In the absence of a satisfactory description of the fine
structure of the shock front, we shall analyze the electron
motion in a model field structure. In the accompanying pa-
per (Gedalin and Balikhin, 1998) we study the electron tra-
jectories and downstream parallel and perpendicular electron
heating as a function of the shock width. In the present pa-
per we study in detail the effects of the demagnetization of
the electron distribution within the shock profile, paying par-
ticular attention to the determination of which electrons un-
dergo this transition and how their final velocities depend on
the initial ones. The paper is organized as follows. In sec-
tion 2 we revisit the cross-shock potential taking into account
possible shock non-stationarity and deviations from the one-
dimensional structure. In section 3 we consider briefly the
local behavior of electron trajectories in a general inhomoge-
neous fields and derive approximate criterion for the electron
demagnetization. The purpose of this analysis is to gener-
alize the conclusions onto other possible configurations with
sharp gradients of electric field perpendicular to the magnetic
field, irrespectively of their stationarity and one-dimension-
ality. We show that demagnetization is a general feature if
these configurations, which means that it may occur in time-
dependent and/or three-dimensional shock profile as well. In
section 4 we perform numerical analysis of electron trajec-
tories in a model shock profile and consider the Liouville
mapping of initial velocities into final ones, vi → vf , for
different ramp width. We use an oversimplified shock model
for the following reasons. First, lack of detailed knowledge
about the shock structure makes insensible any attempt to
refine the model. Second, as is shown by Gedalin et al.
(1995b), substantial electron demagnetization occurs only
within the most narrow parts of the shock front (ramp). In
other parts electrons behave adiabatically. Although the elec-
tron motion in these parts would affect the final distribution
it is unimportant for the study of demagnetization properties,
which is of interest here.
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2 Cross-shock potential revisited

The collisionless shock profile is usually assumed one-di-
mensional and stationary, for theoretical purposes and inter-
pretation of observations, even when it is quite clear that it
is not so (Scudder et al., 1986a). This approximation has
been widely used for the description and comparison of the
electron motion in different frames (Goodrich and Scudder,
1984). If we assume that the shock normal may be defined
properly (that is, there exists a direction, along which spatial
variations are in average much stronger, than in the transverse
direction), the normal incidence frame (N) and de Hoffman-
Teller frame (HT) are well defined (de Hoffman and Teller,
1950). To be specific we shall choose this shock normal
along x axis, and xz plane as the coplanarity plane. Then the
relative velocity of the two frames is Vr = Vu(0, 0, tan θ),
where Vu is the upstream plasma velocity in the normal in-
cidence frame (directed in the positive x direction), and θ is
the angle between the shock normal and upstream magnetic
field. The relation between the N and HT electric fields is

E(N) = E(HT ) +
1
c
Vr ×B, (5)

where we assume that all velocities and nonrelativistic. In
the one-dimensional stationary case Bx = Bu cos θ = const,
E

(N)
y = VuBx/c = const, and E

(HT )
y = 0. When the profile

is not one-dimensional or nonstationary, neither Bx nor Ey

are necessarily constant, and E
(HT )
y 6= 0, in general.

The general expression for the electric field is usually ob-
tained from the hydrodynamical equation of motion for elec-
trons (Scudder et al., 1986b):

eE = − 1
ne

∇ · ←→P e −
e

c
Ve ×B−me

dVe

dt
, (6)

where Ve is the electron fluid velocity,
←→
P e is the electron

pressure tensor, and d/dt = (∂/∂t) + Ve · ∇ is the total
derivative. It is usually assumed that the electron pressure is
isotropic and their mass can be neglected. In this approxima-
tion (6) takes a simpler form:

eE = − 1
ne
∇Pe −

e

c
Ve ×B. (7)

It should be emphasized that (6)-(7) are written in the arbi-
trary frame and are equally valid in N and HT as well. Pro-
jecting (7) onto the magnetic field direction, one finds the
electric field component, parallel to the local magnetic field,
as follows:

eE‖ = − 1
ne

b · ∇Pe, (8)

where b = B/|B|. This expression is especially useful if the

shock is one-dimensional and stationary, giving immediately

eE(HT )
x =

eE
(HT )
‖

cos θ
= − 1

ne

dPe

dx
, (9)

eϕ(HT ) =
∫

1
ne

dPe

dx
dx, (10)

eϕ(N) =
∫ (

1
ne

dPe

dx
+

VuBy tan θ

c

)
dx

− eVuBu sin θ

c
y. (11)

The relations (9)-(11) have been extensively used for the de-
scription of electron motion within the shock front. Eq. (10),
in particular, provides the useful energy conservation rela-
tion since the potential depends only on x. It is worth men-
tioning, however, that relations are only approximations, and
if substantial wave activity is superimposed on a stationary
ramp or the ramp itself it a three-dimensional structure, none
of the above assumptions (one-dimensionality and stationar-
ity) is correct, and E(HT ) · B 6= E

(HT )
x Bx, so that (9) no

longer applies. Inside the narrow ramp transition, where the
spatial scale of the variation in x direction may be assumed
significantly smaller than in y and z directions, (7) can be
simplified a little. From the current equation (neglecting the
displacement current for typical velocities much smaller than
the light speed and assuming quasineutrality) one has

Ve = Vi −
c

4πne
∇×B. (12)

The effective current velocity in y direction is

Vy,eff ∼
c

4πne

Bd −Bu

L
, (13)

where we ignored the insignificant here difference between
Bz and |B| for quasiperpendicular shocks and L is the ramp
scale. The maximum y component of the velocity of a re-
flected ion is ∼ Vu (in the normal incident frame), and the
hydrodynamic ion velocity cannot exceed ∼ αVu, where α
is the reflected ion fraction(usually 20-30% for high Mach
number supercritical shocks), so that

Vy,eff

Vi,y
∼ c(Bd/Bu − 1)

αMωpiL
(14)

and is large for typical ramp scales L ∼ 0.2(c/ωpi) and
Bd/Bu ∼ M . Therefore, we can neglect Vi,y in (12) and
substituting Ve ≈ −(c/4πne)∇ × B further into (7) one
has

eE(N)
x ≈ − 1

n

d

dx

(
Pe +

B2

8π

)
. (15)

We emphasize that B is the total magnetic field, including the
superimposed nonstationary wave fields, and (15) is the ap-
propriate approximation, even if the overall structure if not
one-dimensional and nonstationary. It is based only on the
local pressure balance for light electrons, taking into account
that the ion current is limited, |ji| . nVu, and is by far insuf-
ficient to produce large magnetic field gradients. It is worth-
while to mention also that the above approximation should
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work also when the deviations from one-dimensionality are
substantial, in which case the derivative with respect to x
should be substituted by the derivative along the highest gra-
dient direction.

3 Electron trajectories: local analysis

Local trajectory analysis was comprehensively done for the
case of a stationary one-dimensional shock profile (Gedalin
et al., 1995a; Gedalin and Balikhin, 1998). Here we gener-
alize the analysis onto the case of slowly time varying but
otherwise arbitrary fields. The electron motion in the shock
ramp is governed by the following equations of motion:

me
dv
dt

= −eE− e

c
v ×B,

dr
dt

= v, (16)

where the electric and magnetic fields are functions of coor-
dinates r and time t. In the spirit of Balikhin et al. (1993),
let us consider the evolution of the two initially close trajec-
tories r(t) and r′(t). Assuming that δr(t) = r′(t) − r(t) is
small, we Taylor expand the equations of motion to obtain

me
dδv
dt

= −e(δr ·∇)E

− e

c
δv ×B− e

c
v × (δr ·∇)B, (17)

dδr
dt

= δv. (18)

Being interested in fast changes of δr ∝ exp(λt), where
λ & Ωe = eB/mec, we shall neglect the dependence of
the fields on time in (17)-(18). This approximation should be
appropriate even for wave fields if their frequencies are much
lower than the electron gyrofrequency Ωe. For the present lo-
cal analysis v(t) should be treated as a constant parameter.
Then (17) can be written as follows:

dδv
dt

= − e

me
(δr ·∇)E′ − δv ×Ωe, (19)

where E′ = E + v × B/c is the electric field in the instan-
taneous comoving frame, and Ωe = eB/mec is the instan-
taneous gyrofrequency vector. Now, substituting d/dt → λ,
one arrives at the following linear homogeneous equation

λ2δr + (e/me)(δr ·∇)E′ − λδr×Ωe = 0, (20)

and λ is determined from the following equation:

det‖λ2δij + (e/me)∇jE
′
i + λεijkΩe,k‖ = 0, (21)

where δij is the Kronecker tensor, εijk is the Levy-Chivita
tensor, ∇i = ∂/∂xi, and summation is implied on k. This
equation is a sixth order equation for λ of the following kind:

λ6 + A4λ
4 + A3λ

3 + A2λ
2 + A1λ + A0 = 0, (22)

where

A4 =
e

me
∇ ·E′ + Ω2

e, (23)

A3 = − e

mec
Ωe · Ω̇e, (24)

A2 =
e2

2m2
e

[(∇ ·E′)2 − (∇iE
′
j)(∇jE

′
i)]

+
e

me
Ωe · (Ωe ·∇)E′, (25)

A1 = − e

mec
Ωe(Ω̇e ·∇)E′, (26)

A0 =
e3

m3
e

εijk(∇xE′
i)(∇yE′

j)(∇zE
′
k), (27)

where dot means the time derivative in the electron instanta-
neous comoving frame (̇ . . .) = (∂/∂ + v ·∇)(. . .), and we
have used the Maxwell equation ∇ × E = −(1/c)∂B/∂t.
It is easy to see that there is always at least one root with
Re λ > 0, unless A3 = A1 = 0 and A4 ≥ 0, A2 ≥ 0, and
A0 ≥ 0 (cf. Balikhin et al., 1997) (these conditions are nec-
essary for absence of Re λ > 0 but not sufficient). Therefore,
trajectory divergence is quite typical for inhomogeneous sys-
tems.

As was pointed out by Balikhin et al. (1997) (see also
Gedalin and Balikhin (1998)), local trajectory divergence
does not necessarily means demagnetization. We shall con-
sider several special cases first.

Parallel inhomogeneity regime. In this case B =
(0, 0, Bz) = const and E = (Ex, Ey, Ez(z)), where Ex and
Ey are constant. It is easy to see that (22) takes the form:

λ6 + (
e

me

∂Ex

∂x
+ Ω2

e)λ
4 + Ω2

e

e

me

∂Ex

∂x
λ2 = 0, (28)

and the trajectories diverge if ∂Ex/∂x < 0. However, the
equations of motion (16) take the following simple form:

me
dvx

dt
= −eEx −

e

c
vyBz, (29)

me
dvy

dt
= −eEy +

e

c
vxBz, (30)

me
dvz

dt
= −eEz, (31)

so that it is obvious that the motion in the xy plane is the
E × B drift with the velocity Vd = c(Ey/Bz,−Ex/Bz)
and gyration with the gyrofrequency Ω = eBz/mec, while
along the magnetic field one has energy conservation ε =
mev

2
z/2 − eφ = const, where Ez = −dφ/dz. The cor-

responding time-independent solution of Vlasov equations
would be f(vx, vy, vz) = F (v⊥, ε), where v2

⊥ = (vx −
Vdx)2 + vy − Vdy)2 is the gyration velocity. In particular,
for f = constf1(v⊥) exp[−(vz0 − V0)2/2v2

T ] at φ = 0 one
finds

f = constf1(v⊥)

· exp[−(
√

v2
z0 + 2eφ/me − V0)2/2v2

T ],
(32)
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and it can be easily shown that the parallel temperature is
lower (that is, the distribution is cooled) in the regions with
the higher potential (cf. Gedalin at al., 1996), independently
of the dEx/dx.

Perpendicular geometry, no motional field. In this case we
shall assume B = (0, 0, Bz(x)) and E = (Ex(x), 0, 0). Ab-
sence of the motional field Ey means that there is no electron
E×B drift in x-direction in the lowest order approximation.
Eq.(22) takes the following form:

λ6 + (
e

me

∂Ex

∂x
+ Ω2

e)λ
4 = 0, (33)

and the trajectories diverge when (e/me)(∂Ex/∂x) + Ω2 <
0, in agreement with Balikhin et al. (1993). In this case the
equations of motion are

me
dvx

dt
= −eEx −

e

c
vyBz, (34)

me
dvy

dt
= −e

c
vxBz, (35)

me
dvz

dt
= 0. (36)

Eq.(35) is immediately integrated to mevy + eAy = Py =
const (conservation of the generalized momentum, corre-
sponding to the ignorable coordinate), where Ay =

∫
Bzdx.

Substituting this to (34) one finds ε = mev
2
x/2 + U(x) =

const, where U = −eφ+ ePyAy/mec− e2A2
y/2mec

2 (con-
servation of time-independent Hamiltonian). The last rela-
tion means that the electron velocities (and therefore the dis-
tribution function) depend only on the integrated characteris-
tics φ and Ay and are independent of the gradients of B and
E . It is easily seen that there is no temperature change in y
direction, while in x direction temperature changes as in the
previous case.

Oblique geometry model. In this model (Gedalin et al.,
1995b) the magnetic field is constant B = (Bx, 0, Bz) =
const and the electric field is chosen as E = (kx,Ey, 0),
where Ey = const and k = const. Equations of motion are
fully integrable. It was shown (Gedalin et al., 1995b) that
if k < 0 the electron trajectory instability occurs and elec-
trons are accelerated across the magnetic field in x direction.
Closer analysis of the solutions obtained by (Gedalin et al.,
1995b) shows that when λt → ∞ the electron distribution
tends to a monoenergetic beam. In this case the result does
depend on k = dEx/dx, but the trajectory divergence itself
does not mean heating.

These cases have in common full integrability, namely, the
system possesses complete set of integral of motions. More
precisely, in all these cases there are sufficient integrals of
motion to globally isolate a one-dimensional space in which
the unstable vector lies. We, therefore, argue, that the tra-
jectory divergence itself does not result in any heating. The
effect is completely nonlinear and apparently requires that
the system be non-integrable. In all cases where nonadia-
batic heating was found numerically (Balikhin et al., 1993;
Gedalin et al., 1995a,b; Gedalin and Balikhin, 1998), is was

due to restoration of adiabaticity and efficient conversion of
the energy of accelerated demagnetized electron into the gy-
ration energy. Thus, we proceed bearing in mind that the
trajectory instability should occur in a part of the structure,
being followed by the conversion region with effective mag-
netization, that is Re λ must change its sign from positive
to negative in order that the trajectory instability results in
heating. This is somewhat similar to the stretching and fold-
ing scenario in Hamiltonian chaotic systems (Tabor, 1989),
although in our case the motion is not chaotic, and heating
is produced in a single demagnetization - magnetization se-
quence.

As is shown in Balikhin et al. (1997) the trajectory insta-
bility occurs even when there is no electric field, solely due to
the magnetic field variation. This divergence is related to the
adiabatic energization of electrons rather than to the demag-
netization, although it ”helps” demagnetization by smear-
ing out the boundary between the adiabatic and nonadiabatic
regimes and allowing weak demagnetization for smaller elec-
tric field gradients. As it is known (Balikhin et al., 1993;
Gedalin et al., 1995a), presence of the inhomogeneous elec-
tric field, parallel to the magnetic field, substantially weakens
the conditions for the demagnetization. In order to analyze
the effects of the weak nonstationarity of the fields and of de-
viations from one-dimensionality, we exclude the two men-
tioned effects assuming B = (0, 0, Bz) = const, Ez = 0,
and ∇z = 0. It is easy to see, that (22) takes the following
simple form:

λ2

[
λ4 +

e

me
(∇ ·E + Ω2

e)λ
2

− e

2mec

d

dt
Ω2

eλ

+
e2

m2
e

(
∂Ex

∂x

∂Ey

∂y
− ∂Ex

∂y

∂Ey

∂x
)
]

= 0.

(37)

When the geometry is planar, that is, ∇ = l̂∇, and Ω̇e = 0
(37) reduces to the condition found by Balikhin et al. (1993).
In the general case (37) does not have any roots with
Re λ > 0, if Ω̇e = 0, κ1 = ∇ ·E + Ω2

e ≥ 0,
κ2 = (∂Ex/∂x)(∂Ey/∂y) − (∂Ex/∂y)(∂Ey/∂x) ≥ 0,
and κ2

1 − 4κ2 ≥ 0. Thus, the condition for the trajec-
tory instability becomes substantially weaker than even in
the oblique case where there is inhomogeneous parallel elec-
tric field present. To make this conclusion more quantita-
tive, we compare the two cases, for which Ω̇e = 0 and the
electric field is a potential field E = −∇φ: (a) one-dimen-
sional geometry φ = 1

2kx2, and two-dimensional geometry
φ = 1

2k(x2+y2). It is easy to see that in the one-dimensional
case the instability conditions reads ek/me > Ω2

e, while in
the two-dimensional case it becomes ek/me > Ω2

e/4, which
weakens the requirements to the smallness of the scale of
electric field variation.

One can see that in all cases trajectory instability is guaran-
teed if (e/me)∇ ·E′ + Ω2

e < 0,. Thus, for semi-quantitative
analysis we adopt the following condition for local demag-
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netization of electron motion

α ≡ −(e/me)∇ ·E′/Ω2
e > 1, (38)

which is a three-dimensional generalization of the condition
found earlier by Balikhin et al. (1993); Gedalin et al. (1995b)
for the case of planar geometry. It is easy to see that this
condition places the following restriction on the deviations
from quasineutrality in the instantaneous comoving frame:

δn

n
>

Ω2
e

ω2
pe

. (39)

For n ∼ 5 cm−3 and B = 10 nT, one has δn/n > 4 · 10−4

for λ > |Ωe|, which is not unreasonable.
To summarize this analysis, electrons become locally de-

magnetized with very modest deviations from quasineutral-
ity. Such demagnetization is even easily achieved if the ge-
ometry is not one-dimensional geometry or stationarity of the
electric and magnetic fields. Balikhin et al. (1993); Gedalin
et al. (1995b) have shown that such demagnetization results
in the electron acceleration across the magnetic field and ef-
ficient energy input into the transverse degree of freedom.

4 Phase space: numerical analysis

In the previous section we studied local stability of electron
trajectories in general (not necessarily one-dimensional and
stationary) set of electric and magnetic fields. Although it is
relatively easy for an electron to become locally demagne-
tized, the resulting energization would depend on what hap-
pens along the whole electron trajectory. If the demagne-
tization region is small the overall potential drop, affecting
the demagnetized electrons, may be also too small to pro-
duce substantial energization. It is difficult (if possible at
all) to study the global behavior of electron trajectories an-
alytically, especially taking into account sensitivity to initial
conditions. Nor it is possible to study the demagnetization
in arbitrary geometry. We shall, therefore, perform a numer-
ical analysis of electron trajectories in a model shock profile,
bearing in mind that qualitative results should be applicable
to any thin slowly varying structure. We shall put special em-
phasis on the changes in the electron distribution, depending
of the shock width. To this end we specify the fields within
the shock profile as in Gedalin and Balikhin (1998):

Bz = Bu sin θ

[
R + 1

2
+

R− 1
2

tanh
(

1.5x

D

)]
, (40)

By =
c cos θ

Mωpi

dBz

dx
. (41)

These expressions describe only the shock ramp, where the
demagnetization is most plausible. The other parts of the
shock structure (foot, overshoot, and large amplitude down-
stream oscillations) are unlikely to be sufficiently narrow to
allow electron demagnetization. While subsequent (or pre-
ceding in the foot) adiabatic motion of electrons in these re-

gions would affect the shape of the electron distribution func-
tion, it would not change the conclusions about the demag-
netized electron features, since these are determined only by
their motion in the ramp. Being interested in the transition
from completely magnetized electron motion to substantial
demagnetization, we have to analyze only that part of the
shock profile where such a transition can occur.

The approximation (41) has been shown to be rather im-
precise for high Mach number shocks (Jones and Ellison,
1987; Thomsen et al., 1987b; Gosling et al., 1988; Jones and
Ellison, 1991; Gedalin, 1996; Newbury et al., 1997a), over-
estimating By inside the ramp. However, we shall use it here,
in the absence of a better model description, since no direct
comparison with observations is planned. Higher By results
in the more fast increase of the total magnetic field inside
the ramp, thus somewhat reducing the region where demag-
netization can occur. Within the stationary one-dimensional
shock model By , integrated over the ramp width, determines
the normal incidence frame cross-shock potential, provided
the de Hoffman-Teller potential is fixed by other parameters.
Thus ϕ(N) does not depend on the details of the By behavior
in the ramp. To maintain the same normal incidence frame
potential By should increase with the ramp narrowing. There
is some controversy in this issue since the observed By are
always substantially less than Bz . On the other hand, too
low ϕ(N) would be inconsistent with the ion deceleration and
reflection at the ramp (Wilkinson and Schwartz, 1990). It
can be seen that the overestimated By results in more signifi-
cant increase of local |B| than |∂Ex∂x|, thus somewhat sup-
pressing demagnetization. The tanh approximation used in
(40) slightly overestimates dB/dx in the middle of the ramp,
whose width is approximately 2.5D, but substantially under-
estimates dB/dx and even more d2B/dx2 near the edges of
the ramp. Real magnetic field profiles do not tend to zero so
smoothly. We shall see that demagnetization occurs near the
upstream edge of the ramp, so that the chosen profile is unfa-
vorable for demagnetization, allowing it only for extremely
narrow profiles.

As far as a stationary and one-dimensional model shock is
considered, it is convenient to perform the numerical analysis
in the de Hoffman-Teller frame. We shall specify the HT
electric field as suggested by (9), assuming polytropic law
p ∝ n2 for electrons, and n/B = const, which gives

eEx = −βeBu

4πnu

dB

dx
. (42)

eφ =
βeB

2
u

4π
(

B

Bu
− 1), (43)

It is easy to see that approximately the demagnetization pa-
rameter α ∝ (d2B/dx2)/B2. Our usage of the tanh pro-
file for Bz underestimates d2B/dx2 and overestimates By ,
which contributes into B2, thus substantially underestimat-
ing α in this geometry. Therefore, the parameters used here-
after should not be compared directly to the observational
shock parameters. The chosen model, however, is especially
convenient for the present study, since the electron demag-
netization is controlled by a single parameter, namely ramp
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scale D, which is approximately 0.4 of the ramp width.
Throughout the paper we use the following parameters: M =
7.5, θ = 76◦, and R = 4. We traced trajectories of ini-
tially Maxwellian distributed electrons (βe = 0.5) for the
following several values of the ramp scale D = 5(c/ωpe),
3(c/ωpe), and (c/ωpe), the narrowest ramp width corre-
sponding to ≈ 2.5(c/ωpe).

The objective of the analysis is to numerically establish the
relation between initial electron parallel and perpendicular
velocities v0,‖ = v0·Bu/|Bu|, v0,⊥ = (v2

0−v2
0,‖)

1/2 and the
corresponding downstream velocities vd,‖ = vd · Bd/|Bd|,
vd,⊥ = (v2

d− v2
d,‖)

1/2, where v0 is given in the far upstream
region, and vd is obtained in the far downstream region,
where the fields can be considered homogeneous. We are not
interested in retaining any information about the electron gy-
rophase, since the electron gyroradius is typically small com-
pared to the length over which the distribution is effectively
averaged during observations. Such information would be
necessary for the consideration of the electron pressure ten-
sor within the ramp, which is beyond the scope of the present
paper.

In a wide ramp electrons are expected to behave adiabati-
cally, that is,

v2
d,⊥ = v2

0,⊥(Bd/Bu), (44)

v2
d,‖ + v2

d,⊥ = v2
0,‖ + v2

0,⊥ +
2eφ

me
. (45)

The last relation is more conveniently written as

v2
d,‖ + v2

d,⊥ = v2
0,‖ + v2

0,⊥ + 4v2
Te[(Bd/Bu)− 1], (46)

where we used (43) and v2
Te = Te/me = βeB

2
u/8πnume.

One particular implication of (44) and (46) is that all elec-
trons with the initial velocities, satisfying the relation

v2
0,‖ < (v2

0,⊥ − 4v2
Te)(Bd/Bu − 1), (47)

are reflected at the ramp.
In the numerical analysis the whole initial phase space of

electrons is divided into four parts, according to the sign of
their initial v0,‖ and final vf,‖ parallel velocities: (a) trans-
mitted electrons, for which v0,‖ > 0 and vf,‖ > 0, (b) re-
flected electrons, for which v0,‖ > 0 and vf,‖ < 0, (c) an-
other group of reflected electrons, for which v0,‖ < 0 and
vf,‖ > 0 (these particles actually mirror the previous group
and are not considered in the analysis), and (d) backstream-
ing electrons, for which v0,‖ < 0 and vf,‖ < 0, and which
have to come from the downstream region to match the up-
stream electrons heading into upstream. Since we were in-
terested only in the phase space transformation no weighting
of downstream electrons according to their staying time has
been done, so that the following figures show mapping of
initial velocities into final velocities and do not show down-
stream electron distribution.

Figure 1 shows the phase space for the initial electron dis-
tribution and corresponding downstream electron velocities
(for transmitted electrons only). The initial distribution of
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Fig. 1. Phase space (v‖, v⊥) for initial electron distribution and
corresponding downstream velocities of transmitted electrons for
D = 5, 3, and 1 electron inertial lengths.

2000 Maxwellian distributed electrons is slightly supersonic
in the de Hoffman-Teller frame, since vTe cos θ/Vu ≈ 0.7.
The energies of the downstream electrons are limited from
below by eφ, that is, v2

d,‖+v2
d,⊥ > 4v2

Te(Bd/Bu−1). Down-
stream phase spaces for D = 5 and D = 3 (hereafter we
measure D in electron inertial lengths) are almost identical
and match our expectations of what should be seen in the
adiabatic case. In the case D = 1 the phase space portrait
is substantially different. Low v‖ electrons are absent, mean-
ing stronger electron reflection in the demagnetized regime.
We will consider the reflected electrons in more detail below.
The electron energies clearly obey the energy conservation:
v2
‖ + v2

⊥ ≥ 2eφ/me. Absence of transmitted electrons with
low v‖ means that some electrons acquire too high perpen-
dicular energy during their demagnetization and are subse-
quently reflected by the increasing magnetic field, when they
become magnetized again (Gedalin et al., 1995b). It should
be emphasized that this electron reflection depends strongly
on the HT cross-shock potential. If the effective polytropic
index γ > 2, as occurs in shocks with strong electron heat-
ing (Thomsen et al., 1987a; Schwartz et al., 1988), the cross-
shock potential is higher, than predicted by (43), and reflec-
tion is suppressed.

Figure 2 shows the dependence of the downstream per-
pendicular velocity vd,⊥ of transmitted electrons on their ini-
tial perpendicular velocity for the adiabatic case D = 5 and
in the case of strong demagnetization D = 1. In the adia-
batic case the dependence clearly follows the magnetic com-
pression prescribed relation vd,⊥ =

√
Bd/Bu v0,⊥. In the

nonadiabatic case there is a large spread in downstream ve-
locities, even for close initial perpendicular velocities. This
spread is roughly independent of the initial perpendicular ve-
locity and approximately corresponds to 2eφ/me. It is better
seen in Figure 3, where the same mapping is shown for three
cases, D = 5, D = 3, and D = 1, and low v0,⊥ < 1 elec-
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Fig. 2. Dependence of downstream perpendicular velocity vd,⊥ on
the initial perpendicular velocity v0,⊥ of transmitted electrons for
D = 5 and D = 1.
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Fig. 3. Dependence of downstream perpendicular velocity vd,⊥ on
the initial perpendicular velocity v0,⊥ of transmitted electrons with
low initial perpendicular velocities, for D = 5, D = 3, and D = 1.

trons only, to exclude the magnetic compression effect. The
difference between the adiabatic (and almost adiabatic) and
strongly nonadiabatic cases is striking. In the adiabatic case
there is a one-to-one correspondence v0,⊥ → vd,⊥, which
is determined by the magnetic compression. In the nona-
diabatic case this one-to-one correspondence no longer ex-
ists and is substituted by a visually chaotic scattering. This
is in complete agreement with the previously shown strong
dependence of the perpendicular energization on the initial
gyrophase (Gedalin et al., 1995b). Since we do not keep the
gyrophase information this quasi-random energization would
probably lead to the coarse-grained entropy production.

Of particular interest is the efficiency of the perpendicu-
lar energization, which can be expressed in terms of the ra-
tio vd,⊥/

√
Bd/Buv0,⊥. This ratio for the three cases as a

function of the initial perpendicular velocity is shown in Fig-

ure 4. In the adiabatic case this ratio is constant and equals
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Fig. 4. Perpendicular energization efficiency in the three cases.√
Bd/Bu. In the nonadiabatic case the efficiency is typi-

cally twice as great as the magnetic compression efficiency,
and even reaches values by an order of magnitude larger. The
maximum efficiency for given v0,⊥ is large for small initial
perpendicular velocities and rapidly drops, approximately as
1/v0,⊥, when the initial perpendicular velocity increases.
This result is in agreement with the conclusion that the max-
imum nonadiabatic perpendicular energization is determined
by the cross-shock potential, v2

d,⊥,max ≈ 2eφ/me ≈ const,
so that vd,⊥/

√
Bd/Buv0,⊥

∼
√

2eφ/me/v0,⊥. It was shown earlier numerically (Ba-
likhin and Gedalin, 1994) that perpendicular electron heating
behaves in the similar way, which is also in agreement with
observations (Schwartz et al., 1988).

To summarize, transmitted electrons, in the case of strong
demagnetization, are energized in the perpendicular direc-
tion much more efficiently than in the adiabatic case. This
energization only weakly depends on the initial perpendic-
ular velocity of the electron, but is rather sensitive to its
initial gyrophase. Since the amount of the total energy in-
crease for any given electron is exactly the cross-shock po-
tential energy, and is therefore constant, the adiabatic ener-
gization results in the regular redistribution of this energy
among the parallel and perpendicular degrees of freedom,
while the nonadiabatic mechanism introduces some random-
ness in this redistribution.

As was said above, electron reflection depends signifi-
cantly on both ramp width and cross-shock potential. Fig-
ure 5 provides closer look at the initial phase space of those
electrons which are reflected in the adiabatic case D = 5
and nonadiabatic case D = 1. It is clearly seen that the
number of reflected electrons is larger in the nonadiabatic
case, at the expense of electrons, which have low initial v0,⊥.
That means, that the enhanced reflection is due to the strong
perpendicular energization of these electrons in the upstream
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Fig. 5. Initial velocities of electrons that are reflected in the case
D = 5 and D = 1.

part of the ramp (where demagnetization occurs) with sub-
sequent magnetic reflection deeper in the ramp. During this
reflection the perpendicular energy is transferred into the par-
allel degree of freedom. However, since the initial energiza-
tion differs from the magnetic compression produced ener-
gization, these reflected electrons would have finally perpen-
dicular energies different from the initial values. This expec-
tation is confirmed by direct numerical analysis, as shown in
Figure 6, where the final perpendicular velocities of reflected
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Fig. 6. Final perpendicular velocities of reflected electrons vs their
initial perpendicular velocities.

electrons vr,⊥ are plotted against their initial perpendicular
velocities v0,⊥. In both case velocities are measured far up-
stream before and after the interaction with the ramp fields. It
is clearly seen that the reflected ion beam has some spread in
v⊥. The result of this combination of demagnetization with
magnetic mirroring is shown in Figure 7, where the elec-
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Fig. 7. Initial (circles) and final (crosses) velocities of reflected
electrons.

tron initial velocities (absolute values) are shown by circles,
and their final velocities are shown by crosses. The initial
and final velocities completely coincide in the case D = 5,

where only magnetic mirroring works. In the case D = 1 the
electrons have typically higher perpendicular velocities and
lower parallel velocities after the reflection than before.

Finally, Figure 8 shows the velocities of the electrons
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Fig. 8. Downstream velocities of backstreaming electrons.

which cross the ramp from downstream to upstream to match
the corresponding phase space in the incident Maxwellian
distribution. It is clearly seen that there are less those elec-
trons in the nonadiabatic case, which is obviously related to
the stronger reflection.

5 Discussion and conclusions

To summarize, we have shown that it is likely that in thin
shocks electrons are demagnetized at least in the part of the
shock ramp. We have shown that the electric field component
in the direction of the largest gradient is determined primar-
ily by the requirement of the electron balance. This conclu-
sion is correct even if the structure is not exactly one-dimen-
sional and stationary, and when then the N-HT relations are
not useful, provided that the typical time scale of the field
variations is much larger than the electron gyroperiod, and
that the structure is locally planar. We have analyzed the
demagnetization condition in general case, without assum-
ing stationarity and one-dimensionality, and have shown that
strong demagnetization occurs when rather small deviations
from quasineutrality occur. We have argued that the fea-
tures of electron demagnetization (and dynamics in general)
within the shock ramp should be similar to what electrons
experience in short scale large amplitude structures, even if
they are not stationary and one dimensional. Thus, studying
electron motion in the shock front provides some insight into
features of electron interaction with inhomogeneous fields in
other systems.

Using analysis of electron trajectories in a model shock
profile, we have shown that in the case of a thin shock ramp
all electrons demagnetization does not depend much on the
initial ion parallel or perpendicular velocities, which mani-
fests itself in the almost equal spread in the acquired perpen-
dicular energies for all initial perpendicular velocities of the
incident electrons. The perpendicular energy gain depends
strongly on the initial electron gyrophase, which is not mea-
sured in real observations. The relative perpendicular energy
gain decreases with the increase of the initial perpendicular
velocity, what is responsible for the drop of the nonadiabatic

9



Nonl. Proc. Geophys., 4, 173, 1997

energization efficiency for these electrons. We have shown
that the electron reflection also becomes nonadiabatic in thin
shocks, and that the number and distribution of reflected elec-
trons is sensitive to the shock width and cross-shock poten-
tial.

Our usage of the oversimplified model of the shock front
(monotonic ramp only) is justified because of the observa-
tion that the electron motion should be almost completely
adiabatic in other parts (foot, overshoot, and large ampli-
tude downstream oscillations) of the shock structure, which
means that the demagnetization properties are determined
only by the field distribution in the ramp. The other parts
of the shock structure will participate adiabatically in the for-
mation of the eventual electron distribution. This distribution
would be also affected by deviations from one-dimension-
ality within the shock front and non-stationarity of the field,
as well as by large amplitude waves and turbulence. Nev-
ertheless, those features, which are due to electron demag-
netization, should be similar to what has been found in the
present analysis. Recent study by Newbury et al. (1997b)
shows that the shock ramp itself can contain quasi-stationary
or slowly varying fine scale substructure with the typical
scale of 0.1-0.2 (c/ωpi). In this case the results obtained
here would be applicable to the description of the electron
behavior in this substructure. In any case, comparison with
observations would require better knowledge of the field dis-
tribution in real shocks and better understanding of the shock
structure formation and stability. One of the important un-
resolved issues is turbulent smoothing of the collisionless
electron distribution, which requires analysis of the stability
of the magnetized and demagnetized electron distributions
within the ramp.
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